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Preface

We are cognitive scientists—a linguist and a psychologist—each
with a long-standing passion for the beautiful ideas of mathematics.

As specialists within a field that studies the nature and structure of ideas,
we realized that despite the remarkable advances in cognitive science and a long
tradition in philosophy and history, there was still no discipline of mathe-
matical idea analysis from a cognitive perspective—no cognitive science of
mathematics.

With this book, we hope to launch such a discipline.
A discipline of this sort is needed for a simple reason: Mathematics is deep,

fundamental, and essential to the human experience. As such, it is crying out
to be understood.

It has not been.
Mathematics is seen as the epitome of precision, manifested in the use of

symbols in calculation and in formal proofs. Symbols are, of course, just sym-
bols, not ideas. The intellectual content of mathematics lies in its ideas, not in
the symbols themselves. In short, the intellectual content of mathematics does
not lie where the mathematical rigor can be most easily seen—namely, in the
symbols. Rather, it lies in human ideas.

But mathematics by itself does not and cannot empirically study human
ideas; human cognition is simply not its subject matter. It is up to cognitive sci-
ence and the neurosciences to do what mathematics itself cannot do—namely,
apply the science of mind to human mathematical ideas. That is the purpose of
this book.

One might think that the nature of mathematical ideas is a simple and obvi-
ous matter, that such ideas are just what mathematicians have consciously
taken them to be. From that perspective, the commonplace formal symbols do
as good a job as any at characterizing the nature and structure of those ideas. If
that were true, nothing more would need to be said.

xi
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But those of us who study the nature of concepts within cognitive science
know, from research in that field, that the study of human ideas is not so sim-
ple. Human ideas are, to a large extent, grounded in sensory-motor experience.
Abstract human ideas make use of precisely formulatable cognitive mecha-
nisms such as conceptual metaphors that import modes of reasoning from sen-
sory-motor experience. It is always an empirical question just what human
ideas are like, mathematical or not.

The central question we ask is this: How can cognitive science bring sys-
tematic scientific rigor to the realm of human mathematical ideas, which lies
outside the rigor of mathematics itself? Our job is to help make precise what
mathematics itself cannot—the nature of mathematical ideas.

Rafael Núñez brings to this effort a background in mathematics education,
the development of mathematical ideas in children, the study of mathematics
in indigenous cultures around the world, and the investigation of the founda-
tions of embodied cognition. George Lakoff is a major researcher in human con-
ceptual systems, known for his research in natural-language semantics, his
work on the embodiment of mind, and his discovery of the basic mechanisms
of everyday metaphorical thought.

The general enterprise began in the early 1990s with the detailed analysis by
one of Lakoff’s students, Ming Ming Chiu (now a professor at the Chinese Uni-
versity in Hong Kong), of the basic system of metaphors used by children to
comprehend and reason about arithmetic. In Switzerland, at about the same
time, Núñez had begun an intellectual quest to answer these questions: How
can human beings understand the idea of actual infinity—infinity conceptual-
ized as a thing, not merely as an unending process? What is the concept of ac-
tual infinity in its mathematical manifestations—points at infinity, infinite
sets, infinite decimals, infinite intersections, transfinite numbers, infinitesi-
mals? He reasoned that since we do not encounter actual infinity directly in the
world, since our conceptual systems are finite, and since we have no cognitive
mechanisms to perceive infinity, there is a good possibility that metaphorical
thought may be necessary for human beings to conceptualize infinity. If so, new
results about the structure of metaphorical concepts might make it possible to
precisely characterize the metaphors used in mathematical concepts of infinity.
With a grant from the Swiss NSF, he came to Berkeley in 1993 to take up this
idea with Lakoff.

We soon realized that such a question could not be answered in isolation. We
would need to develop enough of the foundations of mathematical idea analysis
so that the question could be asked and answered in a precise way. We would need
to understand the cognitive structure not only of basic arithmetic but also of sym-
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bolic logic, the Boolean logic of classes, set theory, parts of algebra, and a fair
amount of classical mathematics: analytic geometry, trigonometry, calculus, and
complex numbers. That would be a task of many lifetimes. Because of other com-
mitments, we had only a few years to work on the project—and only part-time.

So we adopted an alternative strategy. We asked, What would be the mini-
mum background needed

• to answer Núñez’s questions about infinity,
• to provide a serious beginning for a discipline of mathematical idea

analysis, and
• to write a book that would engage the imaginations of the large number

of people who share our passion for mathematics and want to under-
stand what mathematical ideas are?

As a consequence, our discussion of arithmetic, set theory, logic, and algebra
are just enough to set the stage for our subsequent discussions of infinity and
classical mathematics. Just enough for that job, but not trivial. We seek, from a
cognitive perspective, to provide answers to such questions as, Where do the
laws of arithmetic come from? Why is there a unique empty class and why is it
a subclass of all classes? Indeed, why is the empty class a class at all, if it can-
not be a class of anything? And why, in formal logic, does every proposition fol-
low from a contradiction? Why should anything at all follow from a
contradiction?

From a cognitive perspective, these questions cannot be answered merely by
giving definitions, axioms, and formal proofs. That just pushes the question one
step further back: How are those definitions and axioms understood? To answer
questions at this level requires an account of ideas and cognitive mechanisms.
Formal definitions and axioms are not basic cognitive mechanisms; indeed,
they themselves require an account in cognitive terms.

One might think that the best way to understand mathematical ideas would
be simply to ask mathematicians what they are thinking. Indeed, many famous
mathematicians, such as Descartes, Boole, Dedekind, Poincaré, Cantor, and
Weyl, applied this method to themselves, introspecting about their own
thoughts. Contemporary research on the mind shows that as valuable a method
as this can be, it can at best tell a partial and not fully accurate story. Most of
our thought and our systems of concepts are part of the cognitive unconscious
(see Chapter 2). We human beings have no direct access to our deepest forms of
understanding. The analytic techniques of cognitive science are necessary if we
are to understand how we understand.

Preface xiii
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One of the great findings of cognitive science is that our ideas are shaped by
our bodily experiences—not in any simpleminded one-to-one way but indi-
rectly, through the grounding of our entire conceptual system in everyday life.
The cognitive perspective forces us to ask, Is the system of mathematical ideas
also grounded indirectly in bodily experiences? And if so, exactly how?

The answer to questions as deep as these requires an understanding of the
cognitive superstructure of a whole nexus of mathematical ideas. This book is
concerned with how such cognitive superstructures are built up, starting for the
most part with the commonest of physical experiences.

To make our discussion of classical mathematics tractable while still show-
ing its depth and richness, we have limited ourselves to one profound and cen-
tral question: What does Euler’s classic equation, e!i + 1 = 0, mean? This
equation links all the major branches of classical mathematics. It is proved in
introductory calculus courses. The equation itself mentions only numbers and
mathematical operations on them. What is lacking, from a cognitive perspec-
tive, is an analysis of the ideas implicit in the equation, the ideas that charac-
terize those branches of classical mathematics, the way those ideas are linked
in the equation, and why the truth of the equation follows from those ideas. To
demonstrate the utility of mathematical idea analysis for classical mathemat-
ics, we set out to provide an initial idea analysis for that equation that would
answer all these questions. This is done in the case-study chapters at the end of
the book.

To show that mathematical idea analysis has some importance for the phi-
losophy of mathematics, we decided to apply our techniques of analysis to a
pivotal moment in the history of mathematics—the arithmetization of real
numbers and calculus by Dedekind and Weierstrass in 1872. These dramatic de-
velopments set the stage for the age of mathematical rigor and the Foundations
of Mathematics movement. We wanted to understand exactly what ideas were
involved in those developments. We found the answer to be far from obvious:
The modern notion of mathematical rigor and the Foundations of Mathematics
movement both rest on a sizable collection of crucial conceptual metaphors.

In addition, we wanted to see if mathematical idea analysis made any differ-
ence at all in how mathematics is understood. We discovered that it did: What
is called the real-number line is not a line as most people understand it. What
is called the continuum is not continuous in the ordinary sense of the term.
And what are called space-filling curves do not fill space as we normally con-
ceive of it. These are not mathematical discoveries but discoveries about how
mathematics is conceptualized—that is, discoveries in the cognitive science of
mathematics.

xiv Preface

0465037704fm.qxd  8/23/00  9:49 AM  Page xiv



Though we are not primarily concerned here with mathematics education,
it is a secondary concern. Mathematical idea analysis, as we seek to develop it,
asks what theorems mean and why they are true on the basis of what they
mean. We believe it is important to reorient mathematics teaching more to-
ward understanding mathematical ideas and understanding why theorems are
true.

In addition, we see our job as helping to make mathematical ideas precise in
an area that has previously been left to “intuition.” Intuitions are not necessar-
ily vague. A cognitive science of mathematics should study the precise nature
of clear mathematical intuitions.

The Romance of Mathematics
In the course of our research, we ran up against a mythology that stood in the
way of developing an adequate cognitive science of mathematics. It is a kind of
“romance” of mathematics, a mythology that goes something like this.

• Mathematics is abstract and disembodied—yet it is real.
• Mathematics has an objective existence, providing structure to this uni-

verse and any possible universe, independent of and transcending the
existence of human beings or any beings at all.

• Human mathematics is just a part of abstract, transcendent mathematics.
• Hence, mathematical proof allows us to discover transcendent truths of

the universe.
• Mathematics is part of the physical universe and provides rational

structure to it. There are Fibonacci series in flowers, logarithmic spirals
in snails, fractals in mountain ranges, parabolas in home runs, and ! in
the spherical shape of stars and planets and bubbles.

• Mathematics even characterizes logic, and hence structures reason it-
self—any form of reason by any possible being.

• To learn mathematics is therefore to learn the language of nature, a
mode of thought that would have to be shared by any highly intelligent
beings anywhere in the universe.

• Because mathematics is disembodied and reason is a form of mathe-
matical logic, reason itself is disembodied. Hence, machines can, in
principle, think.

It is a beautiful romance—the stuff of movies like 2001, Contact, and Sphere.
It initially attracted us to mathematics.

Preface xv
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But the more we have applied what we know about cognitive science to un-
derstand the cognitive structure of mathematics, the more it has become clear
that this romance cannot be true. Human mathematics, the only kind of mathe-
matics that human beings know, cannot be a subspecies of an abstract, transcen-
dent mathematics. Instead, it appears that mathematics as we know it arises from
the nature of our brains and our embodied experience. As a consequence, every
part of the romance appears to be false, for reasons that we will be discussing.

Perhaps most surprising of all, we have discovered that a great many of the
most fundamental mathematical ideas are inherently metaphorical in nature:

• The number line, where numbers are conceptualized metaphorically as
points on a line.

• Boole’s algebra of classes, where the formation of classes of objects is
conceptualized metaphorically in terms of algebraic operations and ele-
ments: plus, times, zero, one, and so on.

• Symbolic logic, where reasoning is conceptualized metaphorically as
mathematical calculation using symbols.

• Trigonometric functions, where angles are conceptualized metaphori-
cally as numbers.

• The complex plane, where multiplication is conceptualized metaphor-
ically in terms of rotation.

And as we shall see, Núñez was right about the centrality of conceptual
metaphor to a full understanding of infinity in mathematics. There are two in-
finity concepts in mathematics—one literal and one metaphorical. The literal
concept (“in-finity”—lack of an end) is called “potential infinity.” It is simply a
process that goes on without end, like counting without stopping, extending a
line segment indefinitely, or creating polygons with more and more sides. No
metaphorical ideas are needed in this case. Potential infinity is a useful notion
in mathematics, but the main event is elsewhere. The idea of “actual infinity,”
where infinity becomes a thing—an infinite set, a point at infinity, a transfinite
number, the sum of an infinite series—is what is really important. Actual in-
finity is fundamentally a metaphorical idea, just as Núñez had suspected. The
surprise for us was that all forms of actual infinity—points at infinity, infinite
intersections, transfinite numbers, and so on—appear to be special cases of just
one Basic Metaphor of Infinity. This is anything but obvious and will be dis-
cussed at length in the course of the book.

As we have learned more and more about the nature of human mathematical
cognition, the Romance of Mathematics has dissolved before our eyes. What has
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emerged in its place is an even more beautiful picture—a picture of what math-
ematics really is. One of our main tasks in this book is to sketch that picture
for you.

None of what we have discovered is obvious. Moreover, it requires a prior un-
derstanding of a fair amount of basic cognitive semantics and of the overall cog-
nitive structure of mathematics. That is why we have taken the trouble to write
a book of this breadth and depth. We hope you enjoy reading it as much as we
have enjoyed writing it.

Preface xvii
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Introduction: 
Why Cognitive Science 
Matters to Mathematics

Mathematics as we know it has been created and used by
human beings: mathematicians, physicists, computer scientists, and

economists—all members of the species Homo sapiens. This may be an obvious
fact, but it has an important consequence. Mathematics as we know it is lim-
ited and structured by the human brain and human mental capacities. The only
mathematics we know or can know is a brain-and-mind-based mathematics.

As cognitive science and neuroscience have learned more about the human
brain and mind, it has become clear that the brain is not a general-purpose de-
vice. The brain and body co-evolved so that the brain could make the body func-
tion optimally. Most of the brain is devoted to vision, motion, spatial
understanding, interpersonal interaction, coordination, emotions, language, and
everyday reasoning. Human concepts and human language are not random or
arbitrary; they are highly structured and limited, because of the limits and
structure of the brain, the body, and the world.

This observation immediately raises two questions:

1. Exactly what mechanisms of the human brain and mind allow human
beings to formulate mathematical ideas and reason mathematically?

2. Is brain-and-mind-based mathematics all that mathematics is? Or is
there, as Platonists have suggested, a disembodied mathematics tran-
scending all bodies and minds and structuring the universe—this uni-
verse and every possible universe?

1
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Question 1 asks where mathematical ideas come from and how mathemati-
cal ideas are to be analyzed from a cognitive perspective. Question 1 is a scien-
tific question, a question to be answered by cognitive science, the
interdisciplinary science of the mind. As an empirical question about the
human mind and brain, it cannot be studied purely within mathematics. And
as a question for empirical science, it cannot be answered by an a priori philos-
ophy or by mathematics itself. It requires an understanding of human cognitive
processes and the human brain. Cognitive science matters to mathematics be-
cause only cognitive science can answer this question.

Question 1 is what this book is mostly about. We will be asking how normal
human cognitive mechanisms are employed in the creation and understanding
of mathematical ideas. Accordingly, we will be developing techniques of math-
ematical idea analysis.

But it is Question 2 that is at the heart of the philosophy of mathematics. It
is the question that most people want answered. Our answer is straightforward:

• Theorems that human beings prove are within a human mathematical
conceptual system.

• All the mathematical knowledge that we have or can have is knowledge
within human mathematics.

• There is no way to know whether theorems proved by human mathe-
maticians have any objective truth, external to human beings or any
other beings.

The basic form of the argument is this:

1. The question of the existence of a Platonic mathematics cannot be ad-
dressed scientifically. At best, it can only be a matter of faith, much like
faith in a God. That is, Platonic mathematics, like God, cannot in itself
be perceived or comprehended via the human body, brain, and mind.
Science alone can neither prove nor disprove the existence of a Platonic
mathematics, just as it cannot prove or disprove the existence of a God.

2. As with the conceptualization of God, all that is possible for human be-
ings is an understanding of mathematics in terms of what the human
brain and mind afford. The only conceptualization that we can have of
mathematics is a human conceptualization. Therefore, mathematics as
we know it and teach it can only be humanly created and humanly con-
ceptualized mathematics.

2 Introduction
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3. What human mathematics is, is an empirical scientific question, not a
mathematical or a priori philosophical question.

4. Therefore, it is only through cognitive science—the interdisciplinary
study of mind, brain, and their relation—that we can answer the ques-
tion: What is the nature of the only mathematics that human beings
know or can know?

5. Therefore, if you view the nature of mathematics as a scientific ques-
tion, then mathematics is mathematics as conceptualized by human be-
ings using the brain’s cognitive mechanisms.

6. However, you may view the nature of mathematics itself not as a sci-
entific question but as a philosophical or religious one. The burden of
scientific proof is on those who claim that an external Platonic mathe-
matics does exist, and that theorems proved in human mathematics are
objectively true, external to the existence of any beings or any concep-
tual systems, human or otherwise. At present there is no known way to
carry out such a scientific proof in principle.

This book aspires to tell you what human mathematics, conceptualized via
human brains and minds, is like. Given the present and foreseeable state of our
scientific knowledge, human mathematics is mathematics. What human math-
ematical concepts are is what mathematical concepts are.

We hope that this will be of interest to you whatever your philosophical or
religious beliefs about the existence of a transcendent mathematics.

There is an important part of this argument that needs further elucidation.
What accounts for what the physicist Eugene Wigner has referred to as “the un-
reasonable effectiveness of mathematics in the natural sciences” (Wigner,
1960)? How can we make sense of the fact that scientists have been able to find
or fashion forms of mathematics that accurately characterize many aspects of
the physical world and even make correct predictions? It is sometimes assumed
that the effectiveness of mathematics as a scientific tool shows that mathe-
matics itself exists in the structure of the physical universe. This, of course, is
not a scientific argument with any empirical scientific basis.

We will take this issue up in detail in Part V of the book. Our argument, in
brief, will be that whatever “fit” there is between mathematics and the world
occurs in the minds of scientists who have observed the world closely, learned
the appropriate mathematics well (or invented it), and fit them together (often
effectively) using their all-too-human minds and brains.

Introduction 3
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Finally, there is the issue of whether human mathematics is an instance of,
or an approximation to, a transcendent Platonic mathematics. This position
presupposes a nonscientific faith in the existence of Platonic mathematics. We
will argue that even this position cannot be true. The argument rests on analy-
ses we will give throughout this book to the effect that human mathematics
makes fundamental use of conceptual metaphor in characterizing mathemati-
cal concepts. Conceptual metaphor is limited to the minds of living beings.
Therefore, human mathematics (which is constituted in significant part by con-
ceptual metaphor) cannot be a part of Platonic mathematics, which—if it ex-
isted—would be purely literal.

Our conclusions will be:

1. Human beings can have no access to a transcendent Platonic mathe-
matics, if it exists. A belief in Platonic mathematics is therefore a mat-
ter of faith, much like religious faith. There can be no scientific
evidence for or against the existence of a Platonic mathematics.

2. The only mathematics that human beings know or can know is, there-
fore, a mind-based mathematics, limited and structured by human
brains and minds. The only scientific account of the nature of mathe-
matics is therefore an account, via cognitive science, of human mind-
based mathematics. Mathematical idea analysis provides such an
account.

3. Mathematical idea analysis shows that human mind-based mathemat-
ics uses conceptual metaphors as part of the mathematics itself.

4. Therefore human mathematics cannot be a part of a transcendent Pla-
tonic mathematics, if such exists.

These arguments will have more weight when we have discussed in detail
what human mathematical concepts are. That, as we shall see, depends upon
what the human body, brain, and mind are like. A crucial point is the argument
in (3)—that conceptual metaphor structures mathematics as human beings con-
ceptualize it. Bear that in mind as you read our discussions of conceptual
metaphors in mathematics.

Recent Discoveries about the Nature of Mind
In recent years, there have been revolutionary advances in cognitive science—
advances that have an important bearing on our understanding of mathematics.
Perhaps the most profound of these new insights are the following:

4 Introduction

0465037704-01.qxd  8/23/00  9:52 AM  Page 4



1. The embodiment of mind. The detailed nature of our bodies, our brains,
and our everyday functioning in the world structures human concepts
and human reason. This includes mathematical concepts and mathe-
matical reason.

2. The cognitive unconscious. Most thought is unconscious—not re-
pressed in the Freudian sense but simply inaccessible to direct con-
scious introspection. We cannot look directly at our conceptual systems
and at our low-level thought processes. This includes most mathemat-
ical thought.

3. Metaphorical thought. For the most part, human beings conceptualize
abstract concepts in concrete terms, using ideas and modes of reasoning
grounded in the sensory-motor system. The mechanism by which the
abstract is comprehended in terms of the concrete is called conceptual
metaphor. Mathematical thought also makes use of conceptual
metaphor, as when we conceptualize numbers as points on a line.

This book attempts to apply these insights to the realm of mathematical
ideas. That is, we will be taking mathematics as a subject matter for cognitive
science and asking how mathematics is created and conceptualized, especially
how it is conceptualized metaphorically.

As will become clear, it is only with these recent advances in cognitive sci-
ence that a deep and grounded mathematical idea analysis becomes possible. In-
sights of the sort we will be giving throughout this book were not even
imaginable in the days of the old cognitive science of the disembodied mind, de-
veloped in the 1960s and early 1970s. In those days, thought was taken to be the
manipulation of purely abstract symbols and all concepts were seen as literal—
free of all biological constraints and of discoveries about the brain. Thought,
then, was taken by many to be a form of symbolic logic. As we shall see in
Chapter 6, symbolic logic is itself a mathematical enterprise that requires a
cognitive analysis. For a discussion of the differences between the old cognitive
science and the new, see Philosophy in the Flesh (Lakoff & Johnson, 1999) and
Reclaiming Cognition (Núñez & Freeman, eds., 1999).

Mathematics is one of the most profound and beautiful endeavors of the imag-
ination that human beings have ever engaged in. Yet many of its beauties and
profundities have been inaccessible to nonmathematicians, because most of the
cognitive structure of mathematics has gone undescribed. Up to now, even the
basic ideas of college mathematics have appeared impenetrable, mysterious,
and paradoxical to many well-educated people who have approached them. We

Introduction 5
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believe that cognitive science can, in many cases, dispel the paradoxes and clear
away the shrouds of mystery to reveal in full clarity the magnificence of those
ideas. To do so, it must reveal how mathematics is grounded in embodied ex-
perience and how conceptual metaphors structure mathematical ideas.

Many of the confusions, enigmas, and seeming paradoxes of mathematics
arise because conceptual metaphors that are part of mathematics are not recog-
nized as metaphors but are taken as literal. When the full metaphorical charac-
ter of mathematical concepts is revealed, such confusions and apparent
paradoxes disappear.

But the conceptual metaphors themselves do not disappear. They cannot be
analyzed away. Metaphors are an essential part of mathematical thought, not
just auxiliary mechanisms used for visualization or ease of understanding. Con-
sider the metaphor that Numbers Are Points on a Line. Numbers don’t have to
be conceptualized as points on a line; there are conceptions of number that are
not geometric. But the number line is one of the most central concepts in all of
mathematics. Analytic geometry would not exist without it, nor would
trigonometry.

Or take the metaphor that Numbers Are Sets, which was central to the Foun-
dations movement of early-twentieth-century mathematics. We don’t have to
conceptualize numbers as sets. Arithmetic existed for over two millennia with-
out this metaphor—that is, without zero conceptualized as being the empty set,
1 as the set containing the empty set, 2 as the set containing 0 and 1, and so on.
But if we do use this metaphor, then forms of reasoning about sets can also
apply to numbers. It is only by virtue of this metaphor that the classical Foun-
dations of Mathematics program can exist.

Conceptual metaphor is a cognitive mechanism for allowing us to reason
about one kind of thing as if it were another. This means that metaphor is not
simply a linguistic phenomenon, a mere figure of speech. Rather, it is a cogni-
tive mechanism that belongs to the realm of thought. As we will see later in the
book, “conceptual metaphor” has a technical meaning: It is a grounded, infer-
ence-preserving cross-domain mapping—a neural mechanism that allows us to
use the inferential structure of one conceptual domain (say, geometry) to reason
about another (say, arithmetic). Such conceptual metaphors allow us to apply
what we know about one branch of mathematics in order to reason about an-
other branch.

Conceptual metaphor makes mathematics enormously rich. But it also brings
confusion and apparent paradox if the metaphors are not made clear or are taken
to be literal truth. Is zero a point on a line? Or is it the empty set? Or both? Or
is it just a number and neither a point nor a set? There is no one answer. Each

6 Introduction
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answer constitutes a choice of metaphor, and each choice of metaphor provides
different inferences and determines a different subject matter.

Mathematics, as we shall see, layers metaphor upon metaphor. When a sin-
gle mathematical idea incorporates a dozen or so metaphors, it is the job of the
cognitive scientist to tease them apart so as to reveal their underlying cognitive
structure.

This is a task of inherent scientific interest. But it also can have an important
application in the teaching of mathematics. We believe that revealing the cog-
nitive structure of mathematics makes mathematics much more accessible and
comprehensible. Because the metaphors are based on common experiences, the
mathematical ideas that use them can be understood for the most part in every-
day terms.

The cognitive science of mathematics asks questions that mathematics does
not, and cannot, ask about itself. How do we understand such basic concepts as
infinity, zero, lines, points, and sets using our everyday conceptual apparatus?
How are we to make sense of mathematical ideas that, to the novice, are para-
doxical—ideas like space-filling curves, infinitesimal numbers, the point at in-
finity, and non-well-founded sets (i.e., sets that “contain themselves” as
members)?

Consider, for example, one of the deepest equations in all of mathematics, the
Euler equation, e!i + 1 = 0, e being the infinite decimal 2.718281828459045. . . ,
a far-from-obvious number that is the base for natural logarithms. This equation
is regularly taught in elementary college courses. But what exactly does it mean?
We are usually told that an exponential of the form qn is just the number q
multiplied by itself n times; that is, q · q · . . . · q. This makes perfect sense for
25, which would be 2 · 2 · 2 · 2 · 2, which multiplies out to 32. But this definition
of an exponential makes no sense for e!i. There are at least three mysteries here.

1. What does it mean to multiply an infinite decimal like e by itself? If you
think of multiplication as an algorithmic operation, where do you start?
Usually you start the process of multiplication with the last digit on the
right, but there is no last digit in an infinite decimal.

2. What does it mean to multiply any number by itself ! times? ! is an-
other infinite nonrepeating decimal. What could “! times” for per-
forming an operation mean?

3. And even worse, what does it mean to multiply a number by itself an
imaginary (÷–1) number of times?

Introduction 7
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And yet we are told that the answer is –1. The typical proof is of no help here.
It proves that e!i + 1 = 0 is true, but it does not tell you what e!i means! In the
course of this book, we will.

In this book, unlike most other books about mathematics, we will be con-
cerned not just with what is true but with what mathematical ideas mean, how
they can be understood, and why they are true. We will also be concerned with
the nature of mathematical truth from the perspective of a mind-based mathe-
matics.

One of our main concerns will be the concept of infinity in its various man-
ifestations: infinite sets, transfinite numbers, infinite series, the point at infin-
ity, infinitesimals, and objects created by taking values of sequences “at
infinity,” such as space-filling curves. We will show that there is a single Basic
Metaphor of Infinity that all of these are special cases of. This metaphor origi-
nates outside mathematics, but it appears to be the basis of our understanding
of infinity in virtually all mathematical domains. When we understand the
Basic Metaphor of Infinity, many classic mysteries disappear and the apparently
incomprehensible becomes relatively easy to understand.

The results of our inquiry are, for the most part, not mathematical results but
results in the cognitive science of mathematics. They are results about the
human conceptual system that makes mathematical ideas possible and in
which mathematics makes sense. But to a large extent they are not results re-
flecting the conscious thoughts of mathematicians; rather, they describe the un-
conscious conceptual system used by people who do mathematics. The results
of our inquiry should not change mathematics in any way, but they may radi-
cally change the way mathematics is understood and what mathematical re-
sults are taken to mean.

Some of our findings may be startling to many readers. Here are some examples:

• Symbolic logic is not the basis of all rationality, and it is not absolutely
true. It is a beautiful metaphorical system, which has some rather
bizarre metaphors. It is useful for certain purposes but quite inadequate
for characterizing anything like the full range of the mechanisms of
human reason.

• The real numbers do not “fill” the number line. There is a mathemati-
cal subject matter, the hyperreal numbers, in which the real numbers
are rather sparse on the line.

• The modern definition of continuity for functions, as well as the so-
called continuum, do not use the idea of continuity as it is normally
understood.
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• So-called space-filling curves do not fill space.
• There is no absolute yes-or-no answer to whether 0.99999. . . . = 1. It

will depend on the conceptual system one chooses. There is a mathe-
matical subject matter in which 0.99999. . . . = 1, and another in which
0.99999. . . . " 1.

These are not new mathematical findings but new ways of understanding
well-known results. They are findings in the cognitive science of mathemat-
ics—results about the conceptual structure of mathematics and about the role
of the mind in creating mathematical subject matters.

Though our research does not affect mathematical results in themselves, it
does have a bearing on the understanding of mathematical results and on the
claims made by many mathematicians. Our research also matters for the phi-
losophy of mathematics. Mind-based mathematics, as we describe it in this
book, is not consistent with any of the existing philosophies of mathematics:
Platonism, intuitionism, and formalism. Nor is it consistent with recent post-
modernist accounts of mathematics as a purely social construction. Based on
our findings, we will be suggesting a very different approach to the philosophy
of mathematics. We believe that the philosophy of mathematics should be con-
sistent with scientific findings about the only mathematics that human beings
know or can know. We will argue in Part V that the theory of embodied math-
ematics—the body of results we present in this book—determines an empiri-
cally based philosophy of mathematics, one that is coherent with the
“embodied realism” discussed in Lakoff and Johnson (1999) and with “ecologi-
cal naturalism” as a foundation for embodiment (Núñez, 1995, 1997).

Mathematics as we know it is human mathematics, a product of the human
mind. Where does mathematics come from? It comes from us! We create it, but
it is not arbitrary—not a mere historically contingent social construction. What
makes mathematics nonarbitrary is that it uses the basic conceptual mecha-
nisms of the embodied human mind as it has evolved in the real world. Mathe-
matics is a product of the neural capacities of our brains, the nature of our
bodies, our evolution, our environment, and our long social and cultural history.

By the time you finish this book, our reasons for saying this should be clear.

The Structure of the Book
Part I is introductory. We begin in Chapter 1 with the brain’s innate arith-
metic—the ability to subitize (i.e., to instantly determine how many objects are
in a very small collection) and do very basic addition and subtraction. We move
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on in Chapter 2 to some of the basic results in cognitive science on which the
remainder of the book rests. We then take up basic metaphors grounding our un-
derstanding of arithmetic (Chapter 3) and the question of where the laws of
arithmetic come from (Chapter 4).

In Part II, we turn to the grounding and conceptualization of sets, logic, and
forms of abstract algebra such as groups (Chapters 5, 6, and 7).

Part III deals with the concept of infinity—as fundamental a concept as there
is in sophisticated mathematics. The question we ask is how finite human cog-
nitive capacities and everyday conceptual mechanisms can give rise to the full
range of mathematical notions of infinity: points at infinity, infinite sets, math-
ematical induction, infinite decimals, limits, transfinite numbers, infinitesi-
mals, and so on. We argue that the concept of actual infinity is metaphorical in
nature and that there is a single conceptual metaphor—the Basic Metaphor of
Infinity (Chapter 8)—underlying most if not all infinite notions in mathematics
(Chapters 8 through 11). We will then, in Part IV, point out the implications of
this type of analysis for an understanding of the continuum (Chapter 12) and for
continuity and the real numbers (Chapters 13 and 14).

At this point in the book, we take a break from our line of argumentation to
address a commonly noticed apparent contradiction, which we name the
Length Paradox. We call this interlude le trou normand, after the course in a
rich French meal where a sorbet with calvados is served to refresh the palate. 

We now have enough results for Part V, a discussion of an overall theory of
embodied mathematics (Chapter 15) and a new philosophy of mathematics
(Chapter 16).

To demonstrate the real power of the approach, we end the book with Part VI,
a detailed case study of the equation that brings together the ideas at the heart
of classical mathematics: e!i + 1 = 0. To show exactly what this equation
means, we have to look at the cognitive structure—especially the conceptual
metaphors—underlying analytic geometry and trigonometry (Case Study 1),
exponentials and logarithms (Case Study 2), imaginary numbers (Case Study 3),
and the cognitive mechanisms combining them (Case Study 4).

We chose to place this case study at the end for three reasons. First, it is a de-
tailed illustration of how the cognitive mechanisms described in the book can
shed light on the structure of classical mathematics. We have placed it after our
discussion of the philosophy of mathematics to provide an example to the
reader of how a change in the nature of what mathematics is can lead to a new
understanding of familiar mathematical results.

Second, it is in the case study that mathematical idea analysis comes to the
fore. Though we will be analyzing mathematical ideas from a cognitive per-
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spective throughout the book, the study of Euler’s equation demonstrates the
power of the analysis of ideas in mathematics, by showing how a single equa-
tion can bring an enormously rich range of ideas together—even though the
equation itself contains nothing but numbers: e, !, ÷–1, 1, and 0. We will be ask-
ing throughout how mere numbers can express ideas. It is in the case study that
the power of the answer to this question becomes clear.

Finally, there is an educational motive. We believe that classical mathemat-
ics can best be taught with a cognitive perspective. We believe that it is impor-
tant to teach mathematical ideas and to explain why mathematical truths
follow from those ideas. This case study is intended to illustrate to teachers of
mathematics how this can be done.

We see our book as an early step in the development of a cognitive science of
mathematics—a discipline that studies the cognitive mechanisms used in the
human creation and conceptualization of mathematics. We hope you will find
this discipline stimulating, challenging, and worthwhile.
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