
Docking topical hierarchies:A comparison of two

algorithms for reconciling keyword structures

Bryan Tower Mark Chaisson
Richard K. Belew

Cognitive Science Dept. (0515)
Univ. California – San Diego

La Jolla, CA, 92093-0515
rik@cogsci.ucsd.edu

11 December 2000 ∗

Abstract

Hierarchies are a natural way for people to organize information, as re-
flected by the common use of “broader/narrower” term relation in keyword
thesauri. However, different people and organizations tend to construct
different conceptual hierarchies (e.g., contrast Yahoo! with the UseNet
news hierarchy), and while there are often significant commonalties it is
in general quite difficult to fully reconcile them. We are particularly inter-
ested in the problem of “docking” a narrower, more focused and refined
topical hierarchy into a broader one, and describe two algorithms for ac-
complishing this task. The first matches hierarchies based on a bipartite
matching algorithm of (textual) features of nodes without consideration
of their hierarchic organization, and the second is based on an attributed
tree matching algorithm which uses both hierarchic structure and node
features. We present experimental results showing the performance of
both algorithms on a set of very different topical hierarchies, all designed
to represent the field of Computer Science. These show that hierarchic
structure does indeed allow more accurate matches than nodes alone.

1 Introduction

Especially within the Western analytic tradition, a central feature of intellectual
progress has been the progressive division of broad topical areas into narrower,
more refined ones. Science and technology has continued to drive the analytic
process into an incredible breadth of disciplinary specializations. And within
each of these disciplines, generally opaque to outsiders, are even more refined
characterizations of narrower topical areas.

∗Submitted SIGIR01, January 2001. Released as technical note, 25 Jan 05

1

Collectively, these various taxonomic classification systems can be imagined
as a vast tree, with broad topical areas splitting into more refined branches.
The central problem considered in our work is the docking of one taxonomic
system into another when these two are developed independently. Our system,
HierDock, implements the process of docking one topical hierarchy into another,
matching comparable categories and preserving as much of the structure as
possible.

There is some reason to believe that two hierarchies developed independently
will be organized in a structurally similar way. People tend to classify things
according to a “broader vs. narrower” relation. Our system leverages the fact
that two hierarchies built with this principle will overlap in some places.

1.1 Motivation

There are a number of alternative goals that motivate this research. The origi-
nal motivation grew out of attempts to integrate high-quality, third-party tax-
onomic classifications into an over-arching representation like the Encyclopedia
Britannica’s (EB) Propaedia. For example, early work by Steier and Belew
(unpublished) built on that done by Rose on legal texts [9, 8], especially the
Westlaw Key Number system used to classify it. But as Steier and Belew moved
to work on the EB corpus [10, 11], the question arose how West’s key number-
ing system might match into EB’s Propaedia. More recently, reconciling our
Computer Science & Engr. department’s curriculum with that of professional
organizations like the Association for Computing Machinery (ACM) and other
universities is proving very useful in our own department’s planning. More gen-
erally, in a wide variety of fields (e.g., bioinformatics) various investigators and
institutions are attempting to classify contents in shared “ontologies” (e.g., of
protein functions) that allow shared access to common data sets.

In Section 2 we describe the two algorithms that we use in the experiments,
a bipartite matching algorithm and a weighted hierarchic subtree isomorphism
algorithm recently developed by Pelillo et al. for the purpose of image matching
[7]. Section 3 describes where the data sets came from and how they were
collected. In Section 4 we present preliminary results of the two algorithms on
the data sets, and in Section 5 we discuss some of the observations and results
found in the experiments. Finally we end with some conclusions, and future
direction in Section 6.

2 Algorithms for matching hierarchies

A common and natural representation of a topical hierarchy is as a directed
graph (digraph): nodes represent a topical area. We associate a rubric (short,
descriptive textual phrase) with each node and optionally a collection of longer
textual passages that are considered exemplary of the topical area. Di-
rected arcs encode the broader-term/narrower-term (BT/NT) relationship
between areas, with directionality running from broader to narrow nodes. A

2

precise semantics for the BT/NT relation is a topic of ongoing research (cf.
Section 3.4), but for now we will assume a form of the inclusion relation. We
shall refer to this representation of a topical hierarchy as an HGraph.

Given two HGraphs H1 and H2 there are two distinct approaches to the
design of an algorithm for matching them. The first is to ignore all textual in-
formation associated with the graph’s nodes and focus exclusively on matching
the two graphs’ edge structures. The problem then becomes the well-known but
NP-complete problem of subgraph isomorphism. Fortunately, because the two
graphs are both rooted trees, the complexity of this matching process is poly-
nomial rather than NP-complete as it is in the general case [4, Chapter 4.2].
However, given the semantic attachment we have to the textual features asso-
ciated with our graph’s nodes, there seems little practical interest in solutions
based exclusively on structural similarities and so do not consider such methods
any further.

The other extreme alternative is to consider only the nodes in the two graphs,
specifically the textual materials associated with them. The search is then for
the pairing of nodes from H1 with those of H2 such that the cumulative match
score across all pairs of nodes is maximized. This pure formulation becomes the
problem of maximum weighted bipartite matching, considered in more detail in
Section 2.1.

Between these two extreme approaches, focusing exclusively on edges vs.
nodes contained in the HGraph, are potentially a wide range of techniques that
exploit both sources of information. The central hypothesis investigated by this
work is that the structural information provided by edges connecting topical
nodes provides more information than that contained in the nodes’ free text
alone.

2.1 Maximum Weighted Bipartite Matching

The unweighted bipartite matching problem is a classical network flow problem
[3, Chapter 27.3]. To solve a network flow problem you start with an empty
flow (matching) and continually add “augmenting” paths to the flow. An “aug-
menting” path is a path that will increase the weight of the matching without
making the matching invalid.

The weighted bipartite matching problem is slightly different, because with
a variation in edge weights it becomes possible to connect one node with more
than a single other node with a traditional network flow approach. This violates
the definition of a matching problem, because in a matching each node can be
matched to at most one other node. Note that the weights prevent it from
becoming a pure network flow problem.

The problem is to find the maximum matching between two sets of nodes
L and R. There exists a set of edges E, where if e = (x, y) then x ∈ L and
y ∈ R, for all e ∈ E. A maximum matching is a subset of the edges, M ∪ E,
where |M | is maximal. To find a maximum matching Mmax we start with an
empty matching, M = ε, and continually added an augmenting path until no
more augmenting paths exist. An augmenting path is a path starting with an

3

unmatched node in L (without loss of generality) ends with an unmatched node
in R and

An algorithm was described by Cheng et al. [2] that solves the maximum
weighted bipartite matching problem used successfully in computer vision to
perform image feature matching. The same general idea is used to solve the
weighted bipartite matching problem, that is, start with an empty matching
and at each step add an augmenting path. It has been proven that if at each
step in the algorithm a maximum augmenting path is added to the matching
then the result will be a maximum weight matching [2]. Details on how to search
efficiently for a maximum augmenting path with respect to a matching, M , are
described in a paper by Hao and Kocur, from the DIMACS implementation
challenge on network flows and matching [6].

2.2 Maximum Weighted Subtree Isomorphism

In a recent paper Pelillo et al. show how to convert an “attributed tree” (i.e.,
nodes have attributes over which a similarity measure has been defined) match-
ing problem into a corresponding Maximum Weighted Clique problem, such
that there is a one to one correspondence between solutions to the Maximum
Weighted Clique problem and solutions to the maximum attributed tree match-
ing problem [7].

The details of the formulation of this as a continuous quadratic assignment
problem are beyond the scope of this conference paper, and only a sketch can
be presented here. In brief, matching two hierarchies H1 and H2 requires the
construction of a square matrix of size n2, where n = |V1| × |V2| and |V1| and
|V2| are the number of nodes in H1 and H2, respectively. Optimization proceeds
by locally optimizing a “characteristic” vector over the standard simplex <n.
Pelillo et al. report results using replicator equations to solve this problem and
report that the basins of attraction of optimal or near optimal solutions are
large [7].

Our early experiments were able to use this algorithm successfully over hier-
archies representing topical hierarchies, but only on quite small examples (e.g.,
dmoz-nl1 vs. dmoz-nl2, cf. Section 3). On larger problems this iterative pro-
cedure proved to converge very slowly. In this application we also observed a
much greater sensitivity to initial conditions and many sub-optimal local so-
lutions. For these reasons, all larger examples used an indefinite quadratic
program solver known as QPOPT [5]. On all problems for which QPOPT and
replicator equations were both used, both methods obtained similar results.

3 Data Sets

As discussed in Section 3.4, the range of sources from which topical hierarchies
can be derived is very broad. In order to focus our experiments, all data sets
were focused on the area of COMPUTER SCIENCE, a topical area about which
the authors are particularly familiar. The data sets used for the experiments

4

Table 1: HierDock data set statistics
Name Description node count max depth vocab size
acm2 ACM collapsed to two levels 12 2 975
acm3 ACM collapsed to three levels 93 3 975

dmoz-nl1 1st half of the Natural Language 8 3 4465
dmoz-nl2 2nd half of the Natural Language 8 3 4173
dmoz-ai1 1st half of the Artificial Intelligence 74 5 17286
dmoz-ai2 2nd half of the Artificial Intelligence 75 5 18570
dmoz-cs Computer Science 137 5 24544

eb extracted from article 50 5 1678

Figure 1: Visual representation of the dmoz-nl data set.

reported here were gathered from three sources: the Mozilla Open Directory
project (DMOZ), the ACM Computing Reviews taxonomy, and an article on
“Computer Science” produced by Encyclopedia Britannica. A brief discussion
of how each one was collected follows, and their basic statistics are collected in
Table 1.

3.1 DMOZ

The Mozilla Open Directory project makes their topical hierarchy readily avail-
able.1 For the experiments reported here we extracted several small subtrees
from the full DMOZ hierarchy. The first tree we used was the subtree rooted at
TOP/COMPUTERS/ARTIFICIAL INTELLIGENCE. The second subtree was rooted at
the same node, but all of its children were removed except the NATURAL LANGUAGE
node; the second set is shown in Figure 1.

1The data is available in Resource Description Format (RDF) at DMOZ at
http://dmoz.org/rdf/. The version used in these experiments was obtained on 5/24/2000.

5

Figure 2: Visual representation of the acm2 data set.

The DMOZ category pages themselves provide very little text that can be
associated with the topical area: only the anchor text selected by the editor to
point to the relevant URL, and a brief description. In order to provide more
extensive textual samples, we also did a simple, one-level crawl from these pages
and used these pages’ text as well. 2

Pages relevant to a topic and referenced by DMOZ editors are listed in alpha-
betic order. The assumption is that while all the pages at one node are highly
semantically-related (since the same editor chose to classify them identically),
the words that happen to be selected on one page is likely to vary considerably
from another, because they are authored by different sources. Therefore, one
reasonable test we can make of our hierarchy matching algorithm is therefore
to use the first and second halves of this reference list (and the text of the ref-
erenced pages) as two alternative characterizations of the topical area. We will
refer to this partitioning of the data set as dmoz-nl1, dmoz-nl2, dmoz-ai1, and
dmoz-ai2 below.

6

3.2 ACM

The ACM has maintained their own Computing Reviews Taxonomy as an in-
dexing resource for decades. 3 This has been most recently revised in 1998 and
contains eleven top level categories as shown in Figure 3.2.

While it appears possible to go from the ACM CR taxonomy to the text of
ACM papers indexed by these categories, for the experiments in this paper we
chose to rely upon only those short text fields used in the brief description of
the categories as the text to represent each node. This provides fewer keywords
per node than the other data sets and demonstrates some interesting properties
for the ACM data sets.

Two versions of ACM taxonomy are used in the experiments. The first
(which is known as acm2 below) consists of only the top level node and its 11
direct children. However, to provide additional text to be associated with each
of these children, all the text forming rubrics for all its descendants are merged
into a single textual passage associated with this category.4 This gives us a tree
with 12 nodes and a maximum depth of two.

The second data set from the ACM is constructed similarly, except that the
structure for the top three levels is preserved instead of only the top two. This
time all of the descendants below level three are promoted to be the text that
describes the level three nodes. This yields a tree with 93 node and a maximum
depth of three.

3.3 Encyclopedia Britannica

The data set that we used from Encyclopedia Britannica was taken from the
text of an article written about computer science. The table of contents and
the structure of the article are used to build the hierarchical information. The
article is broken down into sections, subsections, and sub-subsections, and so on.
Each section and subsection of the article were used as nodes of the HGraph,
the section’s title as the node’s rubric and text from the section as its textual
passage. The hierarchy contained 50 nodes, and had a maximum depth of 5.
This data set is know as ’eb’ in the experiments.

3.4 Semantics of topical hierarchies

The range of sources from which we have drawn our data sets – from an en-
cyclopedic survey article, to the a general purpose Web index (DMOZ) to a

2The text was extracted from the web-pages using the lynx web browser with the ’-dump’
option. We did not use any text from inside the HTML tags (i. e. META tags). The data
was then cleaned up by deleting error messages (i. e. server not found) , and deleting nodes
that had no pages to describe them.

3This data can be found on the ACM web site at
http://www.acm.org/class/1998/ccs98.txt.

4For example, for the category HARDWARE, the text of its subcategories CONTROL STRUCTURES

AND MICROPROGRAMMING, MEMORY STRUCTURES, ... would be used, as well as the text associated
with subcategories of CONTROL STRUCTURES AND MICROPROGRAMMING

7

Table 2: Data set statistics. i stands for identity test, -:not relevant (no overlap
of categories), s: see symmetric experiment, BM: Bipartite match identifies
correct match, SI: Subtree Isomorphism finds superior match

acm2 acm3 dmoz-nl1 dmoz-nl2 dmoz-ai1 dmoz-ai2 dmoz-cs eb
acm2 i BM - - - - - -
acm3 i - - - - ?? ??

dmoz-nl1 i BM s - -
dmoz-nl2 i np s np -
dmoz-ai1 i p - -
dmoz-ai2 i - -
dmoz-cs i p

eb i

journal’s taxonomic classification system (ACM-CR) – requires us consider the
semantics intended by these very different representations quite carefully.

The Open Directory project is an interesting example of how people naturally
describe information in a hierarchical fashion. Volunteer editors are responsible
for keeping lists of WWW pages that are about a given topic in which they have
particular expertise. The resulting system of pages creates a hierarchy of topical
pages, each pointing to large numbers of high quality WWW pages.

The general survey prose written in the EB article is designed to provide a
tutorial and foundation for further reading. The bibliographic citations within
this text (and not considered further in the current report) are therefore espe-
cially useful.

Some, and traditionally most, hierarchies have been a work of single author-
ship. Rarely is this author a single individual; typically there is an institution
coordinating the activities of a group of (EB editors) or a specially appointed
panel (ACM). One reason that DMOZ is of special interest in our work is that
its “open” approach to the coordination of independent editors suggests new
forms of consensual activity towards a common framework.

There are also some commonalties across these various sources. Several spe-
cial categories, e.g., GENERAL and MISCELLANEOUS, often appear in taxonomies,
and are found in both EB and ACM-CR. These present special problems for
our HierDock procedure, since these sub-categories appear syntactically inter-
changeable with other sub-categories that in fact capture narrower topical scope.
Similarly, DMOZ’s PEOPLE, CONFERENCES, and PUBLICATION categories are
used commonly across many categories. None of these capture the narrower-
topical-area semantics we associate with typical child nodes.

4 Results

We anticipated that for the smaller hierarchies, or hierarchies that are of com-
parable sizes, that the weighted bipartite matching algorithm would do a com-

8

Figure 3: Results from experiment dmoz-nl1 vs. dmoz-ai2. In each of the plots
dmoz-nl1 is on the vertical axis, and dmoz-ai2 is on the horizontal axis. The
vertical lines are for ease of comparing the three plots. There are ten nodes
between each set of lines. (a) The similarity score matrix. (b) The results
from the attributed tree matching algorithm. (c) The results from the weighted
bipartite matching algorithm. The two algorithms came up with the same match
set for this experiment.

parable job.
In this section we present the results of selected experiments. A summary of

the experiments conducted can be found in Table 2. All of the experiments were
run on a Celeron 850MHz machine with 640M of RAM. The weighted bipartite
matching algorithm was implemented in C, and the larger experiments took
about one second to complete. The attributed tree matching algorithm was
run in MATLAB, and the larger experiments took about one minute to find a
solution with the QPOPT optimizer[5].

4.1 Comparing dmoz-* against itself

The simplest match considered is dmoz-nl1 vs. dmoz-nl2, since both hierarchies
have exactly the same structure and the only variation results in the vocabulary
sampling differences brought about by our arbitrary separation of the classified
pages into two subsets. Both the weighted subgraph isomorphism (SI) and
weighted bipartite match (BM) solutions successfully came up with the same
matching, and it is the matching that was expected (Artificial Intelligence
node from both trees, the Natural Language node from both trees, etc.).

4.2 dmoz-nl1 vs. dmoz-ai2

The matching of the dmoz-nl1 subtree against the fuller dmoz-ai2 tree provides
a more interesting test. By construction, there is a known correct structural

9

match that should also yield the highest weighted match, but the appropriate
“docking point” for the Natural Language subtree is unknown to the algorithm.
Figure 3 shows first the underlying node-pair similarity matrix, then the matches
discovered by the SI and BM solutions. The strong diagonal match in columns
10-16 shows that the SI match successfully matched the subtree, while the BM
included several other spurious pairs because it ignores structure it was free to
match nodes in categories that fall in a different subtree.

A more rigorous test of our system is shown in the experiment of matching
the two versions of the entire dmoz-AI subtrees, dmoz-ai1 and dmoz-ai2 against
one another. While these two trees are almost identical, the splitting of the
test set resulted in several nodes in one version that did not have corresponding
nodes in the other. For example, dmoz-ai2 has an extra node Ontologies node
(column 36 in 4) not found in dmoz-ai1; two other similar differences can be seen
in columns 49 and 50. The central result by Figure 4 is that the straightforward
pairwise BM method identifies many spurious node pairings while the SI method
identifies exactly the matching we would expect. The two trees have exactly
the same structure we would expect, except for the three small variations just
mentioned.

4.3 eb vs. dmoz-cs

Of course using HierDock to match heterogeneous hierarchies, coming from
different sources, provides the most realistic test of the practicality of the
method. At the same time, identifying the “correct” matching between two
independently-authored hierarchies also becomes a matter of opinion. Figure 5
shows the result of matching two very different types of topical hierarchy, the
EB’s encyclopedic entry on
Computer Science against ACM’s detailed classification of this same topic. As
with the ai1 vs. ai2 match, BM returns a unstructured, unhelpful series of match-
ing pairs. SI, however, found at least portions of a match that qualifies as at least
interesting; the details of this match are presented in Appendix A. While large
portions of both hierarchies were left unmatched (the largest clique returned by
the SI algorithm contained only 25 nodes), and some matched rubrics may seem
odd (e.g., EB’s RELIABILITY vs. ACM’s database management), others seem
very encouraging (e.g., EB’s THEORY vs. ACM’s mathematics of computing).

5 Discussion

When comparing the general structure of the DMOZ hierarchies to the struc-
ture of the ACM hierarchy, interesting observations can be made. In the DMOZ
structure from the ARTIFICIAL INTELLIGENCE node on down, many of the nodes
have a child called PEOPLE. Another node that is fairly common is a node called
CONFERENCES AND EVENTS.5 One reason that DMOZ has evolved to this struc-

5ARTIFICIAL INTELLIGENCE, NEURAL NETWORKS, BELIEF NETWORKS, and many other nodes
have CONFERENCES AND EVENTS as a child.

10

Figure 4: dmoz-ai1 vs. dmoz-ai2

11

Figure 5: eb vs. acm3

12

ture is that it has a lot of content and it is trying to create a niche for every
piece of content that it has available to classify. The content that DMOZ deals
with consists entirely of web pages. There are many people who create a home
page so, having many PEOPLE nodes is potentially a good idea for the DMOZ,
but does not fit into the BT/NT relation.

The ACM taxonomy, on the other hand, is the result of a group of experts
defining what computing means. These experts do not have the handicap of
being tied to the content that they have available to them. The ACM is not
as fluid as DMOZ; DMOZ is updated on a daily basis while, the last classi-
fication from the ACM on computing is from 1998. It is important that the
ACM experts get the classification correct, because it will not change for a
while. The ACM experts know that computing will change somewhat over the
course of a few years. They introduced categories like General Literature
and Miscellaneous to allow for the general shift of interest in computing, be-
tween releases of their computing classifications. Column 54 of Figure 5 (a) is
the Conferences node below the Vision node in the dmoz-ai2 hierarchy. This
column is darker than most other columns, and can be recognized as a node
with a high level-of-treatment. Another example of this is column 17 in Figure
5 (a); this is the Neural Network node. It is a node that has many children
and it covers neural networks at a high level so it is shaded darker than most
nodes.

Each of the rows represents a node from acm2, and those nodes are more
general than most of the nodes of acm3 (the columns). Each square in the dark
streak is more general node versus a more specific node.

More generally, we can expect nodes at higher levels of a topical hierarchy
should be about more things. In the similarity plots shown above, these patterns
of aboutness show up as a dark streaks, where one hierarchies broad term is
nearly-uniformly distributed across another’s narrower subtopics. We believe
that this will be able to help to determine breadth of coverage for a particular
topic. The nodes that are similar to many other nodes of a common topic,
are most likely to be more general nodes. Recognizing patterns like this could
help search engines to retrieve documents that are general to a certain topic. It
would allow for someone to specify the level-of-treatment that they desire in a
given query.

6 Conclusions and future directions

As mentioned in section 2.2 Pelillo et al. report results using replicator equations
to optimize the set linear equations, and report that the basins of attraction of
optimal or near optimal solutions are large [7]. In our experiments the basins
of attraction to the optimal solutions do not appear to be extremely large in all
cases, and will be explored further.

The weighted subtree isomorphism algorithm can not return a matching
unless that matching is exactly an isomorphism. We are considering a diverse
set of hierarchies, authored by different people. It is natural to believe that these

13

different hierarchies have differences in their respective shapes. These differences
could lead to a “best” match that is not a true isomorphism, but something
that might be “perturbed” to produce true isomorphism. We intend to explore
“edit distance” heuristics that “correct” for differences between authors. (i.
e. removing a node from one hierarchy or adding an extra node to another
hierarchy) to yield a higher weight legal match.

6.1 Other applications

Beyond this direct application of HierDock technology, we have also become
interested in several unanticipated utilities. The general variations in language
use within and across topical areas has been a topic studied by Belew for some
time [11]. In brief, we have shown that statistical variations in an a priori
identified topical area are different than those across larger topical domains,
and these differences can be used to identify better phrasal index items. Belew
has discussed the use of “inside vs. outside” vocabularies as mechanisms to
mediate search across multiple corpora [1, Sect. 3.3.1]. Our analysis of statistical
variations in our topical hierarchies suggests new ways to identify such patterns.

A related goal is to identify level-of-treatment of textual passages. That is,
how might we distinguish a general, overview tutorial from the union of a set of
texts on individual topical periods? As discussed in Section 5 it may be possible
to determine level-of-treatment, based on statistical analysis.

7 Conclusion

In summary, when matching two hierarchies the structural information inherent
in the hierarchies convey meaning beyond that captured by the nodes considered
as independent topical descriptors. Using an algorithm, such as weighted subtree
isomorphism algorithm, that accounts for both hierarchical structure and node
similarity, a better matching can be found, than with an algorithm that ignores
this hierarchical structure.

Appendix A: EB vs. ACM3 match

Nodes of the EB and ACM3 hierarchy that were part of the maximum clique,
as they were matched by HierDock. Nodes taken from the EB are preceeded
by a 1 and appear in all capitals; corresponding nodes taken from ACM3 are
preceeded by a 2 and are in lower case.

1 COMPUTER SCIENCE

2 computing

1 DEVELOPMENT OF COMPUTER SCIENCE

2 general literature

1 ARCHITECTURE

2 information systems

14

1 BASIC COMPUTER COMPONENTS

2 information interfaces and presentation

1 BASIC COMPUTER OPERATION

2 miscellaneous

1 LOGIC DESIGN AND INTEGRATED CIRCUITS

2 general

1 LINKING PROCESSORS

2 models and principles

1 RELIABILITY

2 database management (e.5)

1 REAL-TIME SYSTEMS

2 information storage and retrieval

1 SOFTWARE

2 computer systems organization

1 SOFTWARE ENGINEERING

2 general

1 PROGRAMMING LANGUAGES

2 processor architectures

1 OPERATING SYSTEMS

2 computer-communication networks

1 INFORMATION SYSTEMS AND DATABASES

2 special-purpose and application-based

1 ARTIFICIAL INTELLIGENCE

2 performance of systems

1 COMPUTER GRAPHICS

2 computer system implementation

1 THEORY

2 mathematics of computing

1 COMPUTATIONAL METHODS AND NUMERICAL ANALYSIS

2 numerical analysis

1 DATA STRUCTURES AND ALGORITHMS

2 miscellaneous

8 Acknowledgments

This work was supported in part with funding by Encyclopedia Britannica.
Equipment used in this research was supported in part by the UCSD Active Web
Project, NSF Research Infrastructure Grant Number 9802219. We would also
like to thank Dr. Philip Gill for useful conversions concerning linear optimization
techniques and his QPOPT package, Ben Shapiro for his luggable computational
platform, and John Mill for early work on the project.

References

[1] R. K. Belew. Finding Out About: A cognitive perspective on search engine
technology and the WWW. Cambridge Univ. Press, 2000.

15

[2] Y. Cheng, V. Wu, R. Collins, A. Hanson, and E. Riseman. Maximum-
weight bipartite matching technique and its application in image feature
matching. In SPIE Conference on Visual Communication and Image Pro-
cessing, 1996.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Electrical and Computer Science Series. MIT Press, 1992.
ISBN 0-262-03141-8.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[5] P. Gill, W. Murray, and M. A. Saunders. User’s guide for QPOPT (version
1.0): a Fortran package for quadratic programming. NA 95-1, University
of California, San Diego, 1995.

[6] D. S. Johnson and C. C. McGeoch, editors. Network flows and matching:
first DIMACS implementation challenge, volume 12. 1993.

[7] M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchical structures using
association graphs, 1998.

[8] D. Rose and R. Belew. Legal information retrieval: a hybrid approach. In
Second Intl. Conf. on AI and the Law, 1989.

[9] D. E. Rose. A symbolic and connectionist approach to legal information
retrieval. Lawrence Erlbaum, Hillsdale, NJ, 1994.

[10] A. M. Steier. Statistical semantics of phrases in hierarchical contexts. PhD
thesis, Computer Science & Engr. Dept. - Univ. Calif. San Diego, 1994.

[11] A. M. Steier and R. K. Belew. Exporting phrases: A statistical analysis
of topical language. In R. Casey and B. Croft, editors, 2d Symposium on
Document Analysis and Information Retrieval, 1994.

16

