

What leads to conditioning?

- Contiguity
- Stimuli that are close to one another in time and in space become associated
- Co-occurrence
 Proximity critical
- Contingency
 - When one stimulus depends on the other, they will become associated
- Information
 Predictive value critical

Blocking

- Phase 1: Pair CS1 → UCS
- Phase 2: Pair compound stimulus with UCS: CS1CS2 → UCS
- Phase 3: Test element stimuli alone to determine amount of conditioning
- Conditioning to CS1 will be strong, but conditioning to CS2 will be weak: Blocking

Kamin (1968)								
• Acqu	isition (- : Phase 1	۲ 4 trials Nonreinfo	Results					
Group	16 Trials	8 Trials		Ratio				
• NL		NL	۰L	.05				
• N-NL	Ν	NL	۰L	.45				
• N only	Ν	Ν	• L Suppression Ra complete fear of indicates chanc conditioning)	.44 tito of 0 indicates conditioning, 0.5 te behavior (no				

Contiguity or Contingency?

Contiguity

- Both CSs were paired with a UCS in the Blocking procedure

 BUT one of the CSs was not learned
- ContingencyCS that was most
 - reliably associated with UCS was learned

<section-header>

Contingency

p (UCS / CS) + p (UCS / No CS)

 In other words, a CS is only good as a predictor if the UCS occurs fairly often in the presence of the CS but not very often in its absence

Contingency

- · Kamin's study:
 - Group N-NL received 24 shocks during acquisition
 - p(shock / Noise) = 24 / 24 = 1.0 and
 - p(shock / No Noise) = 0 / 24 = 0
 - Group NL received 8 shocks during acquisition
 - p(shock / Noise) = 8 / 8 = 1.0 and
 - p(shock / No Noise) = 0 / 8 = 0
- Predictive value of noise?
 - Noise is a great predictor for both groups

Kamin's study: Group N-NL received 24 shocks during acquisition; p(shock / Light) = 8 / 24 = .33 and p(shock / No Light) = 16 / 24 = .67

- Group NL received 8 shocks during acquisition;
 p(shock / Light) = 8 / 8 = 1.0 and
 - p(shock / Light) = 0 / 8 = 0
- Predictive value of Light?
 - Light is a great predictor for Group NL
 - Light is a poor predictor for Group N-NL
 - Consequently, little learning for Light in N-NL group!

Co-occurrence vs. Contingency							
	Group	Probability that US follows CS	Probability that US occurs by itself				
	(1)	.8	.8				
	(2)	.8	.4				
	(3)	.4	.4	Rescorla- Wagner			
	(4)	.4	.0	Wagner			

Co-occurrence vs. Contingency								
	Group	Probability that US follows CS	Probability that US occurs by itself					
	(1)	.8	.8					
	(2)	.8	.4					
	(3)	.4	.4	Rescorla-				
	(4)	.4	.0	Wagner				

Rescorla-Wagner Theory (1972)

- Organisms only learn when events violate their expectations
- Expectations built up when 'significant' events follow a stimulus complex
- Expectations modified when consequent events disagree with the composite expectation

Rescorla-Wagner Model

- Change in associative strength of a stimulus depends on
 - Existing associative strength of that stimulus
 - Associative strength of all other stimuli present
- Change depends on level of existing associative strength
 - If low, potential change is high
 - If high, very little change occurs
- Speed and asymptotic level of learning determined by strength of the CS and UCS

Before conditioning begins:

- $\Box \lambda$ = 100 (number is arbitrary & based on the strength of the UCS)
- Vax = 0 (because no conditioning has occurred)
- c = .5 (c must be a number between 0 and 1.0 and is a result of multiplying the CS intensity by the UCS intensity)

Rescorla-Wagner Model Describes acquisition and extinction of a conditioned response

Many other learning phenomena, too!

Rescorla-Wagner

Overshadowing

- When multiple stimuli or compound stimulus:
 - Vax = Vcs₁ + Vcs₂
- Trial 1:
 - ∆Vnoise = .2 (100 0) = (.2)(100) = 20
 - Δ Vlight = .3 (100 0) = (.3)(100) = 30
 - Total Vax = Current Vax + Δ Vnoise + Δ Vlight = 50
- Blocking
 - Clearly, the first 16 trials in Phase 1 will result in most of the λ accruing to the first CS, leaving very little λ available to the second CS in Phase 2

Rescorla-Wagner Model

- Theory not perfect:
 - Can't handle second-order conditioning
 - Can't handle latent inhibition
- But, it has been called the "best" theory of Classical Conditioning

Rescorla-Wagner & Delta Rule in Neural Network Learning

Rescorla-Wagner Rule:

- ΔV_A = α_A β [λ V_{AX}]
 The second is Sutton and Barto's (1981) reformulation of Widrow-Hoff
 - R_i(t) = [z(t) y(t)] x_i(t)
- It simply says that the amount of reinforcement at time t for weight i is a function of the difference between desired and actual output, as well as the signal through the weight at that time