
Hidden Markov Model inference with the Viterbi algorithm: a mini-example

In this mini-example, we’ll cover the problem of inferring the most-likely state sequence
given an HMM and an observation sequence. The problem of parameter estimation is not
covered.

Once again, the dynamic program for the HMM trellis on an observation sequence of
length n is as follows:

1. Initialize δ0(s) = 1 for s the start state, and δ0(s) = 0 for all other states (this is
equivalent to having only the start state in the trellis at position zero)

2. For each value i = 1, . . . , n, calculate:

(a) δi(s) = maxsi−1
P (si|si−1)P (wi−1|si−1)δi−1(si−1)

(b) ψi(s) = arg maxsi−1
P (si|si−1)P (wi−1|si−1)δi−1(si−1)

3. Finally, fill out the end state of the trellis (position n+ 1) using the rules in (2) above.

We’ll take as our transition probability distribution

Next
Current A B End
Start 0.7 0.3 0
A 0.2 0.7 0.1
B 0.7 0.2 0.1

and as our emission probability distribution

Word
State ∗S∗ x y

Start 1 0 0
A 0 0.4 0.6
B 0 0.3 0.7

Suppose we see the input sequence x y y. We start by constructing the trellis and
initializing it with δ0(*START*) = 1 at the start. The green nodes indicate how much of
the sequence can be considered generated after each iteration of trellis-filling:
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Next, we calculate the δ values at position 1:

δ1(A) = max
s0

P (A|s0)P (∗S∗|s0)δ0(s0) (1)

which is simple since there is only one possible value s0, the start state:

δ1(A) = 1 × 1 × 0.7 (2)

= 0.7 (3)

Likewise, we obtain

δ1(B) = 1 × 1 × 0.3 (4)

The backtraces are both trivial as well: ψ1(A) = ψ1(B) = ∗S∗0
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We next calculate the δ values at position 2:

δ2(A) = max
s1

P (A|s1)P (∗S∗|s1)δ1(s1) (5)

= max{0.2 × 0.4 × 0.7, 0.7 × 0.3 × 0.3} (6)

= max{0.056, 0.063} (7)

= 0.063 (8)
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This value was higher for s1 = B, hence ψ2(A) = B1. We also have

δ2(B) = max{

A
︷ ︸︸ ︷

0.7 × 0.4 × 0.7,

B
︷ ︸︸ ︷

0.2 × 0.3 × 0.3} (9)

giving us ψ2(B) = A1:
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We recurse one more time for position 3:

δ3(A) = max{

A
︷ ︸︸ ︷

0.2 × 0.6 × 0.063,

B
︷ ︸︸ ︷

0.7 ∗ 0.7 ∗ 0.196} (10)

δ3(B) = max{

A
︷ ︸︸ ︷

0.7 × 0.6 × 0.063,

B
︷ ︸︸ ︷

0.2 ∗ 0.7 ∗ 0.196} (11)
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and finally the last time for the end state:

δ4(End) = max{

A
︷ ︸︸ ︷

0.1 × 0.6 × 0.02744,

B
︷ ︸︸ ︷

0.1 ∗ 0.7 ∗ 0.02646} (12)

giving us
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y

δ4 = 0.0018522

We made it! From the end state we can read off the Viterbi sequence (following the
backtraces through to the start state) and its probability:

Viterbi sequence: ABB
P (ABB, xyy) = 0.00185522

Note that this is different than the inference than would be made either with a “reverse
emission model” where P (A|x) = 0.4, P (A|y) = 0.3, which would favor the sequence BBB,
or with the transition model alone (which would favor the sequence ABA). The emission and
transition models work together to determine the posterior inference.
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