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Patterns of neural firing linked to eye movement
decisions show that behavioral decisions are predicted
by the differential firing rates of cells coding selected
and nonselected stimulus alternatives. These results
can be interpreted using models developed in math-
ematical psychology to model behavioral decisions.
Current models assume that decisions are made by
accumulating noisy stimulus information until sufficient
information for a response is obtained. Here, the
models, and the techniques used to test them against
response-time distribution and accuracy data, are
described. Such models provide a quantitative link
between the time-course of behavioral decisions and the
growth of stimulus information in neural firing data.

The question of how two-alternative decisions are made is
an important one for neuroscience and psychology alike
because of the pivotal role played by decision making in
translating perception and cognition into action. This
translation brings encoded stimulus information into
contact with the behavioral intention of the decision
maker to produce a goal-directed act. Psychology has a
long history of decision-making research that has resulted
in detailed mathematical models of underlying processes
[1,2] but only recently has it become possible to observe the
neural correlates of these processes directly in awake
behaving monkeys.

To study processes involved in simple two-choice
decisions, neuroscientists have used an analog of the
two-choice response-time (RT) task from psychology, in
which monkeys make saccadic eye movements to indicate
their decisions about visual stimuli. Recordings from cells
in premotor areas of the frontal lobe and the posterior
parietal cortex have shown that the time-course of activity
in these cells corresponds well with that of behavioral eye
movement decisions [3–7]. This article describes how
these developments are leading psychologists and neu-
roscientists to converge at a common view of the
underlying mechanisms. As a result, it could soon be
possible to explain behavioral data and single-cell firing
data with the same class of mathematical models.

Neural correlates of simple two-choice decisions
Neural activity linked to eye movement decisions has been
recorded in several visual tasks (Figure 1) from oculomotor

areas including the middle temporal area (MT), the lateral
interparietal area (LIP) in extrastriate cortex [8], the
frontal eye field (FEF) [9–11], and the superior colliculus
(SC) [12–14]. These structures are part of the circuit that
controls saccadic eye movements to behaviorally salient
targets [3]. For example, in the oddball discrimination
task, monkeys are trained to make eye movements to a
distinctively colored target element in an array of
distractor elements. Activity has been recorded from
FEF sensory cells whose receptive fields contain either
the target or a distractor. Initially, activity in target and
distractor cells increases similarly and nonselectively, but
at longer delays the firing rates reflect discriminative
information: activity in the target cell increases or is
maintained while that in the distractor decreases. Similar
results have been obtained fromMTcells and LIP cells in a
coherent motion task (Figure 1c) [8] and from SC prelude
or buildup cells [12,13] in a dot separation task [15].

The view that neural firing rate can be understood as a
correlate of the behavioral decision process [3,4,15] is
supported by several pieces of evidence. First, the build-up
of information occurs irrespective of whether a saccade is
ultimately made [10,11] (Figure 1) or of whether it is made
to the correct location [16,17]. This suggests that the firing
rate is notmerely an antecedent of the eyemovement itself
but reflects a more central process of target selection.
Second, the growth in firing rate predicts decision time:
fast responses are associated with a rapid rise in activity
whereas slow responses are associated with a slow rise
[8,18]. Third, behavioral decision time is predicted from
the time taken for the firing rate to reach a threshold
value. This has been shown for FEF motor neurons [18]
and for direction-sensitive cells in LIP [8] and SC [15].
Fourth, the rate of growth of discriminative information
depends on the difficulty of the decision; the difference in
firing rates between cells responding to selected and
nonselected stimuli increases more slowly when the
decision is difficult than when it is easy. Finally, the
build-up of information is sensitive to the prior probabil-
ities of the response alternatives and to the likelihood the
response will be rewarded. Information favoring a par-
ticular response builds upmore quickly when the response
is highly probable or more likely to be rewarded [13,19,20].

From neurons to sequential-sampling models
The picture that emerges from these findings is strikingly
consistent with statistical decision models that have been
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developed during the past 40 years in mathematical
psychology. Two broad classes of model have been
developed that apply to different kinds of decisions. One
class, of sequential-sampling models, applies to speeded
decisions in perceptual and memory tasks [1,21]. These
decisions are typically made within a second or so. A
second class, based on economic concepts of expected
utility, applies to complex decisions among differently
valued alternatives [2]. Both have been linked to recent
neurobiological findings but only the former is discussed
here. The link between neurobiology and utility-based
decision theories is discussed in Refs [7,22].

Figure 2 summarizes the main sequential-sampling
models and shows two successful models of this kind. The
models both assume that decisions are based on accumu-
lated noisy information about the stimulus but they differ
in how the accumulation is assumed to occur. In random-
walk models, the information is accumulated as a single
total: information in favor of one response is evidence
against the other [23,24]. In accumulator models and
counter models, information favoring the two responses is
accumulated separately [25–29]. The Wiener diffusion

and Ornstein–Uhlenbeck diffusion models on the left of
Figure 2a are continuous time counterparts of random
walks [30–32].

The Wiener diffusion model, shown in Figure 2b, has
successfully accounted for RT and accuracy data from a
variety of behavioral paradigms [33–39]. It assumes that a
decision is the result of continuously accumulating noisy
stimulus information until one of two response criteria is
reached. Because of moment-by-moment fluctuations in
noise in the decision process (the irregular sample paths in
the figure) and trial-to-trial variability in the quality of
information about the stimulus, the process sometimes
terminates at the wrong criterion, resulting in an error. If
the information quality is low, the rate of accumulation is
slower and errors and are more likely than if the
information quality is high. RT distributions are predicted
to be right-skewed because of the geometry of diffusion
process paths: equal size differences in accumulation rate
between pairs of sample paths are projected as unequal
size differences on the decision boundary (Figure 2b). The
Ornstein–Uhlenbeckmodel is similar to theWienermodel
but assumes decay or ‘leakage’ in the accumulation

Figure 1. Neural and behavioral correlates of eye movement disorders. (a) Some neural sites from which decision-related activity has been recorded. Patterns of neural fir-
ing that predict the time-course of behavioral decisions have been recorded in the frontal eye field (FEF), lateral interparietal area (LIP), middle temporal area (MT) and
superior colliculus (SC). (b–d) Some tasks used to study perceptual decisions. (b) Oddball task. Eight colored stimulus patches are illuminated in a circle around the fixation
point: the monkey makes a saccade (red arrow) to the odd-colored patch. Task difficulty is manipulated by varying the similarity of the colors of the odd element and the
distractors. (c) Coherent-motion detection task. An array of moving dots, some moving in random directions and some moving to the left or to the right, is presented cen-
trally: the monkey makes a saccade to a left or right target to indicate the direction of motion. Task difficulty is manipulated by varying the proportion of coherently moving
dots. (d) Dot separation task. One of a set of stimulus lights arranged vertically above a fixation light is illuminated. The monkey makes a saccade to the left or right to indi-
cate a large or small distance between the stimulus light and fixation. Task difficulty is manipulated by varying the position of the stimulus light relative to the middle of the
set of stimulus lights. (e) Neural activity associated with stimulus selection has been recorded in LIP, from sensory neurons in FEF, and from prelude or buildup neurons in
SC. Early stimulus-linked activity does not discriminate between decision alternatives. Later, cells associated with the selected stimulus or the preferred direction of motion
show an increased or maintained level of firing. Cells associated with the nonselected stimulus or the nonpreferred direction show a decreased level of firing. The growth
of discriminative information represented by the difference in firing rates occurs more rapidly for easily discriminated stimuli (strong) than for less easily discriminated
stimuli (weak). (f) Response time (RT) is predicted by the time at which activity in LIP or in FEF motor neurons reaches a threshold. Rapid activity growth is associated with
fast responses; slow activity growth is associated with slow responses. The distribution of RT (g) is a reflection of variability in the time taken for the activity to reach
threshold.
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process. Mathematically, the predicted decision times for
the models are obtained by solving the so-called first-
passage time problem for the accumulation process. This
solution gives the distributions of correct and error
decision times as a function of accumulation rate and
decision criteria [30,32,37].

Accumulator models, such as that shown in Figure 2c,
model the decision process as a race between two
competing evidence totals, with the response determined
by the first total to reach criterion. Accumulator models
predict many of the same behavioral data as random-walk
and diffusion models, although most accumulator models
cannot correctly predict shapes of RT distributions or
account for error responses being sometimes faster than
correct responses [37]. An accumulator model in which the
evidence totals are modeled as independent diffusion
processes with leakage correctly predicts distribution
shape but not fast errors [37,38]. If the evidence totals
are mutually inhibitory instead of independent, and the
starting points of the accumulation processes vary, the
model also predicts fast errors. The leaky competing
accumulator model of Usher and McClelland [40] (see also
Ref. [41]) predicts the same range of behavioral data as
does the Wiener diffusion model because the addition of
mutual inhibition between the accumulators means that
evidence for one response is evidence against the other, as
in the diffusion model [37]. A related, neurally motivated
model was proposed by Shadlen et al. [42].

For both the diffusion and accumulator models, the
decision criteria that determine the amount of information
needed for a response are under the control of the decision
maker. Criteria are reduced with instructions to respond
rapidly and increased with instructions to respond
accurately. Criteria can also be set independently of each
other. If one response in an experiment is more probable
than another or has a higher reward, the criterion for the
more probable or more rewarded response can be
decreased and the criterion for the other response
increased. Through such changes, the models predict the
regular ways in which accuracy rates and RTs vary with
instructions and with changes in the relative probabilities
of the two responses. Empirically, a shift from speed to
accuracy instructions results in slower and more accurate
responses, whereas a shift from accuracy to speed
instructions results in the converse (a phenomenon
known as ‘speed–accuracy tradeoff ’). In addition, when
relative response probabilities are varied experimentally,
high-probability responses are faster than low-probability
responses, but are more likely to be made in error. In both
cases, more of the change in RT comes from an increase in
the skew of the distribution than from a shift in its
location. These characteristics of the speed and accuracy of
simple decisions are among the most frequently replicated
findings in experimental psychology [23,43].

A crucial feature of current successful diffusion and
accumulator models is the assumption that the rate of
information accumulation, the starting values of the
accumulation process (or, equivalently, the response
criteria) and the duration of nondecision components of
RT all vary randomly from trial to trial [23,28,30,35,37].
Without such variability, the models are unable to predict

some characteristics of the data, such as the ordering of
mean RTs for correct responses and errors, or the shapes of
the leading edges of RT distributions.

Sequential-sampling models contrast with signal detec-
tion theory [44], which typically assumes that a decision is
based on a single sample of information. In sequential-
sampling models, noisy information is accumulated over
time under the assumption that multiple samples will
improve reliability and minimize the effects of internal
noise. In this assumption, they resemble the classical
sequential probability test of mathematical statistics [45]
and, indeed, somemodels have assumed that decisions are
made by computing a direct behavioral or neural analog of
this test [4,23,46,47]. Mathematically, this test is based on
likelihood and requires knowledge of distributions of
evidence that could only be estimated from thousands of
observations of a stimulus. It is therefore more plausible
that the nervous system implements an easily computable
approximation to this statistical ideal. When the distri-
butions of evidence are normal, a model that accumulates
samples of evidence directly is statistically equivalent to
one that accumulates their log-likelihood ratios [4,23].
However, in neither case can the orderings of mean RTs for
correct responses and errors be predicted without the
addition of further sources of variability.

Testing behavioral models
Behavioral research in psychology has identified several
key patterns of data that must be explained by any
plausible model for two-choice tasks. First, there are
systematic relationships between RT and accuracy; expla-
nation of these relationships requires a model capable of
producing errors [48,49]. Second, amodel must account for
the ordering of mean RTs for correct responses and errors
across experimental conditions – that is, across the values
of manipulated variables and across levels of accuracy
ranging from chance to near-perfect performance. The
model must explain the characteristic right-skewed shape
of RT distributions and the changes in shape that occur
across conditions. Third, a model must account for the
patterns of error versus correct RTs that occur empirically.
Correct responses are typically faster than errors in easy,
speed–stress conditions and typically slower in difficult,
accuracy–stress conditions [1,36,37]. All of these patterns
of data need to be explained together in a theoretically
principled way, through systematic and interpretable
changes in model parameters – that is, changes in the
means or variances of the components of processing
embodied in the model.

Figure 3 shows a fit of the Wiener diffusion model to
typical human data from an experiment in which the
discriminability of the stimuli and instructions to respond
rapidly or accurately were varied. The fits are shown in a
compact form that presents all of the RT distribution and
accuracy information in a single plot. The plot illustrates
graphically how RT distribution shape and response
accuracy vary as a function of experimental condition.
Decreasing stimulus discriminability increases error
rates and increases the means, standard deviations and
skew of the RT distributions. RTs are longer under
accuracy than speed instructions and the effects of
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Figure 2. Sequential-sampling models for two-choice decisions. (a) Taxonomy of the main model classes. The models assume that decisions are made by integrating noisy
stimulus information over time until a criterion amount of evidence needed for a response is obtained. In randomwalks, evidence is accumulated as a single total. Evidence

for a right response (‘R’) increases the total; evidence for a left response (‘L’) decreases it. A response is made when the evidence for one response exceeds the evidence for
the other by a criterion amount (a relative stopping rule). In accumulator models and counter models, evidence for the two responses is accumulated as separate totals.

The response is determined by the first total to reach a criterion (an absolute stopping rule). Models are classified according to whether evidence accumulates continuously
or at discrete time points, and whether the increments to the evidence totals are of variable size (continuously distributed) or occur in discrete units (e.g. counts). Random

walks in continuous time are diffusion processes. (b) Diffusion model. The sample paths represent moment-by-moment fluctuations in the evidence favoring right and left
responses. The process starts at z and accumulates evidence until it reaches one of two criteria, 0 and a. If the upper criterion is reached first, a ‘right’ response is made; if

the lower is reached first, a ‘left’ response is made. The moment-by-moment fluctuations in the sample paths reflect noise in the decision process. The mean rate of
accumulation varies randomly from trial to trial because of variability in the quality of the stimulus information. This variability allows the model to predict errors that are

slower than correct responses. Other behaviorally important sources of variability are the location of the starting point of the accumulation process and the duration of the
nondecision component of times for stimulus encoding and response execution (RT). The first of these sources of variability allows the model to predict errors that are
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changing discriminability on RT are larger. The model
provides a good account of the data, although it under-
estimates the range of accuracy values in the speed
conditions and overestimates the RT skew (tail quantiles)
in the accuracy conditions. The tail quantiles are esti-
mated with low accuracy empirically, especially for errors,
because of the sparseness of the data in the distribution
tails [50]. Themodel accounts for the data by allowing only
the rate of accumulation of information to vary with
stimulus discriminability, and only the response criteria to
vary with speed–accuracy instructions – a natural
correspondence of experimental effects and components

of processing for the model [30,37]. The leaky competing
accumulator model [40] provides a similarly good account
of these data and a similar correspondence of components
of processing to experimental effects [37].

Linking neurobiology and psychology
A model that seeks to link neurobiology and behavior
needs to relate three levels of analysis: the spike trains of
individual neurons, the statistical properties of the neural
ensemble, and behavioral data. A successful model would
simultaneously account for data on all three levels.
Whether decisions are based on single cells, small groups

Figure 3. Summary of response time (RT) and accuracy data from behavioral experiments. (a) Typically the mean, standard deviation and shape of the RT distribution all
vary with the experimental condition, as does the proportion of the two responses. With two stimuli, for the easy condition the proportion of correct responses is p and the
proportion of error responses is 12 p: For the more difficult condition, the proportions are q and 12 q: (b) Quantile probability plot of RT and accuracy data for two con-
ditions. Selected quantiles of the RT distribution are plotted against the probability of the response. The five quantiles used to construct the plots are the values of RT that
cut off 10%, 30%, 50%, 70% and 90% of the area under the RT density function. The quantiles provide a summary of the shape of the RT distributions and show how the
shape varies with stimulus difficulty. (c) Fits of the diffusion model to human data from the dot separation task (Figure 1d) for speed instructions (i) and accuracy instruc-
tions (ii). The plotted symbols are the empirical data; the continuous curves are fits of the model. The only model parameter that varies with dot separation is the accumu-
lation rate for near versus far responses; the only parameters that vary between instruction conditions are the decision criteria. The parameters of the model used to obtain
these fits are given in Ref. [37]. Model parameters estimated from data averaged over subjects show reasonable agreement with the average of parameters estimated from
individual subjects [39]. The leaky competing accumulator model (Figure 2) fits these data similarly well; other models do appreciably worse [37]. The pattern of stimulus
and instruction dependencies shown in (c) is representative of results from a variety of behavioral paradigms.
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faster than correct responses; the latter allows it to describe the shape of the leading edge of RT distributions. (c) Leaky competing accumulator model. Evidence for ‘right’
and ‘left’ responses is accumulated in separate totals, each modeled as a diffusion process, towards criteria a1 and a2.The two evidence totals decay in proportion to the
amount of evidence accumulated and they also mutually inhibit each other. The response with the greatest accumulated evidence inhibits the other response more strongly
than it itself is inhibited. If inhibition is removed, the model still predicts the shape of RT distributions correctly but is unable to predict fast errors unless variability in the
starting point is large or the starting points are variable and negatively correlated across trials. The latter provides an alternative to the within-trial inhibition between
accumulators required by the leaky competing accumulator model.
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of cells or populations of cells is an open question. Some
authors have reported that individual neurons predict
responses that match the accuracy of behavioral decisions
[51]. Others have computed that 7–14 neurons are
required [52] and others have suggested that behavior
depends on entire populations [53,54]. If the number
involved is of the order of a few hundred, then one might
expect the effects of noise within the system to be
negligible and neural processing to be essentially deter-
ministic. Models that assume deterministic information
accumulation have been proposed in both the neurobiolo-
gical and the psychological literatures [1,48,55] and it has
been proved mathematically that models of this kind can
be constructed post hoc that exactly predict any given pair
of correct and error RT distributions [56]. Whether such
models can account for the full set of RT distributions and
accuracy data from a range of experimental conditions
using a single set of parameters is not known. By contrast,
theWiener diffusion and the leaky competing accumulator
models can account for the effects of changing stimuli or
instructions using a single parameter for each.

However, deterministic or near-deterministic proces-
sing is not a necessary consequence of large populations
of neurons. The firing rates of individual neurons in the
same cortical region are weakly correlated (r < 0.15–0.2
[57,58]). Consequently, they do not function as statistically
independent sources of information and so variations in
individual firing rates are not eliminated by ensemble
averaging, which they would be in populations of
independent neurons [53,57]. Thus, population averages
of even several hundred neurons can contain significant
levels of noise, suggesting that stochastic models of the
decision process might be more appropriate than determi-
nistic ones.

Beyond questions about the number of cells on which
decisions are based are questions about how firing rates
combine. For example, to predict behavioral data, if the
decision is based on the aggregate difference between two
populations of neurons coding evidence for two response
alternatives, the accumulating evidence would be most
appropriately modeled as a diffusion process. Alterna-
tively, if the decision is based directly on the most active of
two populations, with some inhibitory interactions
between them, then it might be more appropriately
modeled as a leaky competing accumulator model [40].

Both these possibilities have been investigated in recent
attempts to model neural firing rates and behavioral data
jointly. Mazurek et al. [59] described a model for the
coherent-motion task (Figure 1d) in which evidence from
direction-sensitive neurons in MT is accumulated by two
pools of mutually inhibitory neurons in LIP. A decision is
made, as in the leaky competing accumulatormodel, by the
first of the accumulating totals to reach a response
criterion. This model was able to predict the LIP response,
mean RT for correct responses, and accuracy, but has not
yet been shown to predict RT distributions and error RTs.

In a similar vein, Ratcliff et al. [15] showed that the
diffusionmodel could account for behavioral RTs, accuracy
and activity in SC buildup neurons in the dot separation
task (Figure 1d). For decisions in the most difficult
stimulus condition, firing rates were divided into those

corresponding to the fastest, middle and slowest thirds of
the behavioral responses. The difference between firing
rates for movements to the receptive field of the target
response and the nontarget response (Figure 4) showed
delayed onset of discriminative information as a function
of the behavioral RTs. Ratcliff et al. fitted the diffusion
model (Figure 2b) to the behavioral data and then used the
parameters of the fitted model to generate 2000 simulated
decision paths. The means over simulations for the paths
of the fastest, middle, and slowest thirds of the responses
showed the same delayed onset of discrimination as the
firing-rate data. An alternative, accumulator, model could
not predict delayed discrimination in this way. In addition,
with an added assumption about decay of the decision
process back to its starting point after reaching a decision
criterion, the diffusion model predicted the entire time-
course of the discrimination functions in the firing-rate

Figure 4. Comparison of diffusion model predictions with differences in firing rates
for selected and nonselected stimuli. The monkey made a saccade to the left or to
the right in response to small or large vertical displacements of a central target
light (Figure 1d). (a) Average sample paths for the diffusion process for fast, inter-
mediate and slow responses to difficult stimuli, aligned on stimulus onset. The
paths were generated using the parameters of the diffusion model (Figure 2b) that
gave the best fits to the response time distributions and response probabilities in
the behavioral data. (b) Neural firing data. The black firing-rate functions are the
differences between cell activity when a saccade was made to the stimulus in the
receptive field of a cell and when a saccade was made to the alternative stimulus,
which was not in the receptive field. The green lines are the differences in position
between the paths for ‘large’ and ‘small’ responses obtained from (a). It was
assumed that once a process reached one of the decision criteria, it decayed expo-
nentially back to its starting point with a decay constant of 20 ms. Reproduced,
with permission, from Ref. [15]q (2003) by the American Physiological Society.
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data (Figure 4), but not individual target or nontarget
firing rates.

Concluding remarks
The picture that emerges from recent single-cell studies of
decision making in neuroscience is strikingly consistent
with the picture that emerges from behavioral studies of
decisionmaking in psychology. In both, decisions are made
by mechanisms that accumulate noisy information to a
response criterion. Such mechanisms have been inferred
from the results of behavioral experiments, but recent
single-cell studies have begun to provide complementary
evidence. Future theoretical progress in this area will
come from quantitative models that link RT distribution
and accuracy data in the behavioral domain to firing-rate
data in the neural domain, providing a step towards a
unified theory of the psychology and neurobiology of
simple decisions.
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