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A B S T R A C T

Learning and memory are supported by a network involving the medial temporal lobe and linked neocortical regions. Emerging evidence indicates that primary visual
cortex (i.e., V1) may contribute to recognition memory, but this has been tested only with a single visuospatial sequence as the target memorandum. The present study
used functional magnetic resonance imaging to investigate whether human V1 can support the learning of multiple, concurrent complex visual sequences involving
discontinous (second-order) associations. Two peripheral, goal-irrelevant but structured sequences of orientated gratings appeared simultaneously in fixed locations of
the right and left visual fields alongside a central, goal-relevant sequence that was in the focus of spatial attention. Pseudorandom sequences were introduced at
multiple intervals during the presentation of the three structured visual sequences to provide an online measure of sequence-specific knowledge at each retinotopic
location. We found that a network involving the precuneus and V1 was involved in learning the structured sequence presented at central fixation, whereas right V1
was modulated by repeated exposure to the concurrent structured sequence presented in the left visual field. The same result was not found in left V1. These results
indicate for the first time that human V1 can support the learning of multiple concurrent sequences involving complex discontinuous inter-item associations, even
peripheral sequences that are goal-irrelevant.
Introduction

Primary visual cortex (V1) is typically thought to carry out primitive
low-level visual computations and perceptual learning of low-level visual
features (Sasaki et al., 2010), but there is now emerging evidence that V1
can play a role in higher-order functions, such as the learning and
recognition of visuo-spatial sequences in humans (Rosenthal et al., 2016)
and in model organisms (Cooke et al., 2015; Gavornik and Bear, 2014).
Functional coupling between V1 and putative memory substrates has
been identified with non-conscious recognition memory (Rosenthal
et al., 2016), incidental statistical learning of visible items (Turk-Browne
et al., 2010), conscious recall of tone-grating pairs (Bosch et al., 2014),
and cue-action associations (Hindy et al., 2016). However, the factors
that modulate V1 activity during the learning of complex memoranda
remain to be systematically evaluated.

The aim of the present functional magnetic resonance imaging (fMRI)
study was to assess whether human V1 can support concurrent learning
and recognition of complex visual sequences presented at a goal-relevant
(attended) location and also at two peripheral, goal-irrelevant regions of
the visual field subtended by V1. Prior research has implicated V1 in
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learning and memory for single or simple visual sequences (Rosenthal
et al., 2016; Cooke et al., 2015; Gavornik and Bear, 2014). For instance, a
recent fMRI-study by Rosenthal et al. (2016) implicated V1 in the
learning of a single, goal-relevant non-conscious second-order condi-
tional visuospatial sequence of targets specified at four locations. This
study, however, could not address whether multiple concurrent,
goal-relevant and goal-irrelevant sequences can be encoded in V1. Also, it
is unknown whether or not higher-order learning effects for
goal-irrelevant sequences occur in retinotopic V1 areas. The present
study tackled these questions.

Our approach to understanding perceptual sequence learning at goal-
relevant and -irrelevant locations was to assess changes in hemodynamic
responses as a proxy for sequence-specific learning and performance on
offline behavioural tests of recognition memory performance for the
trained sequences. Importantly, however, any behavioural measures
collected in a task context in which the previously irrelevant peripheral
sequences are made goal-relevant may yield only noisy estimates of
newly acquired knowledge due to diminished transfer-appropriate pro-
cessing or the violation of encoding specificity (Tulving and Thomson,
1973; Morris et al., 1977; Mulligan and Lozito, 2006). Hence although
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we would not necessarily expect successful recognition memory for the
peripheral goal-irrelevant sequences, the hemodynamic response can
however provide an indirect yet dynamic measure of newly acquired
sequence knowledge as it unfolds during learning (Karuza et al., 2013;
McNealy et al., 2006; Rugg et al., 1998).

We thus investigated the brain responses in V1 associated with the
repeated presentation of a visual sequence presented at fixation and also
tested whether right and left V1 exhibited learning-related activity
associated with the repeated presentation of the peripheral, goal-
irrelevant, but structured, higher-order visual sequences in its corre-
sponding contralateral visual receptive fields. Evidence of V1 modulation
in either peripheral irrelevant location would be consistent with a model
of V1 at the interface between perception and memory functions, which
can operate independently of goal-directed strategic control factors.

Methods

Participants

Seventeen undergraduate students were recruited (mean age of 22
years; nine female). All participants gave informed written consent to
take part in accordance with the terms of approval granted by the local
research ethics committee and the principles expressed in the Declaration
of Helsinki, and were naive to the purpose of the experiment. All par-
ticipants reported normal or corrected-to-normal vision, and had no
history of neurological disease.

Experimental procedure

Participants underwent fMRI scanning as they viewed a visual display
on which three different visual sequences were presented. The sequence
presented at the center of the screen involved changes in the color of a
circle (white, light grey, dark grey, and black). The sequences presented
in the left and right visual fields involved changes in the orientation of a
grating (i.e., 0, 45, 90, or 135� from the vertical). Each sequence was
comprised of 12 stimuli following a second-order conditional (SOC) rule
(Reed and Johnson, 1994), whereby at the lowest structural level the
current stimulus is contingent on the two preceding stimuli. The se-
quences used were as follows: SOC1: 3 4 2 3 1 2 1 4 3 2 4 1; SOC2: 3 4 1 2
4 3 1 4 2 1 3 2; SOC3: 2 4 2 1 3 4 1 2 3 1 4 3, where 1 2 3 4 represents a
stimulus type. For instance, SOC1 comprises the following twelve
deterministic SOC triplets (i.e., the lowest structural unit): 342 423 231
312 121 214 143 432 324 241 413 134 - accordingly, the SOC context
(dependencies/determinacies) for 2 in the 3rd location is 3,4; for 3 in the
4th location, the SOC context is 4,2; for 2 in the 6th location, the SOC
context is 3,1; for 3 in the 9th location, it is 1,4; and, for 2 in the 10th
location, the SOC context is 4,3. Each of the SOC sequences appeared at a
fixed location across subjects (left: SOC1; center: SOC2, and right: SOC3).
Note that all sequences were equated in terms of all salient features that
are related to ease with which each sequence could be learned: namely,
simple frequency of positions, first-order transition frequency, reversal
frequency, rate of full coverage, and the number of second-order condi-
tional triplets.

Participants were instructed to discriminate the current color of the
central sequence by pressing one of four buttons. The central sequence
was goal-relevant and hence in the focus of attention. The peripheral
sequences were designated goal-irrelevant by instructing participant to
ignore the changes in the orientations of the gratings and respond only to
the color changes in the central sequence and not to respond to the ori-
entations of these peripheral sequences. The phase of the gratings was
varied independently of the sequences of orientations, and varied
randomly across trials to preclude neural adaptation effects of the phase
dimension. The three SOC sequences at each of the three locations were
presented on a loop, but were asynchronously interspersed with the
presentation of the 12 element pseudorandom sequences. The serial
order of the items was pseudorandom, such that the same item did not
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appear consecutively (i.e., there was no immediate repetitions of a color
or grating orientation) and items appeared with equal frequency for each
orientation or color. Each pseudorandom sequence was unique for each
of the 3 runs and for each sequence at each location.

In line with prior studies in sequence learning, we elected to use a
pseudorandom sequence, instead of a non-trained second-order condi-
tional sequence on baseline blocks to facilitate learning of the three
target SOC sequences, as was the case in our prior study (Rosenthal et al.,
2016). In particular, we have found that presentation of novel
second-order conditional sequences as baseline blocks impairs the
learning of the target structured 12-item second-order conditional
sequence. Furthermore, many other notable human and infra-human
studies that have examined the brain bases of sequence learning have
similarly contrasted the learning of visible second-order conditional se-
quences with pseudorandom baseline blocks (Schendan et al., 2003;
Ergorul and Eichenbaum, 2006; Poldrack et al., 2005; Gheysen et al.,
2011).

Pseudorandom sequences were introduced at multiple intervals dur-
ing the presentation of the three SOC sequences, as depicted in Fig. 1.
Pseudorandom sequences were always repeated 4 times, hence
comprising 48 stimulus presentations or trials. Stimuli at all three loca-
tions were each presented for 1 s with an interval of 0.25 s between each
stimulus. The pseudorandom sequence appeared twice per run at
different times for each of the 3 sequences. The temporal position within
a run of each of the pseudorandom sequences was consistent across
participants. Fig. 1 (right panel) illustrates the structure of each of the 3
training runs. There were 672 trials on each of the three training runs and
each lasted for 14min.

Recognition memory test outside of the scanner

After training, the participants performed three recognition memory
tests outside of the scanner, one for each of the three 12-element second-
order conditional sequences presented at central fixation and left/right
positions of the visual field. The order of the tests was counterbalanced
across participants. On each trial of the recognition test, participants
were shown either an old or a new sequence which served as a recog-
nition cue (each comprised of 6-element (item) sequences). Twelve 6-
element sequences were generated from each SOC. Each 6-element
sequence based retrieval cue was generated by starting from a different
ordinal position of the 12-element SOC sequence for six consecutive
locations.

Old sequences corresponded structured sequences presented during
the training phase inside the scanner. As an example, the left SOC
sequence during training was presented in the left visual field during the
recognition memory test and the cues based on the trained ’old’ se-
quences were interspersed with new sequences. New sequences were also
based on a SOC rule, but had not been presented to the participant during
the training phase. The participant was asked to indicate whether each of
the six-element sequences presented on each trial was ’old’ or ’new’.
Then, participants indicated the confidence in their response (from 1-
guess; 2-fairly confident; 3-sure). Participants were allowed to simulate
the motor responses given during training when viewing the central se-
quences during the recognition test.

Receiver-operating-characteristic (ROC) analyses were used to derive
measures of type-1 sensitivity (i.e., ability to distinguish old/new se-
quences) and type-2 sensitivity (i.e., how confidence relates to memory
accuracy). For the type-1 analyses, the ’signal’ and ’noise’ were defined
as old and new retrieval cues, respectively. A 0hit’ was, therefore, a
correct response (’old’) to an old trained (six-element sequence) retrieval
cue and a ’correct rejection’ was a correct response (’new’) to a new
untrained (six-element sequence) retrieval cue. A 0false alarm’ was an
incorrect response (’old’) to a new retrieval cue and a ’miss' was an
incorrect response (’new’) to an old retrieval. To obtain the type-1 ROC
curves, we plotted the probability of hits as a function of the probability
of false alarms for all possible decision criteria. The different points in the



Fig. 1. Illustration of the sequence training pro-
tocol inside the MRI scanner. The right panel in-
dicates the structure of each of the 3 training runs
(S: for the structured visual second-order condi-
tional sequence; R: for pseudorandom sequence
blocks, comprised of 48 trials each). The top row
corresponds to the left sequence, the middle to
the central sequence and the bottom row within
each run corresponds to the right sequence. Note
that each of the pseudorandom sequences were
presented asynchronously across the three se-
quences and scanning runs.
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ROC curve were obtained by calculating cumulative probabilities for hits
and false alarms along a recoded confidence continuum ranging from 3
(i.e., certain) to 1 (i.e., least certain) in signal present trials (old retrieval
cues), and from 3 (i.e., certain) to 1 (i.e., least certain) in noise trials (new
retrieval cues). On the basis of simple geometry, we computed the area
under the ROC curve as a distribution-free measure of the discrimina-
bility. For the type-2 sensitivity analyses, the area under the ROC curve
was calculated by plotting the cumulative probability of correct re-
sponses (either hit or correct rejection) and the cumulative probability of
incorrect responses (either false alarm or miss) across the different levels
of confidence. The area under the ROC curve was estimated as
distribution-free measure of metacognitive ability (Fleming et al., 2010;
Kornbrot, 2006). Data processing and analyses were performed in R
(version 3.2.2).
MRI data acquisition

MRI scanning was performed in a Siemens Avanto 1.5 T MRI scanner
using a receive-only 32-channel head coil and body transmit. A screen
was mounted at the end of the scanner bore and visual stimuli were
projected onto it from the console room through a wave guide. Partici-
pants viewed the screen using a 45 deg mirror. Functional volumes for
both the training phase, functional localiser, and retinotopy consisted of
multi-slice T2*-weighted echoplanar images (EPI) with blood oxygena-
tion level dependent (BOLD) contrast and a multiband acceleration factor
of 4. We used the following scanning parameters to achieve whole brain
coverage: TR ¼ 1000 ms, TE ¼ 54.8 ms, 40 coronal slices, 3.2 mm slice
thickness, no interslice gap, and FoV¼ 205� 205 mm (3.2 � 3.2 mm in-
plane voxels). There were 844 whole-brain scans per training run. To
facilitate anatomical localization and cross-participant alignment, a high-
resolution 1x1x1mmwhole-brain structural T1-weighted, magnetization
prepared rapid gradient echo (MP-RAGE) scan was acquired for each
participant (FOV ¼ 256 � 224 mm, 176 partitions, TR ¼ 8.4 ms,
TE ¼ 3.57 ms, TI ¼ 1000 ms, inversion spacing ¼ 2730 ms,
BW ¼ 190 Hz/pixel).
Functional MRI preprocessing

We used FEAT (fMRI Expert Analysis Tool) Version 6.0, as part of FSL
(www.fmrib.ox.ac.uk/fsl). The first 10 EPI volumes were removed to
account for T1 equilibrium effects. Non-brain removal was performed
using Brain Extraction Tool. Volume realigment of functional scans was
carried out using FMRIB's Linear Image Registration Tool MCFLIRT.
Scans were realigned relative to the middle scan. We applied a 50 s high-
pass temporal filtering to remove low frequency noise, and spatial
smoothing using a FWHM Gaussian kernel of 6 mm.
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Retinotopic mapping

Retinotopic mapping was performed to identify right and left human
V1 in each participant. We used standard phase-encoded polar angle
retinotopic mapping (Sereno et al., 1995). Participants fixated centrally
while viewing a clockwise or counterclockwise rotating pie-shaped
’wedge’ with a polar eccentricity. The duration of the scan was 8min
32 s (512 vol). Fourier methods were applied to obtain polar angle maps
of the cortex and delineate the borders of right and left V1.

Functional localiser

A functional localiser scan was conducted in all participants and
involved the presentation of items that were flashed at the same three
different locations. A block design was used. At each location, there were
24 presentations of gratings (each 250ms in duration, with a 250ms
inter-grating interval) in pseudorandom orientations. Following each
block, there was a rest period of 12 s. The phase of the gratings was varied
randomly across trials. We obtained contrasts of parameter estimates of
brain responses to the spatial position of the peripheral sequences
(left> right and right> left positions).

The parameter estimates from the localiser were used to define
another mask comprising the voxels in the V1 retinotopic masks that
responded to the position of the gratings during the training phase (e.g.,
define the voxels within the right V1 mask that showed a response to the
left-side position of the gratings and likewise for left V1). This area in V1
was delineated by finding the intersection between the V1 retinotopy and
the functional localiser maps using fslmaths -mas tool. Hence, we isolated
the area of V1 that was most selective of the location of the right and left
sequences. We initially derived masks comprising the 10 most responsive
voxels and repeated the procedure considering the 5, 20 and 40 most
responsive voxels to further assess the reliability of the results.

MRI statistical analyses

Time-series statistical analyses were conducted using FILM (FMRIB's
Improved Linear Model) with local autocorrelation correction. The data
were analyzed using voxelwise time series analysis within the framework
of the general linear model. A design matrix was generated in which each
individual presentation of a grating was modeled with a double-gamma
hemodynamic response function. Explanatory regressors were created
for each of the structured and pseudorandom sequences. Standard mo-
tion realignment parameters were included in each individual subject's
general linear model as nuisance regressors. We included further
nuisance regressors for those volumes corresponding to motion outliers
using the FSL motion outliers function. The root mean squared (RSM)
head position difference to the reference volume was used as a metric to
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detect fMRI timepoints corrupted by large motion. The threshold was set
to the FSL default, namely, the 75 percentile þ1.5 inter quartile range of
the distribution of RSM values of each run. A confound matrix was
generated and used in the GLM to completely remove the effects of these
timepoints on the analysis. This is intended to deal with the effects of
intermediate to large motions, which corrupt images beyond anything
that the linear motion parameter regression methods can fix.

Sequence blocks were modeled in chunks of 48 trials in order to
contrast activity between structured and pseudorandom baseline blocks
(S and R in Fig. 1); in particular, each sequence block of 48 trials was a
multiple of the 12-element unit of SOC sequence that allowed the number
of trials to be equated with the pseudorandom blocks, as per our prior
study (Rosenthal et al., 2016).

For the analysis of the central sequence, we first derived contrasts of
parameter estimates between the structured relative to the pseudo-
random sequences (S< R) within each run. S<R contrasts of parameter
estimates were obtained as follows. First, we compared the first central
pseudorandom sequence block in a run with the preceding structured
central sequences that were not flanked by random sequences in the right
and left visual fields (e.g., see Fig. 1). Therefore, the two structured
blocks preceding the first central pseudorandom were not considered in
the S< R contrasts. Instead, we selected the preceding structured block
(i.e., the third one preceding the first central pseudorandom sequence,
see Fig. 1). This was done to exclude the possibility that BOLD responses
to the critical central structured sequence were counfounded by hemo-
dynamic responses changes from the peripheral pseudorandom sequence
presented concurrently. Second, we also derived contrasts of parameter
estimates by comparing the structured block of 48 trials that immediately
preceded the first pseudorandom block on each of the three runs. The
results obtained from these two analysis strategies were similar.

Following the computation of within-run contrasts of parameter es-
timates (S< R), we performed across-run within-subject (fixed-effects)
analyses using lower level parameter estimates to test for a linear training
effects across the 3 runs (e.g., �1 0 1) and likewise exponential training
effects (e.g., -2 -0.5 2.5). Finally, the parameter estimates from these
linear and exponential contrasts across the three learning runs were
converted to the standard MNI 2mm template with linear trans-
formation, and passed to a higher-level across subjects one-sample t-test
to assess brain regions consistent across participants that were associated
with increased training effects in the structured relative to the pseudo-
random sequence, using FLAME (Local Analysis of Mixed Effect). Sta-
tistical maps were thresholded using clusters determined by Z> 2.3 and a
corrected cluster extent significance threshold of p¼ 0.05, using
Gaussian Random Field Theory. Across participants one-sample t-tests
were also performed separately on each of the 3 runs to assess S< R brain
activity differences on each run. These considerations applied also to the
psychophysiological interaction (PPI) analyses described below.

We also used non-parametric permutation-based one-sample t-tests to
further assess the statistical significance of the results. The FSL Ran-
domise program was used (Winkler et al., 2014) with threshold-free
cluster enhancement (TFCE). TFCE is a method that enhances values
within cluster-like structures, while preserving voxel-level inference
(Smith and Nichols, 2009). We performed 6mm smoothing of the vari-
ance which is typically included to increase study power when sample
sizes are lower than 20 in non-parametric testing (Nichols and Holmes,
2002).

For the analysis of the peripheral right and left sequences, we adopted
the following approach. Parameter estimates were derived in native
functional space for each structured and pseudorandom sequence block
(Fig. 1) and for each training run and participant. We then used the V1
masks obtained from the retinotopy and the functional localiser to extract
the parameter estimates of V1 activity across the training phase, sepa-
rately for the right and left V1 masks. For each run, we then performed
paired-sample t-tests comparing V1 activity estimates in the first pseu-
dorandom sequence and the inmediately preceding structured sequence.

Percent signal changes were calculated for visualization of the time
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course of the learning effects using the following formula (Mumford,
2007): [contrast image/(mean of run)] * scaling factor * 100, where the
scaling factor ¼ (baseline-to-max range)/(contrast fix).

Psychophysiological interaction (PPI) analyses

A seed-voxel PPI based approach was used to identify signals of in-
terest that would be missed in standard subtraction based analyses
(O’Reilly et al., 2012). A 6mm radius posterior cingulate/precuneus
mask was drawn and based on the peak voxels of the posterior cingula-
te/precuneus that showed effects of training. This mask was used to
define the seed region's time course for the PPI analyses. The aim was to
assess whether the temporal correlation between posterior precuneus
and V1 was modulated during the learning of the goal-relevant, sec-
ond-order conditional sequence.

We then estimated a model for each participant that included the
same psychological regressors as outlined above, for the onsets of each
sequence, and, critically, for the PPI model, a physiological regressor for
the time course of the region-of-interest, and psychologi-
cal� physiological interaction regressors for the PPI. These new re-
gressors were, therefore, added to the previous first-level model for each
participant/run. Parameter estimates for structured versus pseudo-
random conditions based on the PPI regressors were derived in a similar
fashion to the analyses outlined above (i.e., using both fixed-effects
analysis across runs followed by mixed-effects analysis across partici-
pants), which, here, directly compared the changes in functional
coupling associated with training. Given our a priori interests in V1
(Rosenthal et al., 2016), the higher-level analyses (across subjects) were
performed using a region-of-interest approach, with a target occipital
mask in standard space derived from the FSL Harvard-Oxford Atlas.

Results

Behavioural performance during training

We assessed the response time (RT) and the accuracy of manual re-
sponses to each item color of the central sequence as a function of the
nature of the sequence (structured vs pseudorandom). Overall, the results
indicate that the repeated exposure to the deterministic discontinuous
associations of the structured sequences affected somatomotor perfor-
mance relative to each novel pseudorandom sequence. We conducted an
ANOVA on the manual RTs with run (1,2,3) and sequence type (S,R) as
factors. We compared the first R sequence and the preceding S sequence
of each run. There was no main effect of run on RTs (F(2,32)¼ 1.95,
p¼ 0.159). The main effect of sequence type was significant
(F(2,32)¼ 11.67, p¼ 0.004), with slower performance on R relative to S
sequence; however, this effect did not interact with run (F(2,32 )¼ 0.61,
p¼ 0.551). The accuracy data showed a consonant pattern with the RTs.
There was no main effect of run on accuracy (F(2,32)¼ 0.18, p¼ 0.838).
The main effect of sequence type was significant (F(2,32)¼ 14.91,
p¼ 0.001), with impaired accuracy on R relative to S sequence blocks;
however, this effect did not interact with run (F(2,32)¼ 2.29, p¼ 0.118).
Fig. 2 illustrates these significant results. Taken together, these results
indicate that the statistical structure of the central goal-relevant sequence
was learned.

Recognition memory performance outside the scanner

Following the fMRI training task, a surprise recognition test was
administered to test the memory of participants for each of the 3 se-
quences. To derive sensitivity measures of recognition performance, we
computed the area under the type-1 ROC for ’old’/’new’ discrimination.
For the sequence presented at central fixation, memory sensitivity was
marginally above chance (t(16)¼ 1.882, p¼ 0.078, mean¼ 0.565).
Type-2 sensitivity performance, namely, the extent to which confidence
ratings predicted the accuracy of the recognition response showed a



Fig. 2. Behavioural results of the learning phase collapsed across runs (A) Mean proportion of correct responses in S and R blocks (B) Mean RTs in S and R conditions.*
p < 0.05.
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similar trend (t(16)¼ 1.911, p¼ 0.074, mean¼ 0.544).
However, additional analyses of recognition performance based on

memory confidence evinced that old and new probes were processed
differently. Notably, participants were more confident in their responses
when judging old sequences relative to new sequences (t(16)¼ 2.27,
p¼ 0.036, mean confidence old¼ 1.93; mean new¼ 1.78), indicating
that confidence was diagnostic of the memory status (old/new) of the
sequences. The memory sensitivity and confidence results are presented
in Fig. 3.

Further results presented next indicated that participants were unable
to recognise either the left or the right sequences.

Analyses of the recognition test performance for the left sequence
showed that the areas under the type-1 and type-2 ROC were no different
from chance (t(16)¼ 0.54, p¼ 0.594, mean¼ 0.48 for type-1 ROC, and
t(16)¼ 0.35, p¼ 0.729, mean¼ 0.492 for type-2 ROC performance).
Moreover, the results showed that participants were nomore confident in
responding to old vs. new left sequences (t(16)¼ 1.04, p¼ 0.31, mean
confidence old¼ 1.59; mean new¼ 1.65).

There was also no evidence of recognition memory for the right
sequence. Type-1 and type-2 performance were no different from chance
(t(16)¼ 1.08, p¼ 0.298, mean¼ 0.48, and t(16)¼ 0.10, p¼ 0.92,
mean¼ 0.50). Participants confidence ratings did not discriminate be-
tween old and new left sequences (t(16)¼ 1.17, p¼ 0.261, mean confi-
dence old¼ 1.60; mean new¼ 1.54).

Nonetheless, additional analyses conducted for the peripheral se-
quences showed differences in the latency of responses to old versus new
recognition cues. Recognition reaction times (RTs) can provide a cogent
metric of newly acquired sequence-specific knowledge because the new
six-element cues differed only in terms of study status, having been
equated with the old six-element cues across all salient structural prop-
erties (Shanks et al., 2006). We computed a measure of recognition
performance based RT differences for recognition hits and correct re-
jections (Shanks et al., 2006). An ANOVA with sequence (left, right) and
sequence status (old, new) was conducted on the mean RT differences of
the correct responses for old and new probes. Results in this analysis from
one participant had to be discarded because he had no correct responses
to new items of the right sequences. There was a significant main effect of
the old/new status (F(1,15)¼ 16.6, p¼ 0.001) but no significant main
effect of the visual field of the sequence (F(1,15)¼ 0.46, p¼ 0.51) and no
interaction between the factors (F(1,15)¼ 1.78, p¼ 0.2). This indicates
Fig. 3. Behavioural results of the recognition test outside the scanner (A) Type-1 and
old and new sequences. * p < 0.05.
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the presence of sequence knowledge indexed by the recognition RTs for
left (mean old RT¼ 1.108s; mean new RT¼ 1.307s) and right sequences
(mean old RT¼ 1.059 s; mean new RT¼ 1.603 s).

fMRI results

A key question of the present study is whether the V1 is involved in
supporting the learning of complex deterministic discountinous associ-
ations when presented as structured peripheral goal-irrelevant sequences
of oriented gratings.

For the analysis of the central sequence, we computed statistical
contrasts of parameter estimates between structured (S) and pseudo-
random (R) sequences (i.e., comparing S<R) on each of the three
training runs (see Methods). This S< R contrast predicts an increased
response to the presentation of (novel) pseudorandom sequences relative
to the repeated representation of the structured sequence and this
contrast was motivated by our prior fMRI perceptual sequence learning
study (Rosenthal et al., 2016), and is in keeping with a plethora of evi-
dence for novelty effects in memory paradigms that are revealed by in-
creases in hemodynamic responses (Ranganath and Ritchey, 2012).

First, BOLD responses to the first R central sequence were compared
to a preceding structured sequence that was not flanked by pseudo-
random sequences (see Methods) in order to minimise the concern that
BOLD responses to the critical central structured sequence were coun-
founded by hemodynamic responses changes from the peripheral pseu-
dorandom sequences that were presented concurrently. We then tested
for linear and exponential effects of training on BOLD responses (e.g.,
increased differential S< R response in run 3 relative to run 1). Learning
the structure of the repeated sequence ought to be reflected in brain
activity changes across the training runs whenever a non-structured,
pseudorandom sequence was presented.

The analyses showed significant clusters in the posterior cingulate
gyrus (MNI 0–48 16, Z¼ 4.26), extending into the retrosplenial cortex,
and the posterior precuneus in the vicinity of intracalcarine sulcus, the
ventromedial prefrontal cortex (vmPFC) (MNI, 2 64 2, Z¼ 3.41). All of
these regions displayed significant linear and exponential changes in
activity across runs (Z> 2.3, p< 0.05, whole brain corrected using
cluster-based random-field theory with family wise error correction).

Second, we performed the same analyses by comparing the structured
sequence block immediately preceding a pseudorandom sequence block
type-2 memory sensitivity to old and new sequences (B) Memory confidence for
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at similar timepoint across the runs. The results obtained from this sec-
ond analysis were similar to the first except that activity in vmPFC did not
survive the threshold for statistical significance. Activity was restricted to
the posterior cingulate and posterior precuneus.

To examine further the effects of training, we performed group-
analyses separately for each of the three runs. On the basis of prior
studies of learning SOC sequences (Schendan et al., 2003; Albouy et al.,
2008), training effects were predicted to evident on the later third
training run. Differences between the structured and the pseudorandom
sequence blocks in run 1 and in run 2 did not survive the significance
threshold. Significant differences in the posterior cingulate, precuneus,
and vmPFC emerged only in run 3, and were evident in both linear and
exponential learning contrasts (p< 0.05, whole brain corrected and also
following non-parametric tests using threshold-free cluster enhacement).
We note that the behavioural expression of the learning effect related to
the central goal-relevant sequence both in manual RTs and response
accuracy followed a different time course from the learning effects found
in the brain responses. The former did not significantly increase across
the training runs, whereas learning effects on brain response were most
evident in the third training run. It is worth noting that sequence learning
effects may reflect a combination of response-response, stimulus-res-
ponse, and response-stimulus bindings (Ziessler and Nattkemper, 2001;
Ziessler, 1998), with each having a different time course; however, this
was not addressed in the present neuroimaging study.

Following prior reports that putative mnemonic regions (e.g., hip-
pocampus) show increased temporal correlation with V1 during memory
recall (Bosch et al., 2014) and implicit statistical learning of visible
stimuli (Turk-Browne et al., 2010), we conducted similar analyses
considering the posterior precuneus cluster that was observed during
learning, as this region is also a key node of the memory network
(Ranganath and Ritchey, 2012). This region has connections to higher
level visual areas (Margulies et al., 2009) and thus has access to V1 via
feedback projections.
Fig. 4. Top: Brain regions in the precuneus and ventromedial prefrontal cortex exhib
contrast across the three training runs (in yellow/orange, Z> 2.3, p< 0.05, whole-
obtained used a seed region within the posterior precuneus cluster (Z> 2.3, p< 0.05
responses in the posterior precuneus cluster during the training phase, as a function
illustrates significant BOLD signal change between structured and pseudorandom se
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The psychophysiological interaction (PPI) analysis was based on a
6mm seed mask centered on the posterior precuneus area identified in
the learning contrast (MNI 0–48 12) at the cluster peak in the S< R
contrast in run 3 reported above. This was used to define the seed region's
time course for the PPI. Given our a priori interest in primary visual
cortex, training effects across participants were assessed within a stan-
dardized occipital mask as target of the PPI.

We found a cluster of activity in V1, peaking within the intracalcarine
sulcus (MNI: 8–92 0, Z¼ 3.34), showing linear and exponential increases
in temporal correlation with posterior precuneus across the training runs
on structured relative to the pseudorandom sequences (see Fig. 4). This
result was observed in the comparison between first pseudorandom
sequence block and the structured sequence immediately preceding it.
This suggests that learning a representation of the structured sequence
involves coupling between putative memory substrates and V1. For the
position of anatomically defined V1 in the intracalcarine sulcus, see
(Horton and Hoyt, 1991); also, the activity in the intracalcarine sulcus
and its vicinity coincides with probabilistic V1.

Right and left V1 were mapped using independent retinotopy and
functional localiser scans of each participant (see Methods). On the basis
that learning effects (S< R) for the central structured sequence were
expressed in the last training run, it was predicted that learning of the
peripheral sequences would be also evident in run 3.

Accordingly, the BOLD signal difference between structured and
pseudorandom sequences (S< R) in right V1 in the last training period
(run 3) was significantly different from chance (Fig. 5; t(16)¼ 2.48,
p¼ 0.0246, two-tailed paired t-test). Also, we conducted a repeated
measures ANOVA with run (1, 2, 3) as factor to test for linear and
quadratic trends in the learning effect (S<R for the left sequence) across
the runs. There was a significant quadratic trend in the learning effect for
right V1, showing that learning effects were expressed in run 3
(F(1,16)¼ 6.32, p< 0.023, Fig. 5). The linear trend was not significant
(F(1,16)¼ 1.39, p< 0.25). This pattern of results is consistent with the
ited linear changes in BOLD signal for the structured< pseudorandom sequence
brain corrected). The green areas in V1 indicate the results of the PPI analysis
, corrected for the occipital mask in blue shading). Bottom: Time course of the
of the structured (S) or pseudorandom (R) status of the sequences. The red *

quences in run 3.



Fig. 5. Right V1 responses as a function of the structured (S) or pseudorandom (R) status of the sequences on each of the three training runs. The red * illustrates
significant BOLD signal change between structured and pseudorandom sequences in run 3 (see text).

C.R. Rosenthal et al. NeuroImage 179 (2018) 215–224
non-linear learning effects observed for the central sequence. These re-
sults were consistent across a wide range of V1 masks. In particular, we
initially tested our hypothesis with masks that comprised the 10 most
responsive voxels to the location of the left sequence, as shown by the
combination of retinotopy and the functional localiser, and then verified
that the result held with masks containing 5, 20 and 40 most responsive
voxels. Fig. 5 illustrates the representative results from the 10 most
responsive voxels.

For left V1, there was no evidence of learning the structure of the
deterministic discontinuous associations of the structured sequence in
the predicted last training run (t(16)¼ 0.66, p¼ 0.518). A direct com-
parison of the S< R parameter estimates between left and right V1
indicated that the magnitude of the learning effect was higher in right
compared to left V1 (t¼ 2.532, p¼ 0.022, two-tailed paired t-test).
Neither the linear nor the quadratic learning trends across runs were
observed in the case of left V1 (F(1,16)¼0 .422, p< 0.525;
F(1,16)¼0 .829, p< 0.376).

Fig. 6 below illustrates these results.
Taken together, these results suggest that the left sequence, but not

the right, was encoded in right V1 responses during learning. Additional
analyses were conducted to assess whether learning-related activity
changes across runs for these peripheral sequences also occurred in
similar brain regions that were involved in learning the central sequence.
We found that an area in the posterior cingulate at MNI 0–62 32 showed
training-related changes in the S< R BOLD response associated with the
left visual sequence (p< 0.05, whole-brain corrected), but not the right
visual sequence. This area in the posterior cingulate overlapped with that
associated with learning the central sequence.

Relationship between BOLD responses during learning and subsequent
memory performance for the central sequence

It might be argued that the S< R contrast for the central goal-relevant
Fig. 6. Left V1 responses as a function of the structured (S) or pseudorandom (R) stat
BOLD signal differences between structured and pseudorandom sequences in any of
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sequences compares an easier with a more difficult task condition. In
particular, learning related activity was found in precuneus and vmPFC,
which are key nodes of the default mode network that can de-activate at
higher levels of task load Raichle et al. (2001). Here we report results
involving correlation analyses between across run learning-related ac-
tivity changes (S<R) in each of the three different clusters of the
network (posterior precuneus, posterior cingulate and ventromedial
prefrontal cortex -vmPFC) and subsequent memory performance (i.e., the
behavioural assays of newly acquired sequence-specific knowledge). We
reasoned that significant correlations would support the view that pre-
cuneus and vmPFC activity is, in fact, related to sequence-specific
learning rather than task difficulty.

There was a significant correlation between the learning related ac-
tivity changes in the posterior cingulate and subsequent type-1 memory
performance (r¼�0.668, p¼ 0.003) and a similar trend was found for
type-2 memory performance (r¼�0.48, p¼ 0.052). Learning related
activity in the precuneus also correlated with type-1 memory perfor-
mance (r¼�0.63, p¼ 0.006) but not type-2 memory performance
(r¼�0.35, p¼ 0.22). Finally, learning related activity in vmPFC
marginally correlated with type-1 memory performance (r¼�0.47,
p¼ 0.054) but no significant trend was found with type-2 memory per-
formance (r¼�0.25, p¼ 0.34). Similar analyses were carried out
considering the cluster in intracalcarine cortex (V1) that showed in-
creases connectivity with the precuneus during learning. Precuneus-V1
coupling did not correlate with type-1 memory behaviour (r¼ 0.01,
p¼ 0.94) and a non-significant negative correlation was found between
precuneus-V1 coupling and type-2 memory performance (r¼�0.41,
p¼ 0.096).

These correlations between posterior cingulate/precuneus and
memory performance were negative, meaning that a lower S<R BOLD
signal change during training correlated with higher recognition memory
performance. Similar pattern of results have been described previously,
namely for memory-related BOLD responses in the prefrontal cortex
us of the sequences on each of the three training runs. There was no evidence of
the runs (see text).
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(Grady et al., 2005) and precuneus during memory encoding (Miller
et al., 2008). Although the specific mechanism that may underlie this
association cannot be addressed by the present study, these correlations
between memory performance and BOLD responses favour an interpre-
tation in which the activity in posterior cingulate and precuneus related
to the learning of the central sequence rather than stemming from dif-
ferences in task difficulty between structured and pseudorandom blocks.
Also we note here that task difficulty can be operationalised in terms of
its effects on performance measures such as reaction time (RT) and/or
accuracy. Behavioural analyses showed no indication that the difference
in performance between structured and pseudorandom blocks was higher
in the last training run, whereas S< R BOLD signal change in posterior
cingulate/precuneus and vmPFC significantly increased with training
and was higher in the last training run. Therefore, it seems difficult to
argue that activity in these areas was associated with changes in task
difficulty.

Discussion

The results indicate that V1 operates as part of a network involving
the precuneus during the learning of goal-relevant visual sequences
involving discontinuous associations, which are within the focus of
spatial attention. The precuneus, posterior cingulate, and ventromedial
prefrontal cortex have been identified as part of a memory network
(Ranganath and Ritchey, 2012) that can be modulated by the temporal
structure of goal-relevant memoranda (Hasson et al., 2015), with
higher-order regions exhibiting sensitivity to increasingly longer tem-
poral structures.

This cluster of learning related activity in the posterior cingulate/
precuneus also extended into the retrosplenial cortex. This area is acti-
vated by spatial cognition tasks (Epstein, 2008), episodic memory de-
mands (Vann et al., 2009) and it has been also heavily implicated in both
spatial and object-based forms of contextual/predictive processing and
associative learning in scene perception, alongside the ventromedial
prefrontal cortex (Bar and Aminoff, 2003; Bar, 2004). V1 coupling with
posterior precuneus during repeated exposure to the structured se-
quences is consonant with a mnemonic feedback signal from
higher-order brain regions involved in contextual/predictive processing
(Rao and Ballard, 1999; Alink et al., 2010).

In addition to the contribution of V1 to encoding the central attended
sequence, the results revealed that retinotopic V1 areas can also support
the learning of the statistical regularities associated with goal-irrelevant
items presented at non-attended spatial positions. Note that performance
in the central attention task based on 4-color discrimination had to be
carried out at a fast pace and performance was not at ceiling (i.e., around
0.8 proportion correct). This means that the central task was challenging
enough to keep the focus of observers' attention engaged, and thus ob-
servers were very unlikely to spare attentional resources to process the
peripheral 12-element sequences. This is also indicated by the fact that
observers performed at chance in the direct tests of subsequent recog-
nition memory for the peripheral sequences. However, the indirect RT-
based recognition measures revealed differences between old and new
sequences. This suggests that participants may have acquired sequence-
specific knowledge for the peripheral sequences that could expressed
outside the original conditions of training, although it is likely that this
knowledge remained implicit given that observers could not discriminate
between old and new peripheral sequences using objective and subjec-
tive reports.

The present results go beyond a recent demonstration in which V1
was associated with learning of a single second-order conditional
sequence (Rosenthal et al., 2016); this study could not determine
whether V1 supports the learning of multiple co-ocurring sequences and
did not address whether learning occurred in retinotopic areas.
Furthermore, the learning effects in V1 in Rosenthal et al. were found
under conditions in which the elements of the sequence were
goal-relevant for a secondary counting test. Thus, the present results
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show for the first time that V1 can support learning of both goal-relevant
and -irrelevant visual sequences presented at retinotopic areas.

The results also indicate that spatial relational encoding is not
necessary for the concurrent learning of second-order conditional se-
quences in V1, in keeping with the study of Gavornik and Bear (2014),
which used a simpler and single visual sequence. Rosenthal et al.’s
(2016) study of non-conscious visual sequence learning employed a
single second-order conditional visuospatial sequence specified at four
locations. In the present study each of the 3 second-order conditional
sequences was presented at one location. Hence, sequence learning in
Rosenthal et al. was characterized by spatial relational encoding,
whereas object-based relational encoding at single locations defined the
present study. This may be relevant to the presence of basal ganglia ac-
tivity in Rosenthal et al. and its absence in the present study, since here
there was no need for allocentric/egocentric coding of visuo-spatial re-
lations within each sequence, which may be relevant for driving
sequence learning effects in the basal ganglia (Kermadi and Joseph,
1995).

Retinotopic activity in right V1 was associated with learning the SOC
sequence presented in the left visual field. However, there was no evi-
dence of analogous effects in left V1. It is possible that visual competition
amongst the three concurrent sequences reduced the overall processing
capacity of left and right V1 areas to encode the multiple co-ocurring
sequences, but there is no immediate reason to explain the preferential
role of right V1 activity to support sequence-specific learning alongside a
null sensitivity in left V1. Prior work has suggested the existence of lat-
eralised perceptual biases (Railo et al., 2011; Nicholls et al., 2005), in
which perceptual processing is biased towards the left side of space. If
such biases were operating here, then this could explain the preferential
engagement of right V1 for processing the left sequence. Another possi-
bility to explain the significant learning effect in right V1 and its apparent
absence in left V1 may be found by considering a model of visuospatial
hemispheric specialization (Kosslyn, 1987). This model proposes that the
right hemisphere supports object-oriented processing, which in the cur-
rent study would have included the serial dependencies between
sequence orientations. On the other hand, the model proposed by Kosslyn
(1987) argues that processing in the left hemisphere is more general and
less object-oriented. In line with this model, memory-based fMRI studies
showed that encoding-related activity during study of visual objects in
the right fusiform was associated with later remembering of precise
object-based relations, whereas left fusiform activity during encoding
predicted subsequent, non-specific recognition (Garoff et al., 2005).

The learning effects reported in this study are in keeping with recent
reports that V1 undergoes experience-dependent changes that support
higher-order mnemonic processes (Rosenthal et al., 2016; Ekman et al.,
2017; Cooke et al., 2015; Gavornik and Bear, 2014). Gavornik and Bear
(2014) reported response increases in V1 activity following the presen-
tation of simple visual sequences that were previously learned. This is in
contrast with the activity reduction in V1 seen for the learned sequences
in the present study. Notwithstanding, the present results are consistent
with our prior study based on learning a single masked visuospatial SOC
sequence (Rosenthal et al., 2016) and also with prior sequence learning
studies based on visible SOC sequences of stimuli presented at four lo-
cations (Schendan et al., 2003; Albouy et al., 2008). It is also largely
consistent with human neuroimaging studies of memory in which
old< new contrasts associated with recognition memory, cued recall,
and repetition priming are associated with reduced BOLD responses to
’old’ relative to ’new’ items (Okada et al., 2012). The sequences of
orientation gratings used by Gavornik and Bear (2014) involved simple
first-order associations, four elements in length that were presented
across several days of training. Hence, experience-dependent plasticity
changes under these conditions are likely to reflect the output of
post-learning consolidation mechanisms rather than rapid conjunctive
learning of 12-element discontinuous associations (i.e., separated by
time), acquired under conditions involving three discrete retinotopic
locations and a manipulation involving task relevance. In addition, direct
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comparisons across species and between the outcomes from chronic
recording of local field potentials restricted to mouse V1 and human fMRI
are challenging.

Our findings suggest that V1 processing is flexible enough to be
deployed even when attention is constrained by visual competition and
task-relevance factors. We also acknowledge the possibility that the
pseudorandom sequences captured attention since their onset violates
the predictability of the structured sequences. Accordingly, V1 activity
could have been mediated by attentional modulation. However, there is
at least one factor that argues against this possibility. In particular, the
central task imposed a high attentional load that likely reduced the
ability of the pseudorandom sequences to capture attention. Previous
studies have shown that a central attentional load impairs detection of
even simple visual stimuli (Lavie, 2005; Lavie et al., 2014). Note also
there were no overall differences in task demands between structured
and pseudorandom sequences, the stimuli that composed both sequence
types were equally familiar (the presence of discontinous SOC associa-
tions was the only attribute that distinguished structured from the
pseudorandom sequences), and, given that there was evidence of
retrieval success of the peripheral sequences evinced by differences in
manual RTs, we favour an interpretation where the S< R signal change
in V1 reflected the (en)coding of sequence-specific structural properties
of the SOC, which seems needed in order to trigger a ’novelty’ response
to the pseudorandom sequences.

Top-down processes related to attention (Kastner et al., 1999) and
predictive processing (Kok et al., 2012) are known to modulate V1
(Watanabe et al., 2011). However, our evidence identifying V1 with the
capacity to support the encoding complex knowledge at goal-irrelevant
peripheral locations is consistent with a recent observation indicating
that V1 can automatically ’preplay’ an expected sequence of events, even
when attentional resources are constrained (Ekman et al., 2017). Further
research will be needed to establish the extent to which complex learning
effects in V1 are mediated by local plasticity changes, and the extent of
the potential contribution of top-down feedback processes. However,
based on the observation that learning modulated retinotopic V1 for
peripheral items that were goal-irrelevant, whereas attentional resources
were exhausted by a central task load, we tentatively suggest that V1
local plasticity changes are likely to have played a role.

Finally, it is worth noting that the mnemonic feedback signals we
have observed in V1 may come from different laminae than feedforward
signals; experiments at higher spatial resolution will be needed to make
this determination.
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