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Diffusion Tensor Imaging: Application to the Study
of the Developing Brain

CARISSA J. CASCIO, PH.D., GUIDO GERIG, PH.D., AND JOSEPH PIVEN, M.D.

ABSTRACT

Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the

developing brain in both healthy and clinical samples.Method: The development of DTI and its application to brain imaging

of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of the developing brain are

reviewed in the context of the structural magnetic resonance imaging literature. Reports of how brain diffusion properties are

affected in pediatric clinical samples and how they relate to cognitive and behavioral phenotypes are reviewed.Results:DTI

has been used successfully to describe white matter development in pediatric samples. Changes in white matter diffusion

properties are consistent across studies, with anisotropy increasing and overall diffusion decreasing with age. Diffusion

measures in relevant white matter regions correlate with behavioral measures in healthy children and in clinical pediatric

samples.Conclusions:DTI is an important tool for providing a more detailed picture of developing white matter than can be

obtainedwith conventionalmagnetic resonance imaging alone. J.Am.Acad.ChildAdolesc. Psychiatry, 2007;46(2):213Y223.
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Since the early 1990s,magnetic resonance imaging (MRI)
has been used to characterize brain structure throughout
development. Capitalizing on differences in contrast
between tissue types, MRI produces exquisite images in
which gray matter, white matter, and CSF are cast into
sharp relief. These images have been used to quantify the
size and describe the shape of whole brain, substructures,
and cortical areas in humans throughout the develop-
mental life span, frompremature neonates to older adults.

Considerable information about the gross anatomy of
the human brain throughout development has been
garnered from MRI. Changes in tissue volume, gyrus
and sulcus development, and time courses of the
maturation of cortical lobes and subcortical structures

have been described (for reviews, see Casey et al., 2000;
Durston et al., 2001; Inder and Huppi, 2000). In
contrast to gray matter, white matter volume appears to
continue to increase throughout childhood and adoles-
cence (Durston et al., 2001; Giedd et al., 1999).
However, the relationships between these gross anato-
mical changes and the changes in behavior and
cognition that they are thought to underlie have been
difficult to define clearly. In addition, during the first
year of life, the contrast of traditional MRI is unable to
accurately differentiate the still-myelinating white
matter from surrounding gray matter (Paus et al.,
2001). The focus of this review is diffusion tensor
imaging (DTI), an emerging technique that comple-
ments traditional MRI and is able to provide some of
this additional information about the developing brain.
Built on early work by LeBihan and Breton (1985), and
extended by Basser and colleagues (1994), DTI is a
nascent application of MRI that has the potential to
contribute a much richer understanding of brain white
matter structure than conventional MRI alone.

DTI METHOD

Method and Terminology

DTI relies on modified MRI techniques that render a
sensitivity to microscopic, three-dimensional water
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motion within the tissue. In CSF, this water motion is
isotropic. This means that the diffusion is roughly
equivalent in all directions (i.e., water diffuses freely). In
white matter, however, tissue water diffuses in a highly
directional, or anisotropic, manner (Fig. 1). Because of
the structure and insulation characteristic of myelinated
fiber bundles, water in these bundles is largely restricted
to diffusion along the axis of the bundle. DTI can thus
be used to identify and characterize these white matter
pathways and thereby to inform researchers about
properties of connecting pathways in the brain. These
pathways are the substrate for functional neural net-
works: information travels along these pathways from
one brain area to another. The ability to measure the
integrity of these Binformation highways[ using DTI is
an important breakthrough because it provides a link
between anatomical and functional neuroimaging.

Diffusion Properties

In general, DTI data are used to calculate two basic
properties: the overall amount of diffusion and the
anisotropy (directionality) of diffusion. Once acquired,
MR images are reconstructed into three-dimensional
grids composed of small, box-shaped units called voxels.
The properties of overall diffusion and anisotropy are
calculated at each voxel and can be mapped to illustrate
the differences in diffusion in each tissue type (Fig. 2).
High levels of overall diffusion are characteristic of
ventricles, in which CSF flows freely. If high diffusion
levels occur in whitematter, then it is indicative of poorly
developed, immature, or structurally compromised
white matter. High levels of anisotropy are considered
a reflection of coherently bundled, myelinated fibers

oriented along the axis of the greatest diffusion. Local
values for diffusion or anisotropy can be computed using
a small region of interest and brain regions compared by
contrasting values in two or more regions of interest. In
clinical studies, differences between two clinical groups
can be calculated by coregistering the images into the
same coordinate system and performing individual t tests
at each voxel, producing a map that displays all voxels for
which the groups differ significantly in anisotropy or
diffusion. Further detail on how diffusion and aniso-
tropy are calculated and extracted from DTI data is
beyond the scope of this review, but the authors refer
interested readers to two excellent reviews by LeBihan
et al. (2001) and Taylor et al. (2004).

DTI Applications: Three-Dimensional Representations
of Fiber Pathways

Anisotropy maps such as that shown in Figure 2B are
often analyzed by measuring values within a predeter-
mined region of interest, giving considerable information
about local white matter microstructure, but failing to
provide a global representation of white matter tracts.
Two methods of visualizing three-dimensional white
matter fiber pathways offer a more complete three-
dimensional neuroanatomical picture than anisotropy or
diffusion maps alone. The first uses color to illustrate
anisotropy, with diffusion direction in three-dimensional
space represented by hue and the magnitude of the
anisotropy representedby the intensity of the color (Fig. 3A).
The second, known as tractography, computes probable
trajectoriesofwhitematter fibersbetweenbrain regions.This
application involves calculation of streamlines between two
user-defined brain regions: a Bsource[ and a Btarget[ region
of interest. The streamlines are calculated through the vector

Fig. 1 Free (isotropic) (A) versus restricted (anisotropic) diffusion (B). (A)
In water, molecules diffuse freely without structural impediment, such as in
large fluid-filled spaces like ventricles. (B) A physical barrier to diffusion
forces water molecules along amore circumscribed path. In the brain, bundles
of axons encased in myelin form physical barriers that have this effect.

Fig. 2 Maps of diffusion anisotropy (A) and overall diffusion (B). Bright
voxels indicate higher values; thus, bright voxels indicate high anisotropy
characteristic of white matter (A), and bright ventricles represent high overall
diffusion characteristic of cerebrospinal fluid (B).
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field of largest eigenvectors (the elements of the matrix
that define diffusion in three-dimensional space) or through
the tensor field itself. These streamlines are then displayed
as tubelike Bfibers.[ The result is a virtual representation
of fiber tracts (Fig. 3B, C); it is important to note that
these are not axons but a local measurement of diffusion
properties at the voxel scale. These types of images offer
the advantage of a more intuitive representation of white
matter than the anisotropy and diffusion maps, but have
the disadvantage of being difficult to evaluate quantita-
tively. This technique also poses difficulty in regions
where anisotropy values give ambiguous information,
such as regions where two or more tracts intersect, or near
terminal regions where tracts splay out to reach their
targets.

Although not without limitations, tractography has
been used to advance our knowledge about white matter
neuroanatomy and has been used to create virtual atlases
of fiber tracts in the adult brain (Catani et al, 2002;
Wakana et al., 2004). In addition, tractography has the
potential to verify and enhance our understanding of the
functional anatomy of brain structures. For example,
recent studies have produced connectivity-based sub-
divisions of the thalamus (Behrens et al., 2003), corpus
callosum (Cascio et al., in press), and medial frontal
cortex (Johansen-Berg et al., 2004).

DTI Applications: Pediatric Studies

Because it is a variant of conventionalMRI,DTI is safe
and noninvasive and does not require the degree of
subject cooperation that functional MRI (fMRI) does.

Thus, it can be used to study a variety of populations,
including clinical and pediatric populations. In addition,
it does not have the same limitations as conventional
MRI for differentiating between white and gray matter in
the very young brain. Although it is a relatively new
technique, DTI has already been vigorously applied to
the study of white matter development in childhood and
adolescence. The purpose of this review is to provide an
overview of DTI with specific attention to its application
to imaging both normal and aberrant white matter
development in the developing brain. To the best of our
knowledge, these findings have not been comprehen-
sively reviewed elsewhere. We begin with an overview of
what has been learned about white matter development
through DTI studies of healthy pediatric samples and
then go on to explore how DTI has informed our
understanding of white matter properties in clinical
pediatric samples. Forty-eight studies are reviewed, all of
which are listed in Tables 1 to 3. Studies were located
using the National Center for Biotechnology Informa-
tion PubMed database with the search terms Bdiffusion
tensor imaging,[ BDTI,[ Bpediatric,[ Bchildren,[ and
Btractography.[ Inclusion criteria were studies published
in peer-reviewed journals, studies that used a reasonably
well-established application of DTI (regional analysis of
diffusion properties or tractography), and developmen-
tally oriented studies whose samples included children
and/or adolescents. Although a variety of methodologies,
design, and approaches to sample selectionwere used, it is
beyond the scope of this article to provide a critical review
of each study. The challenges and limitations of DTI, as

Fig. 3 Fiber tract representation by color maps (A) and tractography (B, C). (A) The hue (red, green, or blue) represents the direction of the fiber pathways in the
three orthogonal directions of anatomical space (x, y, and z), and the brightness of each voxel represents the degree of anisotropy, and thus reflects the coherence of
the fiber bundles, which is strongest in the central regions of the tracts, and weaker at the termini. (B) The fibers are a representation of commissural bundles
traveling through the corpus callosum, with anisotropy values illustrated by color. Note the higher anisotropy (reds and yellows) near the center of the bundles,
and lower anisotropy (blue) near the terminal regions. (C) Fiber representations for more local, circumscribed tracts can be produced as well, as in the uncinate
fasciculi.
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TABLE 1
DTI Studies of General Development Including Development of Behavior and Cognition

Study (Age) Sample Description (no.) General Summary of Findings

Als et al., 2004 (GA 28Y33 wk) Preterm infants (30) j Anisotropy in internal capsule in group receiving a
developmental care program

Barnea-Goraly et al., 2005 (6Y19 y) Healthy (34) j Anisotropy with age in various cortical and subcortical areas
Beaulieu et al., 2005 (8Y13 yr) Diverse reading ability (32) Positive correlation of temporoparietal

WM anisotropy and reading ability
Ben Bashat et al., 2005 (4 moY23 y) Healthy (36) Compared diffusion imaging techniques

to detect developmental changes
Berman et al., 2005 (GA 28Y43 wk) preterm neonates (27) Used tractography and examined diffusion properties within

sensory and motor tracts; significant correlation with age
Boujraf et al., 2002 (2 dY1 y) Healthy (22) Diffusion properties in early development support

relationship between WM maturity and anisotropy
Counsell et al., 2003 (GA 25Y34 wk) Preterm infants (50) Used diffusion weighted imaging and found higher diffusion

values in infants with WM pathology
Deutsch et al., 2005 (7Y13 y) Diverse reading ability (14) Anisotropy in left temporoparietal

WM correlated with reading ability
Forbes et al., 2002 (BirthY1 y) Healthy (40) , Diffusion with age, different rates depending on region
Gilmore et al., 2004 (Neonates) Healthy (20) j Anisotropy with GA in genu and

splenium of corpus callosum
Hermoye et al., 2006 (0Y54 mo) Healthy brains (30) 3 Phases of anisotropy change,

rapid in year 1, slow in year 2
Huppi et al., 1998 (GA 25Y42 wk)

Preterm/term neonates (24)
, Diffusion and j anisotropy
toward term in central WM

Klingberg et al., 1999 (8Y12 y; 20Y31 y) Healthy (12) , Anisotropy in frontal WM in
children compared with adults

Maas et al., 2004 (GA 25Y27 wk) Preterm (2) Used diffusion properties to distinguish early
cerebral laminar organization

McGraw et al., 2002 (4 dY6 y) Healthy (66) j Anisotropy with age and with j compactness of WM
Mukherjee et al., 2001 (1 dY11 y) Healthy (153) Exponential , of diffusion with age, both linear

and nonlinear j of anisotropy, depending on region
Mukherjee et al., 2002 (GA 31 wkY11 y) Preterm neonates

and Healthy (167)
Compared diffusion data to those generated by a theoretical
model based on brain water content and myelination

Nagy et al., 2004 (8Y18 y) Healthy (23) Correlation of regional anisotropy with cognitive abilities
Neil et al., 1998 (Neonates) Healthy (22) j Diffusion and , anisotropy in neonates compared with adults;

diffusion , and anisotropy j with gestational age
Niogi andMcCandliss, 2006 (6.5Y10.3 y) Diverse reading ability (31) Correlation of left temporoparietal anisotropy with reading scores
Nomura et al., 1994 (NeonateYadult) Healthy (48) j Diffusion perpendicular to fibers in frontal and occipital

WM for neonates than other age groups
Partridge et al., 2004 (GA 28Y39 wk) Preterm neonates (50) , Diffusion and j anisotropy in earlier maturing than

later maturing tracts
Sakuma et al., 1991 (PretermYadult) Preterm/healthy (17) Changes in anisotropy with maturation
Schmithorst et al., 2002 (5Y18 y) Healthy (33) Negative correlation of diffusion with age throughout WM; positive

correlation of anisotropy with age in selected WM regions
Schmithorst et al., 2005 (5Y18 y) Healthy (47) Positive correlation of anisotropy with IQ in WM association areas
Schneider et al., 2004 (1 dY16 y) Healthy (52) Exponential diffusion , and anisotropy j with age; continuous

j in anisotropy in deep WM structures
Snook et al., 2005 (8Y12 y; 21Y27 y) Healthy (60) j Anisotropy in various structures with age
Suzuki et al., 2003 (1Y10 y; 18Y34 y) Healthy (16) Evaluated which tensor components contribute

most to j anisotropy seen with age
Zhang et al., 2005 (1 moY17 y) Healthy (30) Negative correlations between age and diffusion

in several brain regions

Note: DTI = diffusion tensor imaging; WM = white matter; GA = gestational age.
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well as advanced applications of the technique, are dis-
cussed in the context of their applicability to pediatric
studies.

DTI STUDIES

Developmental Perspective

Sakuma and colleagues (1991) reported that white
matter anisotropy increases with age in a sample ranging
from preterm infants to adults. This finding was
supported by subsequent demonstrations that aniso-
tropy increases (and overall diffusion decreases) with
gestational age in preterm infants (Huppi et al., 1998;
2001) and that anisotropy is lower and overall diffusion
higher in preterm infants than in full-term infants
(Counsell et al., 2003). Comparing DTI findings to
predictions from a theoretical model, Mukherjee and
colleagues (2002) demonstrated that these observations
at major white matter sites are consistent with decreased
water content and increased myelination with age. DTI
has also been successfully used in very premature infants
to distinguish early patterns of laminar organization in
the cerebrum (Maas et al., 2004).

In healthy, full-term neonates, Nomura and collea-
gues (1994) reported increasing anisotropy, but only up
to 6 months of age. A subsequent study of neonates by
Neil et al. (1998) reported a strong negative correlation
between overall diffusion and age for a variety of brain
regions, which was corroborated by Forbes and
colleagues (2002) for infants up to 1 year old. This
study made a significant contribution by describing
regional differences in the rates of diffusion decreases
throughout the first year. Other infant studies have
described increased anisotropy with age in specific
white matter structures (Boujraf et al., 2002; Gilmore
et al., 2004; McGraw et al., 2002). Many have reported
strong positive correlations between anisotropy mea-
sures in major white matter tracts and age throughout
childhood and into adolescence (Barnea-Goraly et al.,

2005; Ben Bashat et al., 2005; Mukherjee et al., 2001;
Schmithorst et al., 2002; Snook et al., 2005). Likewise,
studies focused on older children demonstrate a
negative correlation between overall diffusion and age
(Mukherjee et al., 2001; Schmithorst et al., 2002;
Snook et al., 2005; Zhang et al., 2005). Mukherjee and
colleagues measured a large sample of children and were
able to demonstrate regional differences in the rate of
change of diffusion. Although there is some question as
to how diffusion properties behave across the entire life
span (Salat et al., 2005), the literature is remarkably
consistent in affirming both the increase of anisotropy
and decrease of overall diffusion in white matter
structures with increasing age during childhood and
adolescence. This provides support for the assumption
that increased anisotropy and decreased diffusion are
representative of more mature white matter bundles.
This maturity is likely the result of a combination of
ongoing myelination and axonal pruning that act in
concert during development to reduce unrestricted
water content in extra-axonal space (Suzuki et al.,
2003). These changes increase the efficiency of
neuronal communication and provide a substrate for
healthy cognitive and behavioral development.
Although there is a clear consensus that anisotropy

increases and diffusion decreases with age, there are
conflicting data as to what trajectory those changes
follow during development. At what time in develop-
ment do diffusion properties change most dramatically?
Do they continue to change into adulthood? Although
the early study of Nomura et al. (1994) found few
differences between their child and adult groups and
concluded based on their sample that diffusion proper-
ties stabilize by 6months, Zhang et al. (2005) noted that
water diffusion continues to change dramatically
throughout the first 2 years of life. A study using a fast
DTI sequence on a large sample that ranged from
neonates to adolescents described the trajectory of
change in diffusion and anisotropy in various white

TABLE 2
Studies of Children With Primary Psychiatric Disorders

Study (Age) Sample Description (no.) General Summary of Findings

Ashtari et al., 2005 (7Y11 y) ADHD (33) , Anisotropy in frontal cortex, striatum, and cerebellum
Barnea-Goraly et al., 2004 (10Y18 y) Autism (16) , Anisotropy in frontal and temporal regions, corpus callosum
Filippi et al., 2003 (2Y8 y) Developmental delay (30) j Diffusion and , anisotropy in several WM tracts
Nagy et al., 2003 (11 y) Attention deficits/born preterm (10) , Anisotropy in posterior corpus callosum and internal capsule

Note: ADHD = attention-deficit/hyperactivity disorder; WM = white matter.
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matter structures (Schneider et al., 2004). Their
description is consistent with that of Zhang and
colleagues, showing the most dramatic changes within
the first 24 months of development and subtle changes
beyond that for most white matter areas. However,
both Klingberg et al. (1999) and Snook et al. (2005)
noted significantly lower regional white matter aniso-
tropy in children compared to adults. An interesting
validation of DTI as generating data that are consistent
with what is already known about the developmental
rate of various white matter tracts was provided in a
sample of preterm infants by Partridge et al. (2004). An
important step in advancing the clinical utility of DTI
for pediatric populations is to establish normative
standards, which was the goal of Hermoye and
colleagues (2006) in their characterization of DTI data
on 30 children. Their study describes three phases of

anisotropy evolution, marked by rapid changes in the
first 12months of development, slow changes during the
second year, and relative stability after age 2. This is
consistent with previous studies (Schneider et al., 2004;
Zhang et al., 2005).

Cognitive and Behavioral Correlates of DTI

How are diffusion measures related to behavior and
cognitive ability? Two studies have addressed cognitive
correlates of diffusion measures in healthy children.
Nagy et al. (2004) found that anisotropy in the temporal
lobe increased with working memory capacity, whereas
anisotropy in the frontal lobe increased specifically with
language ability in children. The following year,
Schmithorst and colleagues (2005) reported that aniso-
tropy in frontal and occipitoparietal association areas
were related to full-scale IQ in a sample of school-age

TABLE 3
Studies of Defined Genetic or Neurological Disorders

Study (Age) Sample Description (n) General Summary of Findings

Eastwood et al., 2001 (6Y12 y) Neurofibromatosis type 1 (40) j Diffusion in WM, both with and without lesions,
significantly higher in lesioned WM

Eichler et al., 2002 (7Y30 y) X-linked adrenoleukodystrophy (22) Strong + (anisotropy) and Y (diffusion)
correlations with spectroscopic measurements
of neuronal marker N-acetyl aspartate

Engelbrecht et al., 2002 (1 wkY8 y) WM diseases (57) Changes in WM diffusion and anisotropy
Glenn et al., 2003 (10 moY4 y) Congenital hemiparesis (8) , Anisotropy and slightly j diffusion in affected

pyramidal tract
Guo et al., 2001 (5 wkY3 y) Krabbe disease (16) , Anisotropy in several WM regions and basal ganglia;

patients treated with stem cell transplantation had
levels between untreated patients and controls

Hoon et al., 2002 (6 y) Periventricular leukomalacia (2) Qualitative reduction in corpus callosum,
corona radiata, and internal capsule fibers,
especially where connected to sensory cortex

Huppi et al., 2001 (GA 27Y31 wk) Preterm/perinatal brain injury (20) , Anisotropy in areas of injury
Barnea-Goraly et al., 2003a (12Y23 y) Fragile X (20) , Anisotropy in frontostriatal pathways
Barnea-Goraly et al., 2003b (7Y22 y) VCFS (38) , Anisotropy in frontal, parietal, and temporal cortex
Karadag et al., 2005 (2Y20 y) Tuberous sclerosis (14) j Diffusion in tubers than in corresponding areas

in controls; j diffusion and , anisotropy in tubers
than in contralateral WM

Khong et al., 2003 (3Y19 y) Medulloblastoma (18) , Anisotropy in various WM areas
Lee et al., 2003 (4 y) Brain injury (2) DTI revealed microstructural abnormalities that

conventional MRI did not
Peng et al., 2004 (5 moY15 y) Tuberous sclerosis (14) Different diffusion properties in tubers than in

unaffected brain areas and controls
Schneider et al., 2003 (9Y13 y) Adrenoleukodystrophy (10) j Diffusion and , anisotropy in all demyelinated areas,

as well as in some normal-appearing WM
Simon et al., 2005 (7Y14 y) DS22q11.2 (36) Combination of diffusion and volumetric

measures indicate morphological abnormality
of corpus callosum

Note: WM = white matter; VCFS = velocardiofacial syndrome; DTI = diffusion tensor imaging.
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children and adolescents. Three studies investigated
temporoparietal white matter in children with a range
of reading abilities (Beaulieu et al., 2005; Deutsch et al.,
2005; Niogi and McCandliss, 2006). All found sig-
nificant positive correlations between anisotropy in
temporoparietal white matter and scores on tests of
reading ability. The relationship between white matter
anisotropy and behavioral ability suggests that one should
expect changes in white matter properties in pediatric
populations for which cognitive, motor, or other abilities
are compromised. We review studies of this nature in the
next section.

Studies of Pediatric Psychopathology

Several studies have investigated white matter integ-
rity using DTI in samples of children with disorders that
are characterized or accompanied by a delay in
development. In 2003, Nagy and colleagues demon-
strated that a group of 11-year-olds with attention
deficit associated with preterm birth had lower aniso-
tropy values in the posterior corpus callosum and
internal capsule; a study of ADHD children by Ashtari
et al. (2005) found decreased anisotropy in a variety of
white matter regions, including several white matter
tracts in the motor system. A study of children with
generalized developmental delay by Fillipi et al. (2003)
revealed significantly higher diffusion and lower
anisotropy in the corona radiata, corpus callosum, and
frontal and parieto-occipital subcortical white matter.
Also associated with developmental delay, autism, and
fragile X syndrome were the subjects of preliminary
studies by Barnea-Goraly et al. (2003a; 2004). In
autism, reduced anisotropy was seen ubiquitously in
cortical white matter as well as in the corpus callosum.
In fragile X, low anisotropy was more limited to
frontostriatal white matter and parietal sensory tracts.
This is consistent with much of the psychopathology of
the disorder, particularly motor stereotypies and sensory
defensiveness. Another study by this group demon-
strated reduced anisotropy in the parietal, frontal, and
temporal lobes of children with velocardiofacial
syndrome, a disorder that affects cognition, particularly
arithmetic and visuospatial reasoning (Barnea-Goraly
et al., 2003b). In 22q11.2 deletion syndrome, which
encompasses velocardiofacial syndrome, Simon et al.
(2005) used DTI in combination with voxel-based
morphometry to reveal posterior displacement of the
corpus callosum.

Studies of Pediatric Neuropathology

Tuberous sclerosis is a disease that affects white
matter and is also associated with developmental delay.
Lesioned areas in the affected white matter of tuberous
sclerosis patients have higher apparent diffusion coeffi-
cient and lower anisotropy than contralateral, unaf-
fected white matter within patients as well as compared
with controls (Karadag et al., 2005; Peng et al., 2004).
Type 1 neurofibromatosis also affects white matter and
can result in cognitive challenges or learning disorders.
Children with type 1 neurofibromatosis exhibit higher
overall diffusion in white matter, both at the sites of
lesions and in white matter that appears unaffected by
the disease (Eastwood et al., 2001). Another disease that
affects white matter, X-linked adrenoleukodystrophy
(X-ALD), was approached with DTI by Eichler et al.
(2002). In their sample of adolescents with X-ALD,
anisotropy was found to be positively correlated (and
overall diffusion negatively correlated) with levels of
N-acetyl aspartate, a neuronal marker present in axons,
as measured by MR spectroscopy.

Tractography Studies

As mentioned above, although tractography pro-
vides an excellent qualitative representation of white
matter fibers, there is a limited amount of quantita-
tive information available from this application of the
technique. Hoon et al. (2002) used tractography in
two children with periventricular leukomalacia, a
disorder that includes deep white matter injury, most
likely resulting from perinatal insults. The authors
observed a reduced density of fibers in the posterior
corpus callosum, internal capsule, and corona radiata
in patients qualitatively compared with controls.
Current research is under way to determine how
best to analyze these fiber representations in a more
quantitative manner (Corouge et al., 2004, 2005),
and research groups are beginning to apply quanti-
tative analysis to the fiber tracts derived from
tractography (Berman et al., 2005). The most
informative approach is to measure anisotropy values
within the fiber tracts themselves. This method was
also used in a clinical study by Glenn and colleagues
(2003), who measured anisotropy and other diffusion
parameters in the pyramidal tracts of children with
congenital hemiparesis and compared them with
controls. Mori et al. (2002) also compared anisotropy
values within traced white matter bundles in an
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adolescent boy with X-ALD. Both studies demon-
strated reduced anisotropy within white matter tracts
in the patient populations. Using a similar approach,
Beaulieu et al. (2005) identified clusters of tempor-
oparietal white matter whose anisotropy values
increased with reading ability and then used tracto-
graphy overlaid on these clusters to specify which
white matter tracts were most important for reading.

ADVANTAGES OF DTI AS A SUPPLEMENT TO
CONVENTIONAL MRI IN PEDIATRIC IMAGING

DTI gives a deeper understanding of white matter
than conventional MRI alone. Although conventional
MRI is able to yield information on gray and white
matter volume and macrostructure, DTI gives an
indication of the microstructure of white matter. This
microstructural information provides information
about the integrity of the axonal fibers, the coherence
with which they are bundled, and thus a closer look at
their ability to function as efficient pathways for neural
information. The measurement of diffusion offers
important insights into the connectivity of the brain.
Like conventional MRI, DTI is noninvasive and thus is
relatively easily used in pediatric samples, allowing a
better characterization of how white matter develops in
childhood and adolescence.

Relevance to Behavior and Cognition

Studies that combined DTI with one or more
behavioral or cognitive measures were particularly useful
in elucidating the relationships between the integrity of
whitematter pathways and the development of behaviors
they are thought to subserve. For example, Nagy and
colleagues correlated anisotropy in the white matter of
the left frontal and temporal lobes withworkingmemory
and language abilities. This kind of approach helps to
validate the functional relevance of anisotropy measures
by confirming that they are associated with behavior in
brain regions that are consistent with established
findings in neuropsychological, electrophysiological,
and fMRI studies. A similar correlation was also
demonstrated by Beaulieu et al. (2005), Deutsch et al.,
(2005), and Niogi and McCandliss (2006) between
reading ability and temporoparietal white matter.
DTI provides an important complement to fMRI.

fMRI reveals gray matter areas that are metabolically
active during performance of a particular behavior or

cognitive task. One criticism of this technique is that it
can be considered Bmodern-day phrenology, assigning
functional roles to parcels of brain tissue with a limited
view of the brains powerful capacity to function as an
interactive network, integrating information across
several anatomical sites to produce behavior. The
combination of fMRI and DTI will provide important
insights into these types of neurobehavioral networks by
simultaneously revealing active gray matter areas and
the white matter pathways that connect them. This has
already been done in adults (Heller et al., 2005;
Shinoura et al., 2005). Because behavioral training
techniques make it increasingly possible to use fMRI to
study children (Chappell et al., 2005; Slifer et al.,
2002), this two-pronged approach can be used to study
how such neurobehavioral networks develop.

Application to Clinical Pediatric Samples

DTI can help to provide a better understanding of
pediatric neurological and psychiatric syndromes for
which neural tissue, particularly white matter, is
affected. Although our review of clinical pediatric
studies above was limited to populations for which
cognitive impairment or developmental delay is a
hallmark, there are also several studies of neurological
syndromes in which white matter development is
known to be abnormal. The authors of many of these
pediatric studies remarked that DTI revealed differences
that were not visible by conventional T1/T2 imaging
alone (Engelbrecht et al., 2002; Guo et al., 2001; Khong
et al., 2003; Lee et al., 2003; Schneider et al., 2003).
Guo et al. (2001) noted that DTI revealed differences
between treated and nontreated subsets of their clinical
group, which has exciting implications for the possibi-
lity of using DTI to monitor the brains response to
treatment in both clinical and research settings. This
possible application of DTI was also brought out by Als
et al. (2004), who used DTI to demonstrate develop-
mental changes in premature neonates in response to a
therapeutic intervention program.
In the clinical studies reviewed above, regional

differences in white matter anisotropy reflected the
relationships between the behavioral and/or cognitive
symptoms and the affected areas. For example, in the
Barnea-Goraly et al. (2003a) study of children with
fragile X syndrome, the frontrostriatal and parietal
sensorimotor tracts were the regions of greatest aniso-
tropy difference, reflecting the repetitive behaviors and
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unusual responses to sensory stimuli characteristic of
fragile X. This demonstrates the important role of DTI
in solidifying and expanding our understanding of
central pathways and their relationship to behavior in
both typical and atypical development. In both
neurological and psychiatric pediatric disorders, future
clinical studies could be improved by describing the
relationship of DTI measures to the severity of
behavioral, cognitive, and motor symptoms.

Limitations

Like other neuroimaging techniques, DTI is limited
by its dependence on the ability of the subject to remain
still in the scanner. For clinical studies, this problem can
sometimes be circumvented with sedation, but often
acquiring images free of motion artifact remains a
challenge, especially in children. One helpful advance
in DTI is the development of faster sequences that
minimize scan time. One such sequence was employed
by Schneider et al. (2004), allowing them to success-
fully scan a large number of children for their study.

Another limitation of DTI is its susceptibility to
artifact. Diffusion images are particularly vulnerable to
magnetic susceptibility artifact (Basser and Jones, 2002)
and can be noisy and of poor resolution relative to
structural MR images. These limitations are dealt with
by acquiringmultiple copies of each image, which allows
elimination of images that have too much artifact to
provide useful data and improves signal-to-noise ratio.

CONCLUSIONS

This review has reported that DTI can be successfully
used to describe white matter development in pediatric
samples. White matter tends to increase in anisotropy
and decrease in overall diffusion with age. Although
these developmental trends are extraordinarily consis-
tent across all studies that we reviewed, the trajectory of
these changes in anisotropy and diffusion in healthy
children has yet to be elucidated clearly. Diffusion
measures in relevant white matter regions of interest
correlate with behavioral measures, including cognitive
and motor abilities, both in healthy children and in
clinical pediatric samples. This helps to validate DTI
and to support previous studies describing relationships
between neural networks and behavior. Emerging
applications of DTI to pediatric neuroimaging include
further integration with behavioral and functional

neuroimaging techniques and the development of
quantitative analysis methods for tractography.

Disclosure: Dr. Gerig has a 1-year research contract with Eli Lilly that
is concerned with schizophrenic drug efficacy assessed by a longitudinal
neuroimaging study. The other authors have no financial relationships
to disclose.
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Delaying Second Births Among Adolescent Mothers: A Randomized, Controlled Trial of a Home-Based Mentoring Program
Maureen M. Black, PhD, Margaret E. Bentley, PhD, Mia A. Papas, PhD, Sarah Oberlander, MA, Laureen O. Teti, PhD, Scot McNary,
PhD, Katherine Le, MPH, Melissa O_Connell, MA

Context: Rates of rapid second births among low-income black adolescent mothers range from 20% to 50%. Most efforts to prevent rapid
second births have been unsuccessful. Objectives: There were 4 objectives: (1) to examine whether a home-based mentoring intervention
was effective in preventing second births within 2 years of the adolescent mother_s first delivery; (2) to examine whether greater
intervention participation increased the likelihood of preventing a second birth; (3) to examine whether second births were better
predicted from a risk practice perspective or a family formation perspective, based on information collected at delivery; and (4) to
examine how risk practices or family formation over the first 2 years of parenthood were related to a second birth.Design:We conducted a
randomized, controlled trial of a home-based intervention curriculum, based on social cognitive theory, and focused on interpersonal
negotiation skills, adolescent development, and parenting. The curriculum was delivered biweekly until the infant_s first birthday by
college-educated, black, single mothers who served as mentors, presenting themselves as Bbig sisters.[ The control group received usual
care. Follow-up evaluations were conducted in the homes 6, 13, and 24 months after recruitment. Methods: Participants were recruited
from urban hospitals at delivery and were 181 first time, black adolescent mothers (<18 years of age); 82% (149 of 181) completed the
24-month evaluation. Results: Intent-to-treat analyses revealed that control mothers were more likely than intervention mothers to have a
second infant. The complier average causal effect was used to account for variability in intervention participation. Having Q2 intervention
visits increased the odds of not having a second infant more than threefold. Only 1 mother who completed Q6 visits had a second infant.
At delivery of their first infant, mothers who had a second infant were slightly older (16.7 vs 16.2 years) and were more likely to have been
arrested (30% vs 14%). There were no differences in baseline contraceptive use or other measures of risk or family formation. At 24
months, mothers who had a second infant reported high self-esteem, positive life events, and romantic involvement and residence with
the first infant_s father. At 24 months, there were no differences in marital rates (2%), risk practices, or contraceptive use between
mothers who did and did not have a second infant. Mothers who did not have a second infant were marginally more likely to report no
plans for contraception in their next sexual contact compared with mothers who had a second infant (22% vs 8%, respectively).
Conclusions: A home-based intervention founded on a mentorship model and targeted toward adolescent development, including
negotiation skills, was effective in preventing rapid repeat births among low-income, black adolescent mothers. The effectiveness of the
intervention could be seen after only 2 visits and increased over time. There were no second births among mothers who attended Q8
sessions. There was no evidence that risk behavior or contraceptive use was related to rapid second births. There was some evidence that
rapid second births among adolescent mothers were regarded as desirable and as part of a move toward increasing autonomy and family
formation, thereby undermining intervention programs that focus on risk avoidance. Findings suggest the merits of a mentoring program
for low-income, black adolescent mothers, based on a relatively brief (6Y8 sessions) curriculum targeted toward adolescent development
and interpersonal negotiation skills. Pediatrics 2006;118:e1087Ye1099.
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