


Opinion
Is There Really an Evolved
Capacity for Number?
Rafael E. Núñez1,*

Humans and other species have biologically endowed abilities for discriminat-
ing quantities. A widely accepted view sees such abilities as an evolved
capacity specific for number and arithmetic. This view, however, is based
on an implicit teleological rationale, builds on inaccurate conceptions of
biological evolution, downplays human data from non-industrialized cultures,
overinterprets results from trained animals, and is enabled by loose terminol-
ogy that facilitates teleological argumentation. A distinction between quantical
(e.g., quantity discrimination) and numerical (exact, symbolic) cognition is
needed: quantical cognition provides biologically evolved preconditions for
numerical cognition but it does not scale up to number and arithmetic, which
require cultural mediation. The argument has implications for debates about
the origins of other special capacities – geometry, music, art, and language.

An Evolved Capacity Specific for Number and Arithmetic?
Where do numbers (see Glossary) come from? Some say they are God-given [1], exist in
Plato’s heaven [2], or are formal meaningless entities [3]. To scientists, who endorse views
consistent with a naturalistic understanding of the world, these proposals are far from satis-
factory. Although the empirical study of discrete quantity (or numerousness) discrimination is
not new (Box 1), these naturalistic constraints have given the question of the origin of numbers a
new impetus. Understanding the origin of the ‘number sense’ – a term made prominent in the
1930s by the mathematician Tobias Dantzig [4] – is today at the core of the dynamic and
growing field of ‘numerical cognition’. The field has made considerable progress in investigating
the abilities of human and nonhuman animals to perceive, estimate, and process quantities
[5,6]. Furthermore, the observation that our intuition of ‘one, two, three, . . . ’ is sharp, pristine,
and immediate has, under the banner of evolution, paved the way for a view that there must be
something about ‘pure numbers’ that we are born with – a grasp of certainty that serves as a
rock-solid foundation for the edifice of mathematics.

Inspired by this view, a significant amount of behavioral and neural data – from humans and
nonhuman animals – has led many within the field of numerical cognition to endorse as
unproblematic claims that there is a specific ‘evolved capacity for number’ [7], ‘evolutionary
foundations for number’ [8], ‘numerical abilities and arithmetic in infancy’ [9], ‘monkey mathe-
matical abilities’ [10], and that there are ‘numerical and arithmetic abilities in non-primate
species’ [11], and so on. Similarly, in cognitive neuroscience, authors have argued that ‘every
brain is hardwired for math’ [12], and that there is ‘single-neuron arithmetic’ in the brain of cats,
monkeys, and humans [13]. Countless contemporary scholarly publications also display similar
claims prominently in their titles, thus consolidating the current conventional wisdom.

In a nutshell, this view posits that there is an essential ‘mathematical core’ – formed around
fundamental ‘numerical abilities’ – which humans seem to share with many other animal
species. This ‘mathematical core’ would be the result of natural selection, which gave selective
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advantages to individuals who, while foraging, for instance, were able to discriminate food
sources that had more items from those that had fewer.

This nativist view of the origins of number and arithmetic seems sensible, attractive, and
convenient. It appears to straightforwardly link the quintessential abstraction, exactness, and

Glossary
Approximate number system
(ANS): a hypothesized neural system
which, following the Weber–Fechner
law, handles the processing of
quantities above the subitizing range.
It is claimed to be an evolutionarily
ancient innate system for
‘approximate number’.
Biologically evolved
preconditions (BEPs): necessary
conditions for the manifestation of a
behavioral or cognitive ability which,
although having evolved via natural
selection, do not constitute
precursors of such abilities (e.g.,
human balance mechanisms are
BEPs for learning how to
snowboard, but they are not
precursors or proto-forms of it).
Distance effect: the fact that it is
harder to discriminate between
collections of items that differ by a
small amount than between
collections that differ by a large
amount.
Enculturation: the gradual
acquisition of cultural traits (the
characteristics and norms of a
culture or group) by an individual or
another culture.
Large quantity discrimination
(LQD): the rough discrimination of
collections of discrete items above
the subitizing range, whose
numerosities usually differ by a
substantial amount.
Number: exact symbolic quantifier
that designates the cardinality of a
collection of objects. It is abstract,
relational, and operable. In its most
prototypical case it is associated with
the familiar counting sequence ‘1, 2,
3, . . . ’

Numeral: a sign for a number, such
as the Hindu-Arabic digit ‘5’, the
Roman ‘V’, or the French word
‘cinq’, that signify the number five.
Numerosity: a scale of
measurement for evaluating the
numerousness of stimuli (e.g., a
collection of discriminable objects)
utilized especially by
psychophysicists in the mid-20th
century, and by means of which an
experimenter establishes the cardinal
attribute of physical collections of
objects.
Numerousness: a property or
attribute of a stimulus (discrete
quantities) which can be measured
by an investigator in units of
numerosity.

Box 1. Quantity: The Gain and Loss of Conceptual Rigor
The empirical study of quantity discrimination began at the dawn of scientific psychology, in the 19th century. Already in
1871 a report in Nature observed that people grasp a small amount of items by ‘an instantaneous and apparently single
act of mental attention’ ([112] p. 281). Experimental psychologists in the 1940s would later conclude that, when
discriminating and estimating ‘numerousness’, people operate with two fundamentally distinct processes: one quick
and reliable for very small quantities, later coined ‘subitizing’ [113], and one for large quantity discrimination (LQD) [114]
that worked in a fuzzy, imprecise way. The search for an understanding of these phenomena led experimental
psychologists and psychophysicists of the mid-20th century to develop a rigorous terminology [75,76,115] (e.g.,
‘numerousness’, ‘numerosity’, ‘number’) for making fine distinctions to properly evaluate and measure stimuli –

especially when studying rats, pigeons, and infants – without having to necessarily assume the presence of conceptual
understanding such as that involved in the notion of number (Table I). Unfortunately, this rigorous quantity-related
terminology was overshadowed a few decades later by the consolidation of the ‘cognitive revolution’ in the 1980s [116].
By rejecting the behavioristic tenet – that when studying the mind all that researchers can do is to observe the
relationship between stimuli and behavior – the cognitive revolution called for the investigation of, and theorizing about,
what’s inside the ‘black box’ – the mind and its ‘mental representations’ [116], which eventually in neuroscience led to
the search for the ‘representation of number in the brain’ (e.g., [50]). This inviting but hazardous step seemed to have
licensed quantity-related researchers to loosen the use of terminology resulting in the attribution of ‘number’ – or the
‘mental representation’ of it – to the mind of the cognizing agent, be it an infant, a monkey, or a fish. This is routinely
reflected in the titles of articles in infant and comparative psychology, in which ‘number’ is rarely exact or symbolic – for
example ‘Spontaneous number representation in mosquitofish’ [117], ‘Chicks with a number sense’ [118] ([23,119–
123] for other examples). Thus, with respect to quantity-related concepts, the rejection of behavioral psychology
appears to have come at the price of weakening conceptual rigor.

The two aforementioned abilities for discriminating small and large quantities continue to intrigue scientists today [124].
Nonetheless, it is now well established that many nonhuman animals exhibit basic quantity-related behaviors similar to
those of humans [43–45], and the investigation of such behaviors has therefore been put, and properly so, in an
evolutionary context. Unlike the cautious and rigorous psychophysicists of the mid-20th century, however, the field of
‘numerical cognition’ has now, teleologically, built the term ‘number’ into the working theoretical constructs themselves,
as in the case of the postulated approximate number system (ANS) discussed in the text.

Table I. Prototypical Properties of ‘Number’

Prototypical properties of number
(as in the familiar sequence ‘one, two, three, . . . ’)

Example: the number ‘seven’

(i) It quantifies in an exact and discrete manner It designates exactly a specific discrete quantity that is not
merely most of the time different from ‘six’ or ‘eight’, but it is
absolutely and categorically distinct from them

(ii) It is abstract in the sense that it transcends
the quantification of specific items or commodities,
or specific types of stimuli

'Seven’ is abstract, transcending what psychologists call
‘sensory modalities’ [44]

(iii) It has a cardinal sense (produced by counting) The exact quantification of collections with numerosity 7 can
be assured by counting, which gives its cardinal sense

(iv) It has an ordinal sense (required for
enumerating and counting)

It has an ordinal sense, as when the seventh element in a
row is designated

(v) It is relational The properties of ‘seven’ are defined in relation to other
numbers (e.g., smaller than ‘ten’, successor of ‘six’)

(vi) It is combinative, operable 'Seven’ can be combined to produce other numbers via
specific operations, such as adding ‘three’ to it, to yield
exactly ‘ten’

(vii) It is referred to symbolically It is referred to symbolically via specific signs (numerals)
such as the word ‘seven’, the digit ‘7’, the Roman ‘VII’, or
‘1112’ (base 2)

Non-prototypical properties 'Seven’ is a prime number; it is the positive square root of 49;
it is the base-ten logarithm of 10 000 000, etc.
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Quantical: pertaining to quantity-
related cognition (e.g., subitizing) that
is shared by many species and
which provides BEPs for numerical
cognition and arithmetic, but is itself
not about number or arithmetic.
Quantical processing seems to be
about many sensorial dimensions
other than number, and does not, by
itself, scale up to produce number
and arithmetic.
Quantifier (natural): determiners or
pronouns which occur in all natural
languages and indicate the
magnitude of quantities, such as the
English ‘few’ or ‘many’.
Quantitative: relating to, measuring,
or measured by the quantity of
something rather than its quality.
Ratio effect: the fact that to
compare collections of items that
differ by the same amount it is more
difficult to do it if they are large
collections than if they are small.
Size effect: the fact that it is harder
to discriminate collections of large
amounts than of small amounts.
Subitizing: the quick, reliable, and
accurate discrimination of small
quantities (usually within numerosities
1–4).
Teleology: the explanation of
phenomena by the purpose they
serve rather than by postulated
causes. It is particularly problematic
in evolutionary accounts because it
mistakenly ex post facto considers
phenomena to be goals targeted by
natural selection (e.g., assuming
numbers and arithmetic as given in
view of their ubiquity and usefulness
in the industrialized world).
Weber–Fechner law: a general
psychophysics law which states that
the perceived subjective intensity of a
stimulus is proportional to the
logarithm of the stimulus intensity. It
holds for a variety of perceptual
domains such as brightness,
loudness, and numerousness.

usefulness of numbers and arithmetic with genes, brains, and evolution, portraying mathemat-
ics as the inevitable result of the evolutionary process that brought Homo sapiens to being.

Nonetheless, is the underlying theoretical account of the view sound? Do the data support it? I
will argue here that this is not the case, and offer an alternative naturalistic account of the
existing data and of the nature of numbers and arithmetic. The argument has implications for
debates about the origins of many other special capacities, such as geometrical and musical
cognition, naïve (or folk) physics, art, and language.

Why Is the Nativist View of Number and Arithmetic Attractive?
Attempts to provide a nativist account of number and numerical competences are not new.
Already in the 1960s scholars proposed nativist arguments [14,15] against Jean Piaget’s
constructivist account of number in the mind of a child [16,17]. The new data-gathering
methods of the 1980s then brought the debate to another level, providing compelling
reasons for believing that the capacity for number has been endowed via natural selection.
Already by 3 or 4 days of age, a human baby can visually discriminate between collections
of two and three items [18], and, acoustically, between the sounds of two or three syllables
[19]. Ten- to 12-month-old infants can, under some conditions, visually distinguish three
items from four [20,21]. Moreover, by four and a half months, babies exhibit behaviors that
appear to indicate a degree of sensitivity to elementary ‘arithmetic operations’ akin to ‘one
plus one is two’ and ‘two minus one is one’ [22]. In addition, as early as 6 months infants
discriminate between large collections of objects provided that their quantities differ by a
large amount (for example, 8 items vs 16 items, but not 8 vs 12) [23]. These capacities
appear to be in place early in ontogeny before any clear influence of culture or language.
Moreover, studies with children have shown that quantity discrimination acuity may be
stable over the first year of life [24] and that it correlates with achievement in school
mathematics [25,26].

Importantly, nonhuman animals also seem to exhibit impressive abilities dealing with quantity.
Nonhuman primates can compare collections of items (usually pieces of food) and choose the
ones with more (or less) items [27–29], as can many other mammals including bottle-nose
dolphins [30], horses [31], black bears [32], and dogs [33]. Some birds [34–36], amphibians
[37,38], and fish [39–42] have been reported to do so as well.

Furthermore, the abilities for handling quantities seem to have specific properties shared by
human and nonhuman animals [43–45]. The perception and discrimination of quantities appear
to be supported by two distinct processes. One, subitizing, is exact, fast, and error-free, and
in humans operates in the range of one to about four items. The other, large quantity
discrimination (LQD), works in a rough, imprecise manner and exhibits a behavior that
follows the non-linear Weber–Fechner Law, which underlies well-established distance,
size, and ratio effects. Neural correlates of this psychophysical law have been found in
the primate prefrontal cortex where individual neurons – ‘number neurons’ [46,47] – have been
reported to exhibit a logarithmic coding of numerosity [48]. Furthermore, neural correlates of
distance effects have been reported in the human intraparietal sulcus (IPS) – known for its
involvement in various number-processing tasks – for both non-symbolic and symbolic stimuli
[49]. In general, human and nonhuman primate neural data, gathered through a variety of
methods, have provided substantial evidence that quantity-related information is processed by
regions of the prefrontal and posterior parietal lobes, with the IPS playing a crucial role in the
treatment of the semantic aspect of quantity [50].

Further strengthening the nativist case, studies with trained animals have produced impressive
results. For instance, after long and intensive training a grey parrot named Alex was taught to
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identify small arrays of visually perceivable objects, and could vocally respond to questions
about the shape, color, or number of items in a given collection [51]. A female chimpanzee
named Ai was taught to use arbitrary visual signs for objects and shapes, as well as digits,
which she could use to report the type of object, color, and quantity of items in various arrays
[52]. Remarkably, Sheba, another chimpanzee, was able to perform, after many years of
training, some basic ‘arithmetic operations’ at a symbolic level with the digits ‘1’, ‘2’, and, ‘3’
[53], the closest an animal has come to human symbolic calculation abilities [54].

Together, these findings seem to support the claim that ‘mathematical objects may find their
ultimate origin in basic intuitions of space, time, and number that have been internalized
through millions of years of evolution in a structured environment and that emerge
early in ontogeny, independently of education’ ([55] p. 1217). In particular, these findings
suggest that some specific ‘numerical’ capacities have evolved, biologically, in countless
unrelated species, including humans. However, the interpretation of these results and the
corresponding theoretical conclusions with respect to biological evolution have serious
problems.

Biological Evolution and Teleology
Perhaps the biggest problem for the nativist claim that there is a biologically evolved
capacity specific for number and arithmetic is that it is implicitly teleological. It takes
numbers, and to some extent arithmetic, as given, and ex post facto considers them – by
virtue of their power and entrenchment in industrialized societies – to be goals targeted by
natural selection. It takes basic quantity-related capacities that may have evolved biologi-
cally via natural selection as primitive precursors on the inevitable path towards number.
These capacities, however, appear to be biologically evolved preconditions (BEPs) that
when scaffolded by certain cultural practices and products eventually materialize in number
and arithmetic. Essentially, it is equivalent to take say, snowboarding, as given and claim
that there is an evolved capacity for it because this activity today is crucial for the snow-
sports and tourism industries. With respect to biological support, learned competences,
and the development of human activities, snowboarding shares many properties with exact
symbolic quantification and arithmetic. For instance, the manifestation in the ontogeny of
infants of crawling and of the mastery of balance and limb coordination necessary for
bipedal locomotion may be part of a biologically endowed developmental program. Crawl-
ing may be a precursor of bipedal locomotion in humans, and both may constitute
necessary BEPs for snowboarding. Crucially, however, in themselves these BEPs do
not have anything to do with snowboarding. Thus, referring to crawling or bipedal locomo-
tion as ‘precursors’ of snowboarding, or as proto-snowboarding, early-snowboarding, or
approximate snowboarding would be obviously misguided on teleological grounds. Never-
theless, as the analogy makes clear, the same applies to number and arithmetic (Box 2). As
biologists warn [56], teleology is particularly problematic in accounts of evolution because
natural selection does not operate by aiming at specific pre-given goals.

Granted, vaguely teleological expressions do appear periodically in titles of books and
articles, often driven by authors seeking a flashy effect even when not endorsing – word by
word – the full extent of what a title might state (e.g., The God Gene [57]). I myself have done
so. In Where Mathematics Comes From, when analyzing the remarkable abilities for quantity
that human infants and many nonhuman animals exhibit, George Lakoff and I titled our first
chapter ‘The brain’s innate arithmetic’ [58]. Although we did not defend a nativist position
therein, I now realize that the wording of the title imparts misleading conceptions of natural
selection. When such titles are read with a dose of teleology, the result is a fallacious
understanding of the role innateness and biological evolution play in shaping mental
capacities and concepts.
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Box 2. An Evolved Capacity for Snowboarding? An Analogy
The teleological rationale underlying the claim that there is an evolved capacity specific for number and arithmetic might
be better appreciated via an analogy: snowboarding. With respect to the learning of specialized competences, the
underlying biological support, and the development of human activities, snowboarding shares several properties with
exact symbolic quantification and arithmetic (Table I). In particular, both cases require biologically evolved preconditions
(BEPs) – namely, motor-balance regulation and optic flow navigation in the case of snowboarding; subitizing and large
quantity discrimination (LQD) in the case of number and arithmetic.

Importantly, although these BEPs for snowboarding emerged via natural selection, they (1) are not ‘precursors’ of
snowboarding, (2) are not about snowboarding, and (3) cannot scale up to explain its emergence. In addition to specific
BEPs, and to ecological niches foreign to most of human evolution (e.g., mountain slopes with snow), snowboarding
requires cultural gestation and mediation: snowboarders do not learn to snowboard as isolated organisms. They must
be members of a culture that has already solved problems of thermal insulation for avoiding lethal hypothermia, that has
invented sophisticated materials for optimal board-sliding, and that has invented ski-lifts that make the optimization of
energy consumption and positive learning curves possible. That technology, reflecting specific cultural traits (pre-
occupations and practices), enables fast and efficient improvement of snowboarding techniques which develop in the
ontogeny of the learners, ultimately leading to a very peculiar competence: fast downhill locomotion with highly
restricted lower-limb movement taking place in freezing conditions.

Similarly, humans may indeed have quantical BEPs shared with other animals, for example subitizing and Weberian LQD,
which support the learning of numerical and arithmetical abilities. These basic quantical capacities are (1) not precursors of
exact symbolic quantification and arithmetic, (2) are not about them, and (3) do not scale up to explain their emergence. For
the establishment of number and arithmetic, as in snowboarding, considerable cultural factors need to be present – such as
language, symbolic reference, material artifacts (eventually, writing technology), education, and, importantly, specific
preoccupations (e.g., bookkeeping of commodities), all of which occur outside natural selection. Snowboarding might
be entrenched in the lives of the residents of a small Alpine village – as are numbers and arithmetic for citizens of the
industrialized world – but for them to claim that there is an evolved capacity specific for snowboarding by virtue of its ubiquity
and usefulness in their world would lead them, perhaps unwittingly, to a fallacious teleological argument.

Table I. A Number–Snowboarding Analogy

Properties Capacities, abilities

Snowboarding Exact symbolic
quantification
and arithmetic

It is only observed in humans (it has never been
observed in non-human animals in the wild)

p p

It is not practiced by all humans, but only by those who
have been immersed in a specific set of practices and
training

p p

It involves the mediation of human-invented materials
and technology

p

(snow gear, ski lifts)

p

(numeral systems, material
artifacts, writing technology for

arithmetic)

It manifests behaviorally in individuals, but its practice
requires considerable cultural scaffolding

p

(parental involvement,
snowboarding lessons)

p

(parental involvement, schools)

It necessitates years of dedicated practice for the
necessary skills to be developed over ontogenetic time

p p

It makes active use of biologically evolved
preconditions (BEPs).

p

(optic flow navigation,
balance-keeping
mechanisms)

p

(subitizing and large quantity
discrimination, LQD)

The underlying BEPs are not precursors of the
corresponding capacity or activity, and by themselves
cannot scale up to generate it. Instead, they are
preconditions that need considerable cultural
scaffolding for the capacity to emerge, and these occur
outside natural selection

p

(optic flow navigation
and balance-keeping
mechanisms are not

precursors of
snowboarding, and by
themselves cannot

scale up to generate it)

p

(subitizing and LQD are not
precursors of number and

arithmetic, and by themselves
cannot scale up to generate

them)
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Downplaying Human Data from Non-Industrialized Cultures
Another problem is that the investigation of how humans perceive, discriminate, and treat
quantity has been conducted mostly with populations from the industrialized world. This
provides a biased view of humanity [59]. Observations focused exclusively on industrialized
populations are often over-generalized, as seen in statements such as: ‘Humans know that the
number 109 is as different from 111 as the number 2 is different from the number 4 . . .
Nonhuman animals, however, could not discriminate between those two large quantities as
easily as the two small ones’ ([60] p. 185). Such statements only hold if what is meant by
‘humans’ is individuals who grow up in cultures that have writing traditions, organized educa-
tional systems, measuring and notational conventions, and so on, or that, at the very least, have
a language that can exactly symbolize those numbers and their relations. In the context of
biological evolution, holding this assumption is unwarranted. The fact is that healthy humans
from many relatively isolated cultures without scholastic traditions speak languages that have
very limited numeral systems [61–63] (i.e., they have a number lexicon and expressions that
can only designate quantities within or around the subitizing range) and do not entertain exact
and categorically distinct number concepts such as our familiar ‘seven’ or ‘nine’. Contrary to
reports that these cases are uncommon [64], a recent survey of 189 Aboriginal Australian
languages representing 13 families reported that 139 (74%) have an upper numeral limit of only
‘three’ or ‘four’, and an additional 21 languages (11%) have a limit of ‘five’ [63]. Another survey,
analyzing 193 hunter-gatherer languages from different continents, found that most of these
languages have an upper limit of ‘five’ or below (61% in South America, 92% in Australia, and
41% in Africa) [65] (some languages, such as the Amazonian Pirahã [66,67] and some
Yanomami languages [65], as well as some Australian languages [65], have been reported
to have a limit of only ‘two’). Importantly, beyond this low limiting numeral range, all these
languages designate quantities with natural quantifiers – such as the English ‘several’ and
‘many’ (Box 3). In the case of the Mundurukú of the Amazon, these numeral properties have
also been studied experimentally (Figure 1) [62].

Box 3. Languages, Quantifiers, Numbers, and Enculturation
Many groups around the world speak languages with a very limited numeral system, most having relatively specific
terms or expressions only for numerosities within the subitizing range (one to four), and using quantifiers such as ‘some’
and ‘many’ above that [61,62,63,65]. Natural quantifiers exist in all languages, usually operating beyond the subitizing
range and labeling quantities in an inexact manner. Although imprecise in their handling of quantity, quantifiers have very
specific meanings and provide an extremely useful network of inferences. For example, if a boy is said to have a ‘few’
oranges and a girl ‘many’ oranges, a safe inference – without the need of exact calculations – is that the girl has more
oranges than the boy. Moreover, the precision of quantifiers can be enhanced via the use of grammatical intensifiers
(‘really a lot’), term repetition (‘many, many, more’), prosodic intensifiers (‘maaaaaany more’), or combinations of these.
Indeed, speakers of languages with limited numeral systems have shown some good quantity-related performances.
When Amazonian Mundurukú children and adults were asked to estimate relative quantities, their performance was
similar to that of other cultures with elaborate number lexicon [62]. Although the standard interpretation is that this is so
because they possess an approximate number system (ANS), an alternative explanation is that their good performance
is due to their efficiency in operating with quantifiers which, being part of their natural language, do not require any
specifically dedicated training. Similarly, the good small quantity-related performance observed in children speakers of
Aboriginal Australian Warlpiri and Anindilyakwa [125] could be explained (other than by the use of spatial heuristics and
perhaps distinctions based on borrowed English numerals) by an efficient use of natural quantifiers.

What appears to be universal in human languages is not that they have exact terms for a large range of numbers, but
instead that they have (1) specific terms for at least numbers roughly within the subitizing range, and (2) terms that reflect
the imprecise discrimination of large quantities (i.e., quantifiers such as ‘some’ vs ‘many’) [105]. Importantly, the learning
of how to use the lexicon of exact subitizing-range numbers and of quantifiers in natural language does not require
explicit training or schooling, hence their universal presence.

What does require extensive training and cultural scaffolding is the learning of exact numbers and arithmetic, as occurs
in the industrialized world. Importantly, this enculturation process affects even the most fundamental aspects of neural
processing of number. A fMRI study compared the brain activation of educated native speakers of Chinese and English
while they performed simple addition and made relative magnitude judgments. Although both groups were presented
with the same symbols – Hindu-Arabic numerals – different brain activation and functional connectivity between brain
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Healthy humans from cultures who speak these languages do not traditionally have writing
practices and do not carry out exact calculations. They live lives with imprecise quantities, and
essentially without exact numbers and arithmetic, presumably as humans without explicit
training have done successfully for tens of thousands of years. The study of small-scale
hunter-gatherer or subsistence-farming groups reveals that the development of numerical
notions (when they exist) is, contrary to claims focused exclusively on individual psychology (e.
g., [16]), inherently cultural [68,69] – a cultural trait. An industrial-centric view of humanity
downplays, or even neglects, the crucial implications of this fact: humans do not innately (i.e.,
without cultural mediation) manifest a specific capacity for generalized exact quantification,
namely number.

Overinterpretation of Animal Data
Another problem with the nativist view is the overinterpretation of animal data. Although
research with trained animals has produced some impressive results, they do not straightfor-
wardly support evolutionary arguments.

regions were found [111] (Figure I). These findings support the idea that the neural circuits and brain regions that are
recruited to sustain exact symbolic number processing are crucially mediated by cultural factors.

Chinese na!ve speakers English na!ve speakers

Numerical task with Hindu-Arabic numerals

Le"
hemisphere 

PMA SMA

Br
Wn

Right
hemisphere 

Figure I. Quantity, Language, and the Enculturated Brain. Results from a fMRI study that compared the brain
activation of educated native Chinese and English speakers while performing simple mental arithmetic and making
relative magnitude judgments. Although the symbolic stimuli – Hindu-Arabic numerals – were the same for both groups,
different activation and functional connectivity between brain regions were found. Native Chinese speakers showed
more activation in premotor regions (PMA, top left), whereas native English speakers showed more activation in the left
supplemental motor (SMA) and perisylvian regions, including Broca’s (Br) and Wernicke’s (Wn) areas (top right), which
are usually associated with language production and comprehension. These findings support the claim that the neural
circuits and brain regions that are recruited to sustain even the most fundamental aspects of exact symbolic number
processing are crucially mediated by cultural factors, such as writing systems, educational organization, and encultura-
tion. Adapted, with permission, from [111]. Tang, Y. et al. (2006) Arithmetic processing in the brain shaped by cultures.
Proc. Natl. Acad. Sci. U. S. A. 103,10775–10780. Copyright (2006) National Academy of Sciences, U.S.A.
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First, most quantity-related feats by nonhuman animals in the laboratory result from training that
is ‘often arduous and requires considerable environmental support’ ([44] p. 602). By this the
authors mean environments that have been intentionally and carefully designed and controlled
by humans. These human-concocted and -selected environments have not existed in the
ecological niches and evolutionary paths of these animals; they have occurred outside biologi-
cal evolution and natural selection.

Second, the learning process usually follows extensive and dedicated painstaking training,
which sometimes takes years to complete. Training a monkey on a simple quantity match-to-
sample task, for instance, can take over 4 months and 20 000 trials, only to achieve discrimi-
nation of collections at a 3:4 ratio with a 75% accuracy [70]. Such long and extremely frequent
exposure to narrowly targeted stimulation simply did not occur in the ecosystems of these
animals’ lineages.

Third, unsuccessful training of nonhuman animals in ‘numerical competence’ is understated
and rarely reported. Demonstrations of numerical competence do not come easily. As animal
psychologist H. Davis put it: ‘They are no mean feat, and for each of the successes you have
heard about, there are untold failures. Although the nondissemination of negative evidence is
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many languages with a very limited numeral system [61,62]. In a quantity-naming task, Mundurukú speakers were shown
random collections of one to fifteen dots and were asked to name the quantity. Only stimuli with numerosities between one
and four had preferred words or phrases that were picked more than 60% of the time when the corresponding
numerosities were presented (only ‘one' and ‘two’ were picked more than 90% of the time). Beyond that range the
quantifier equivalent to the English ‘some’ began to be picked, and beyond ‘twelve’ a quantifier equivalent to ‘many’ was
preferred. Importantly, with the exception of ‘two’, no other numerosity was designated close to 100% of the cases with an
unambiguous categorically distinct numeral. From [62]. Pica, P. et al. (2004) Exact and approximate arithmetic in an
Amazonian indigene group. Science 306, 499–503. Reprinted with permission from AAAS.
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the way science normally progresses, it is particularly unfortunate in the case of numerical
competence in animals because it clouds the question of how general or easily established this
ability truly is’ ([71] p. 110).

Fourth, even when nonhuman animals get to the point of doing (more or less) what experi-
menters want them to do, the outcome with respect to ‘number’ is usually guided by
associative learning and is rarely exact. Often the researcher criteria for ‘success’ are relatively
weak; sometimes even ‘above-chance’ performance is considered a success. When trying to
establish competence with the exactness of number and arithmetic, this lacks validity. A basic
competence involving, say, the number ‘eight’, should require that the quantity is treated as
being categorically different from ‘seven’, and not merely treated as often – or highly likely to be
– different from it. This essential exactness is criterial of number but is rarely obtained with
nonhuman animal responses, even after intensive training.

For these reasons animal results cannot support the claim that there is an evolved capacity
specific for ‘number’ and ‘arithmetic’. The behaviors and abilities resulting from human training
should not be used as evidence to support evolutionary arguments. Training a dog to
snowboard (Box 2), or to skateboard to see if it transfers the capacity to snowboarding,
may provide valuable data for particular purposes, but not for supporting the conclusion that
canines have an evolved capacity for snowboarding.

Loose Terminology in the Service of Teleology
Contemporary ‘numerical cognition’ routinely uses technical terms such as number, numeral,
numerousness, and numerosity in a loose manner, and this facilitates teleological argumenta-
tion (Box 1). Researchers in the evolution of language are promptly corrected when loosely
referring to the ‘grammar’ of gorillas or the ‘language’ of bees [72]. The use of ‘number’ and
‘numerical' should demand nothing less. Questions of terminology are not ‘just about words’:
they often convey profound theoretical implications. One must therefore ask: are the biologi-
cally endowed quantity-related capacities inherently about number at all? – and can we label
them as numerical, let alone arithmetical?

The first difficulty for addressing these questions is that the term ‘number’ is highly polyse-
mous, not only in everyday language (‘a number of things’; ‘passport number’) but also in
technical language (‘ordinal number’; ‘infinitesimal number’). Second, the field of numerical
cognition has been notorious for not employing precise terminology when dealing with the
concept of number. Already three decades ago scholars investigating ‘numerical compe-
tence’ in nonhuman animals and children spoke of the ‘terminological chaos’ ([44] p. 562),
the lack of ‘clarification of terms’ ([73] p. 601), and the unnecessary suffering ‘from the
misapplication of terms’ ([74] p. 580) that existed in the field. The situation is no better today
because relatively precise definitions of various number-related terms – some of which were
carefully coined by the psychophysicists of the mid-20th century [75,76] – are routinely
blurred (Box 1). Sometimes ‘number’ is used to mean ‘numeral’ (e.g., [77]), or sometimes
‘numerousness’ (e.g., [78]), despite warnings that ‘numerousness discrimination . . .
represents a simple perceptual ability that bears no obvious relation to number’ ([79] p.
1222). More importantly, ‘number’ is often loosely used in place of ‘numerosity’. Articles in
developmental (e.g., [80] p. B15) and comparative (e.g., [45] p. 86) psychology while properly
discussing ‘numerosity’ when describing stimuli, leap to ‘number’ in conclusions. Similar
loose inter-changeability can be found in neuroscience publications (e.g., [81] p. 177).
Occasionally one finds reminders pointing to this loose and misleading use of terminology
(e.g., [54] p. 35; [60] p. 176). However, such recommendations are rare, and in practice they
are not adopted, which reifies teleological claims about evolved capacities for number and
arithmetic.
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Towards an Alternative Proposal
How are we to understand the well-established human and nonhuman animal data? To begin,
leaving everyday language and teleology behind, we must not assume that ‘number’ is a
‘natural domain of competence’ ([18] p. 695) or ‘a natural perceptual category’ ([47] p. 370).
And, importantly, we must be precise about the use of the term ‘number’ and of the associated
adjective ‘numerical.’

Minimal Criteria for Number
Beyond the natural polysemy of the term, a reasonable step is to begin with the most
prototypical and fundamental properties ascribed to ‘number’ when evoking the familiar
counting sequence ‘one, two, three, . . . ’ – the meat of ‘numerical cognition’. Accordingly,
number:
(i) quantifies in an exact and discrete manner
(ii) is abstract in the sense that it transcends the quantification of specific commodities or

specific types of stimuli
(iii) has a cardinal sense (produced by counting)
(iv) has an ordinal sense (required for enumerating and counting)
(v) is relational
(vi) is combinative, operable
(vii) is referred to symbolically.
This minimal – non-exhaustive – collection of properties does not cover all instances of
‘number’, but it covers the most prototypical and fundamental cases (Table I in Box 1 for
details). For example, the number ‘seven’ (i) quantifies in an exact manner collections with
numerosity 7, and (ii) it is abstract in the sense that it transcends what psychologists call
‘sensory modalities’ [44]. ‘Seven’ also has a cardinal (iii) and an ordinal sense (iv) which are
involved in counting, and (v) it is specified relationally, as, for instance, the successor of
‘six’. The cardinal and relational properties, although apparently simple, should not be
taken for granted. The learning of the ‘cardinality principle’ by children is more than merely
learning ‘words’ and it is far from trivial [82], and the generalization of the successor
function is achieved only years after learning to count [83]. Finally, (vii) ‘seven’ is referred to
symbolically via specific signs (numerals) such as the word ‘seven’, the digit ‘7’, or the
Roman ‘VII’, which support precise combinativity, operability (vi), and the generation of
other numbers.

Crucially, property (vii) – being referred to symbolically – is by nature a conventional cultural
feature, a signature of Homo sapiens [84]. Developing sociohistorically, symbolic reference
puts ‘number’ in a qualitatively separate realm from the quantity-related phenomena observed
in nonhuman animals (and in humans from many non-industrialized cultures). As biological
anthropologist T. Deacon puts it: ‘symbolic reference must be acquired by learning, and lacks
both the natural associations and trans-generational reproductive consequences that would
make such references biologically evolvable’ [85]. Symbolic reference is not only observed in
the familiar ‘0–9’ Hindu-Arabic numerals (digits) or in the number words we use today – it was
already present among trained individuals in societies that developed writing practices and
basic accounting techniques in Mesopotamia [86,87]. In addition, in the absence of writing
technology, it manifests, for instance, in the use of body parts as numerals common in native
groups in Papua New Guinea [88,89], in the use of knot-based artifacts such as the khipu of the
Incas in the Andes [90], in the development of sophisticated linguistic constructions to support
complex arithmetic, such as the binary calculating system in the Polynesian Mangarevan
[91,92], and possibly even in those meticulously human-trained chimpanzees Ai [52] and
Sheba [53], and grey parrot Alex [51]. Written or not, symbolic reference places ‘number’
outside the reach of biological evolution via natural selection. If the quantity-related phenomena
observed in non-human animals and infants do not exhibit these prototypical properties of

418 Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6



‘number’, labeling them as ‘numerical’ is not only inappropriate and misleading but also paves
the way for teleological arguments.

Quantical and Numerical Phenomena: A Crucial Distinction
The above characterization of number entails that the quantity-related capacities observed in
infants and nonhuman animals are not about numbers, but are about quantity, and therefore
should not qualify as numerical. The adjective ‘numerical’ in ‘numerical cognition’, however, is
crucially over-inclusive: any cognition or behavior relating to quantity in babies, monkeys, rats,
or fish – whether exact or inexact, symbolic or non-symbolic, operational or not – is labeled as
being ‘numerical’. This loose over-inclusiveness licenses stating – teleologically – that thou-
sands of species, from fish to humans, by virtue of being able to discriminate quantities, de
facto have ‘number representations’ as a result of biological evolution.

To avoid confusion and fallacious reasoning the adjective ‘numerical’ should be reserved
for those phenomena that exhibit the prototypical properties listed above. It should not be
used to label cognition, abilities, or behaviors that refer to phenomena such as subitizing
and LQD. What then should we call these biologically endowed phenomena? The
English language (like others) does not have an adjective to label phenomena that are
quantity-related but lack the properties listed above. One possibility would be to call them
quantitative capacities [60], but this term – usually contrasted with ‘qualitative’ – relates
to measurements and their numerical and mathematical treatment. I propose to refer to
these biologically endowed capacities as quantical – in contrast to ‘numerical’ (Figure 2,
Key Figure).

The quantical–numerical distinction reveals how misleading certain theoretical constructs in
the field of ‘numerical cognition’ are. For example, the so-called approximate number
system (ANS) – which, following the Weber–Fechner law, is claimed to be an ‘evolutionarily
ancient innate system for approximate number’ [25,93] – is believed (not without criticisms
[94–97]) to neurally handle quantities above the subitizing range. Observed similarities of ratio
effects obtained with non-symbolic and symbolic stimuli are often taken as evidence for the
ANS account [54,93]. However, these similarities can be explained by different underlying
mechanisms for quantical (non-symbolic) and numerical (symbolic) processing [98,99], and
this supports the idea that quantical and numerical cognition are not only fundamentally
distinct but they also relate to each other in non-obvious ways. Thus, the claim that ‘when we
learn number symbols, we simply learn to attach their arbitrary shapes to the relevant non-
symbolic quantity representations’ ([100] p. 552) is questionable. Furthermore, the term ANS
implicitly takes ‘numbers’ as pre-existing primitives to which noisy mental representations are
‘approximate’ to. The term ‘ANS’ is thus a teleologically driven oxymoron, which puts
‘number’ – with its richness and complexities – directly in the category of what is biologically
endowed. To capture the discontinuity brought by exact symbolic quantification, the
quantical–numerical distinction is crucial. The adjective ‘quantical’ does not take pre-existing
numbers as primitives with representations being approximate to them. Instead, it labels
LQD, for instance – upon which quantifications such as ‘few’ and ‘many’ build – without being
‘approximate' to anything.

In sum, quantical cognition is biologically endowed, but numerical cognition is not. Quantical
cognition may be the manifestation of BEPs for numerical cognition and arithmetic, but is itself
not about number or arithmetic. Indeed, quantical processing seems to be about many
sensorial phenomena and dimensions other than number per se [95,96,101,102], Crucially,
quantical cognition does not, by itself, scale up to produce number and arithmetic. Quantical
capacities are not ‘precursors’ of numerical capacities, but rather biologically evolved pre-
conditions (BEPs) for them (Box 2).
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Not Only Language and Symbols, But Also Evolving Cultural Preoccupations
Language and symbols are often taken to be sufficient conditions for an account of the
observed discontinuity between human and non-human animal quantity-related capacities
[96,103,104]. However, the often neglected study of small-scale non-industrialized human
cultures reveals that language and symbolization may be necessary conditions for the forma-
tion of number, but alone do not produce numbers and arithmetic. All human cultures and
societies have developed and employ spoken (or signed) language, but not all have developed
a system of exact numbers beyond the subitizing range (Box 3). Instead, they have developed
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quantifiers which appear to symbolize seemingly universal quantity-related experiences
brought by biologically endowed quantical cognition. Crucially, although very functional in
dealing with quantities in everyday life, quantifiers in natural language – like quantical com-
petences in animals – cannot scale up to build an exact number system and arithmetic [105]. To
yield exact results for specific operations, the concept of number is needed. This seems to
require the crucial contribution of particular cultural traits (preoccupations and practices
[86,87,106]) which, in the case of numbers, have been well documented for groups in Papua
New Guinea [68,88] and Polynesia [91,92], for instance. Sustained by language [91,92], symbolic
reference [88,92,107] (e.g., body count systems [68,88,89]), and imagination and metaphor
[58,108,109], these preoccupations and practices are not brought forth via biological evolution
proper but via cultural evolution and the enculturation of the human brain [110] (Box 3).

Concluding Remarks and Future Perspectives
Humans and many nonhuman species do have biologically endowed abilities for perceiving and
discriminating quantities, at least in an imprecise manner and in particular formats (e.g., food
items). Although robust, these observations do not support claims that there is an evolved
capacity specific for number and arithmetic.

Such claims are based on an implicit teleological rationale supported by loose and misleading
terminology. They build on an inaccurate conception of biological evolution that takes ‘number’
and ‘arithmetic’ as targets in natural selection, on the grounds of their utility and entrenchment
in the modern industrialized world. Through this lens, influential views in developmental
psychology, animal cognition, and cognitive neuroscience have downplayed human data from
non-industrialized cultures and overinterpreted results with trained animals in captivity, resulting
in an overstated role for biological evolution in the origins of numbers.

'Number’ is a complex and polysemous concept which must be specified in detail, especially
when evaluating claims about evolution. Accordingly, the behaviors, capacities, and cognition
that are to be labeled as ‘numerical’ must be treated with care. To understand the existing data
in light of evolution, we must disentangle biologically endowed quantical capacities – which are
imprecise and non-symbolic – from strictly speaking numerical capacities that exhibit exact
symbolic quantification. The distinction makes clear that quantical capacities do not scale up to
numerical capacities via natural selection alone.

In humans, exact, systematic, and symbolic quantification beyond the subitizing range has
materialized via cultural preoccupations and practices involving language and symbolic refer-
ence, crucial dimensions that lie outside natural selection. Questions about how this took place
abound (see Outstanding Questions). What does it take to move from quantical cognition to
numerical cognition, and how do these two forms relate to each other? One promising direction
is to study the neural underpinnings of the enculturation underlying exact numerical symbols
and arithmetic [110,111]. A complementary research path is to investigate whether natural
quantifiers, moving from symbolic imprecise quantification to exact symbolic quantification
[105], might play a role in consolidating the ‘number sense’.

Although ubiquitous today in the industrialized world, numerical cognition should not be taken
at face value. The answer to the question of what it takes to move from quantical to numerical
cognition is not trivial. Indeed, only some humans – in the right sociohistoric contexts, and after
tens of thousands of years – have made that leap.
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Outstanding Questions
What exactly does it take to move from
quantical cognition to numerical cog-
nition, and how do the two forms relate
to each other?

What selective pressures may have
given rise to quantical cognition?

Quantical processing seems to be
about many sensorial dimensions
other than number proper. What
aspects of quantity processing then
makes it numerical?

Exactly what aspects of quantical/
numerical cognition can be attributed
to biological evolution, what aspects to
cultural evolution?

With respect to exact symbolic quan-
tification, how do biological phenom-
ena constrain cultural evolution and
enculturation?

What are the necessary conditions for
a culture to develop exact quantifica-
tion and number systems? Why have
not all human cultures developed
them?

What is the role of natural quantifiers in
the consolidation of the number sense
in children?

Building on quantical cognition, how
does exact symbolic quantification get
grounded and neurally instantiated?

What are the neurological underpin-
nings of the learning of quantifiers in
natural language?

What can we learn from cultures that
have achieved sophisticated number
and arithmetic concepts without writ-
ing technology, but instead with com-
plex material artifacts (e.g., the khipu
from the Andes – a device based
on strings and knots) or sophisticated
linguistic constructions (e.g., the Man-
garevan binary calculating system)?

How can archaeological evidence
improve our understanding of the ori-
gins of numbers?
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