
Abstract
We describe a comprehensive linear ap-

proach to the problem of imaging brain activity
with high temporal as well as spatial resolution
based on combining EEG and MEG data with
anatomical constraints derived from MRI im-
ages.  The “ inverse problem”  of estimating the
distribution of dipole strengths over the corti-
cal surface is highly underdetermined, even
given closely spaced EEG and MEG record-
ings.  We have obtained much better solutions
to this problem by explicitly incorporating both
local cortical orientation as well as spatial co-
variance of sources and sensors into our for-
mulation.

An explicit polygonal model of the corti-
cal manifold is first constructed as follows:  (1)
slice data in three orthogonal planes of section
(needle-shaped voxels) are combined with a
linear deblurring technique to make a single
high-resolution 3-D image (cubic voxels), (2)
the image is recursively flood-filled to deter-
mine the topology of the gray-white matter bor-
der, and (3) the resulting continuous surface is
refined by relaxing it against the original 3-D
gray-scale image using a deformable template
method, which is also used to computationally
flatten the cortex for easier viewing.  The ex-
plicit solution to an error minimization formu-
lation of an optimal inverse linear operator
(for a particular cortical manifold, sensor

placement, noise and prior source covariance)
gives rise to a compact expression that is prac-
tically computable for hundreds of sensors and
thousands of sources.  The inverse solution can
then be weighted for a particular (averaged)
event using the sensor covariance for that
event.  Model studies suggest that we may be
able to localize multiple cortical sources with
spatial resolution as good as PET with this
technique, while retaining a much more fine
grained picture of activity over time.

INTRODUCTION
Over the past few decades a variety of

techniques for non-invasively measuring brain
activity have been developed.  Each of these
techniques has important and unique advantag-
es, but also significant limitations.  For exam-
ple, the positron-emission tomography (PET)
technique using labeled water to detect blood
flow has good (~cm), uniform spatial resolu-
tion, but relatively poor (~10s of sec) temporal
resolution.  Several recently developed mag-
netic resonance imaging (MRI)  techniques—
measuring blood volume changes with a con-
trast agent (Belliveau et al., 1991) and measur-
ing hemoglobin oxygenation via its effects on
nearby water (Ogawa et al., 1992)—promise
somewhat better spatial and temporal resolu-
tion.  As with PET, however, the indirect con-
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nection between the neural activity and its mea-
sured metabolic consequences conceals the
fine (subsecond) structure of the underlying
neural events.

A widely used technique with better
(~msec) temporal resolution is electroencepha-
lography (EEG), which measures the potential
difference between various locations on the
scalp.   A number of interesting correlations be-
tween features of the measured waveforms and
various aspects of attention, memory, and lin-
guistic tasks have been discovered (see e.g.,
Luck et al., 1990; van Petten & Kutas, 1991;
Neville et al., 1991).  The temporal resolution
of this technique is essentially limited only by
the time scale of the biological processes pro-
ducing the potentials.  The spatial resolution,
however, is limited by several factors.  One
problem is that activity in a small region of the
brain—especially if it is located deep inside the
head—can produce potentials that are spread
rather widely across the scalp, strongly over-
lapping potentials produced by other sources.

Closely related to EEG is magnetoen-
cephalography (MEG), which measures minute
fluctuations in the magnetic field outside the
head using extremely sensitive (SQUID) sen-
sors (see e.g., Wood et al., 1985; Hari & Lou-
nasmaa, 1989; Pantev et al., 1990; Wood et al.,
1990).  The EEG and MEG are fundamentally
related through Maxwell’s equations to the dis-
tribution of dipole moment throughout the
brain and head and hence have similar temporal
resolution.  However, the MEG has the advan-
tage of being less affected by head inhomoge-
neities, and somewhat less smeared out spatial-
ly by skull impedance than the EEG.   On the
other hand, a weakness of the MEG is its rela-
tive insensitivity to deep or radially oriented
sources, making it effectively blind to certain
patterns of activity in the brain that would pro-
duce an observable EEG.

The so-called forward problem of calcu-
lating the electric and magnetic fields outside
the head, given the current distribution inside
head and the conductive properties of the head
and brain, is a well-defined problem of electro-
statics (Nunez, 1981).  By contrast, the so--

called inverse problem of finding the distribu-
tion of currents inside the head, based on elec-
tric and magnetic recordings outside the head,
is fundamentally ill-posed—that is, it has no
unique solution.  For any set of measurements
outside the head, there are infinitely many cur-
rent distributions inside the head that are com-
patible with those recordings.  Although com-
bining both electric and magnetic data about
the same event reduces the space of indistin-
guishable solutions, additional constraints are
needed in order to make the problem solution
unique in a principled way.  Additional con-
straints come from assumptions about likely
current source distributions and statistics, sen-
sor statistics, and information from other activ-
ity imaging techniques like PET or functional
MRI.

In the following we will present a single
framework for combining data from: (1) EEG
and MEG recordings (and PET or functional
MRI, if available), (2) cortical surface recon-
structions based on MRI images, (3) prior as-
sumptions about typical spatial distributions of
brain activity, and (4) information about cova-
riance of the sensors for a particular (averaged)
event.  Our primary goals are to retain a linear
approach, but constrain it so that the ill-posed-
ness of the inverse problem is greatly reduced.
A particularly insidious type of ill-posedness is
when sources cancel each other, leading to
equivalent solutions that are qualitatively very
different.  Our studies suggest that the ill-pos-
edness that remains is usually benign; nearby
sources may not be resolved, but the qualitative
structure of the solution is preserved.  By solv-
ing directly onto the cortical manifold, it is
much easier to assess and view solutions, espe-
cially after the cortex has been partially “ inflat-
ed”  (PET or functional MRI data by themselves
could also advantageously be viewed this way).

Several components of the current ap-
proach to the inverse problem have been con-
sidered individually by other authors (Nunez,
1981; Scherg, 1989; Ioannides, Bolton, & Clar-
ke, 1990; Smith et al., 1990; Wood et al., 1990;
Mosher, Lewis, & Leahy, 1992; George et al.,
in press; Greenblatt, personal communication).
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By integrating multiple constraints into a uni-
tary framework, however, we have been able to
obtain much better behaved solutions than
those obtained with any technique used by it-
self.  Model studies suggest that we may be
able to localize multiple cortical sources with
spatial resolution comparable to PET or func-
tional MRI while retaining a fine-grained pic-
ture of activity over time.

A LINEAR APPROACH TO THE IN-
VERSE PROBLEM

In the typical frequency range of neural
electric activity of less than a few hundred Hz,
the electric and magnetic fields of the brain can
be well accounted for by the quasi-static case of
Maxwell’s equations—that is, magnetic induc-
tion and capacitive effects are negligible (Nun-
ez, 1981).  As has been noted previously by nu-
merous authors, this results in a simple linear
relationship between the electric and magnetic
recordings, and the components of dipole mo-
ment at any location in the brain.  More precise-
ly, if we divide the brain volume into N/3 small
volume elements and approximate the local di-
pole moment within each volume element with
its decomposition onto three orthogonal com-
ponents, we get 

(1)

or in matrix form

(2)

where vi is the potential at the ith electrode rel-
ative to a point at infinity, and sj is the strength
of the jth dipole component. The ith row of the
E matrix specifies the lead field of the ith elec-
trode, i.e. how the potential at the ith electrode
varies with the strength of each dipole compo-
nent.  The sum in Equation 1 ranges over all
three dipole components of all volume ele-
ments.  Similarly, the jth column of E specifies
the gain vector for the jth dipole component, i.e.
how much the measurement at each electrode

vi ei jsj
j

N

∑=

v Es=

varies with the strength of the jth component.
The coefficients in E are in general complicat-
ed non-linear functions of the electrode loca-
tions, and the shape and electrical properties of
the head (see Appendix A).

For the magnetic recordings we have

(3)

or in matrix form

(4)

where mi is the component of the magnetic
field along the orientation of the ith magnetic
sensor.  The columns of the matrix B specify
the magnetic gain vector of each dipole compo-
nent.

Note that Equations 2 and 4 can be com-
bined into one equation expressing the linear
relationship between each dipole component
strength and the composite electric and mag-
netic recordings:

, where ,  (5)

More generally, if we assume some additive
noise at the sensors, we get, 

(6)

where n is a zero-mean random vector1.

Inverse Solution
The inverse problem can be stated as one

of  finding the distribution of dipole strength s
given recording data x.  Clearly, if the variance
of the noise is non-zero, there will exist no
well-defined solution to this problem.  Also,
since the rank of A is always less than or equal
to the number of sensors, there will exist infi-
nitely many indistinguishable solutions when-
ever the number of unknowns (dipole compo-
nents), exceeds the number of knowns (sensor
locations).  However, if a priori information
exists about the statistical distribution of dipole
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moment and sensor noise, the inverse problem
can be stated in terms of statistical estimation
theory.  In the linear case, this corresponds to
finding the linear operator that minimizes the
expected difference between the estimated and
the correct solution.  More specifically, the ex-
pected error ErrW can be defined as 

(7)

where W is a linear operator that maps a re-
cording vector x into an estimated solution vec-
tor .  If we assume that both the noise vector
n and the dipole strength vector s are normally
distributed with zero mean and covariance ma-
trices C and R, respectively, Equation 7 be-
comes

(8)

(9)

,   where    

(10)

(11)

(12)

This expression can be explicitly minimized by
taking the gradient, setting it to zero and solv-
ing for W.  This yields an optimal linear esti-
mator,

(13)

The expression for the optimal inverse
linear operator W given in (13) can be shown to
be equivalent to the so called minimum-norm
solution (Tikhonov & Arsenin, 1977; Ha-
malainen & Ilmoniemi, 1984), provided the co-
variance matrices C and R are proportional to
the identity matrix.  This corresponds to the as-
sumption that both the noise at each sensor and
the strength of each dipole are independent and

ErrW Wx s− 2〈 〉=

ŝ

ErrW W As n+( ) s− 2〈 〉=

WA I−( ) s Wn+ 2〈 〉=

M s Wn+ 2〈 〉=
M WA I−=

M s 2〈 〉= Wn 2〈 〉+

Tr M RMT( )= Tr WCWT( )+

W RAT ARAT C+( )
1−

=

of equal variance.  An advantage of the present
formulation is that any empirical observations
or reasonable assumptions about the second or-
der statistics of the sensor noise and the dipole
strengths can be explicitly incorporated to con-
strain the solution. 

It is also worth pointing out that evaluat-
ing W from Equation 13 only requires inver-
sion of a matrix square in the number of
knowns (sensors), rather than square in the
number of unknowns (dipole components).
This is important since the time required to in-
vert an N by N matrix is proportional to N3, and
the number of sensors will typically be much
smaller than the large number of dipole compo-
nents (~10,000) that are required to accurately
tile the cortical mantle (see below).  The only
potentially time consuming part of evaluating
W is the matrix multiplication with R, which in
the worst case will take time proportional to the
square of the number of dipole components.
However, if we conservatively make no a prio-
ri assumptions about long-range correlations,
then the R matrix will be very sparse, and  the
memory and time needed for calculating W
will increase more or less linearly with the
number of unknowns.

Error Prediction
An important advantage of the linear esti-

mation approach to the inverse problem is that
it is possible to quantify the influence of sensor
noise and activity of other dipoles on estimated
dipole strengths.  More precisely, the ith row of
the matrix  M = WA − I  specifies how much a
unit of dipole strength at each dipole location
would contribute to the estimation error of the
ith dipole.  Consequently, the expected squared
error of the strength of the ith dipole due to ac-
tivity of other dipoles is given by M iRM i

T,
where M i is the ith row of M , and R is the co-
variance matrix of the sources.  Similarly, the
ith row of the matrix W specifies how much a
unit of noise at each sensor contributes to the
estimation error of the ith dipole strength.  The
expected squared estimation error for the ith di-
pole due to noise is given by W iCW i

T, where
W i is the ith row of W and C is the covariance
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matrix of the noise.
Such expressions for the likely estimation

errors can be quite useful for quantifying confi-
dence intervals for hypothesis testing, as well
as for designing sensor configurations which
optimize the estimation accuracy in some re-
gion of interest.  Similar measures are difficult
to obtain for iterative non-linear approaches to
the inverse problem without explicit, computa-
tionally intractable searches for alternate solu-
tions.

CONSTRAINING THE INVERSE SOLU-
TION

The inclusion of electric and magnetic
data in a single formulation constrains the solu-
tion to the inverse problem since these two re-
cording techniques often yield complementary
information (see Model Studies below).  Nev-
ertheless, many equivalent solutions will re-
main, even in the presence of a single source,
and it is necessary to add additional constraints
in the form of a priori information about likely
solutions.  Ideally, we would like to avoid arbi-
trary a priori constraints—such as having to
decide how many source dipoles the solution
will contain (cf. Scherg, 1989).  In the follow-
ing, we describe how more biologically plausi-
ble constraints can be incorporated into the lin-
ear estimation approach outlined above.  Our
goal is to constrain our solutions while retain-
ing a relatively ’automatic’  procedure in which
the user is spared sensitive, yet arbitrary deci-
sions.

Using Anatomical Constraints
A crucial way to reduce the ambiguity of

the inverse problem is to incorporate anatomi-
cal constraints explicitly into the solution (see
also Wood et al., 1990; George et al., 1992).
We can consider in the forward solution only
those dipole locations and orientations that are
consistent with the anatomical data.      

A common assumption is that much of
the EEG and MEG observable at a distance is
produced by currents flowing in the apical den-
drites of cortical pyramidal cells.  Because of
the columnar organization of the cortex, the re-

sulting local dipole moment would be oriented
perpendicularly to the cortical surface.  Subdu-
ral and intracortical recordings of field poten-
tials at varying distances from an activated cor-
tical locus are consistent with this picture (see
e.g., Mitzdorf, 1987; Dagnelie, Spekreijse, &
van Dijk, 1989; Barth & Di, 1990), in general,
having revealed substantial vertical, but little
local horizontal variation in potential.  Thus, if
the shape of the cortical sheet is known, the lo-
cations and orientations of cortical sources can
be constrained by dividing the sheet into patch-
es that are sufficiently small so that a dipole in
the center of a patch accounts for any distribu-
tion of dipole moment within the patch.  The in-
verse problem then reduces to estimating the
scalar distribution of dipole strength over the
oriented cortical patches.  This should be com-
pared to unconstrained situation where we
would have to solve onto the orthogonal triples
of “ regional dipoles”  distributed throughout the
volume of the forebrain (see e.g., Smith et al.,
1990); for a given number of dipoles, the solu-
tion is not only less constrained, but much
coarser.

It is important to note that the EEG and
MEG may be generated by activity in subcorti-
cal structures.  In order to localize such activity
correctly, the model must include dipole com-
ponents in these locations as well as in cortical
ones.    Since subcortical sources are generally
located much further away from the EEG and
MEG sensors than are the cortical sources, the
discretization of these regions can be coarser.
Some of these structures are laminated and
contain cells with elongated dendrites perpen-
dicular to the laminae (e.g., the medial superior
olive).  In structures without clearly elongated
cellular morphology, one “ regional”  dipole tri-
ple in the center of each nucleus may be suffi-
cient to account for any distribution of current
flow within it.

Using the Assumed Source Covariance
Another useful type of constraint on the

inverse problem comes from a priori informa-
tion about correlation between the dipole
strength at different locations.  For instance, it
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is probably reasonable to assume that activities
in two neighboring patches of cortex are not
completely independent, but somewhat posi-
tively correlated.  If the correlation between
any two cortical patches is known, the prior
source covariance matrix R is given by

(14)

where σi
2 is the variance of the strength of the

ith dipole, and Corr(i,j)  is the correlation be-
tween the strengths of the ith and the jth dipoles.
The actual correlation of dipole strength as a
function of distance on the cortical surface
could be estimated by invasive recordings on
animals or human patients.  

Note that if the dipoles are assumed a pri-
ori  to be completely independent (Corr(i,j) = 0,
if i ≠ j), and have the same variance (σi

2 = σj
2),

then the method reduces exactly to the mini-
mum-norm approach mentioned above.

Using the Observed Sensor Covariance
Even after incorporating the constraints

described above, however, localized sources
still tend to be smeared out by the inverse solu-
tion.  Denser sensor arrays help for superficial
sources, but deep sources are often displaced to
the surface and spread over several gyri (see
Model Studies below).  An additional powerful
constraint on the inverse solution that we now
turn to comes from considering the entire time
course of the electric and magnetic recordings,
rather than just a single time point.

A commonly made assumption is that re-
cordings throughout an epoch are caused by ac-
tivity in a limited number of locations in the
brain, each represented by a single dipole with
fixed orientation.  For the sake of analysis, it is
useful to make the following additional as-
sumptions:  (1) the activity of each of the, say,
k locations is not completely correlated with
the activity in any of the other locations, (2) the
gain vectors of the active locations are linearly
independent, (3) the sensor noise is additive
and white with constant variance σ2, i.e. C =
σ2I .  The sensor covariance matrix

Ri j σiσjCor r i j,( )=

, (15)

(16)

where the summations range over all active di-
poles, has a singular value decomposition giv-
en by

(17)

,  (18)

The first k column vectors U1..Uk of U form an
orthonormal basis for the so-called signal sub-
space spanned by the k linearly independent
gain vectors for the active locations, and
Uk+1..UN form an orthonormal basis for the
so-called noise subspace, defined as the or-
thogonal complement of the signal subspace.
Each eigenvalue λi specifies the component of
sensor covariance in the direction of the corre-
sponding eigenvector.  

The noise subspace projection ηi of a gain
vector Ai, which can be written

  

, (19)

vanishes for true dipole locations.  It remains fi-
nite for locations whose gain vectors do not lie
entirely within the signal subspace.  The loca-
tions of the true dipoles can thus be estimated,

based on the peaks in a plot of    as a func-

tion of  location, which is essentially the idea
behind the MUSIC algorithm (Mosher, Lewis,
& Leahy, 1992).  

One limitation of this approach is that  it
requires a clear-cut separation between signal
space and noise space.  Since the eigenvalues of

D xxT〈 〉=

σ2I σiσjCor r i j,( ) A iA j
T

j
∑

i
∑+=

D UΛUT=

U1 … UN

λ1 0 0

0 … 0
0 0 λN

U1 … UN

T
=

η i

A i
T Uk 1+ … UN Uk 1+ … UN

T
A i

A i
TA i

=

1
η i
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the sensor covariance matrix typically decrease
more or less smoothly, the choice of eigenvalue
threshold is somewhat arbitrary.  One way to
avoid this problem is by using a more graded
notion of noise subspace and signal subspace.
For instance, by weighting the projection of the
gain vectors onto every eigenvector Ui of D by
the reciprocal of the corresponding eigenvalue
λi, a measure can be obtained which is large for
any gain vector which has a significant compo-
nent in a direction of low sensor covariance
(“noise subspace”  component), without requir-
ing an explicit eigenvalue threshold.  More pre-
cisely, a new measure ξi can be defined as

(20)

Note that ξi converges to ηi as  

and  .  

This measure can then be incorporated
into the linear estimation framework as some-
thing similar to an a priori variance estimate2

for the ith dipole as 

(21)

where f is a continuous, non-decreasing func-
tion.  As before, information about correlation
between dipole component strengths of neigh-
boring locations can be coded into the estimat-
ed source covariance matrix R by

(22)

Note that if the condition number of  D is
close to unity (i.e. all eigenvalues equal), then
all  Rii are also equal and this method essential-
ly reduces to the minimum-norm-like approach
discussed above.  However, if the largest and
smallest eigenvalues are significantly different,
as is usually the case, this method will assign
low a priori variance estimates to dipole com-
ponents with significant “noise-space”  projec-

ξ i

A i
TUΛ 1− UTA i

A i
TA i

=

λ1…k ∞→

λk 1…N+ 1→

Ri i f
1
ξ i

( )=

Ri j Ri iRj j= Corr i j,( )( )

tions, essentially eliminating many of the loca-
tions in the brain from consideration.  In the
model studies that follow, we have chosen f(x)
= x.  However, the localization of deep, point--
like sources can be further improved by choos-
ing an f(x) that pushes small arguments closer
to zero.

Although the sensor covariance matrix D
can not be measured directly, it can be approx-
imated by

, (23)

where x1...xn are the recording vectors at n dif-
ferent times.  With extended epochs of activity,
it may be preferable to calculate a new set of
Rii’ s for each of a series of sub-epochs to help
tease apart nearby sources, since different com-
binations of sources may be active in different
sub-epochs.  Note that Equation 20 applies only
to dipoles whose orientation is known.  Howev-
er, it can be extended to handle “ regional di-
poles”  in a manner similar to that developed in
Mosher, Lewis, and Leahy (1992).

Using PET Information
Although activity imaging techniques

like PET and functional MRI may provide little
information about the fine-grained temporal se-
quence of brain activity, they do provide infor-
mation about average brain activity with rela-
tively high and uniform spatial resolution.  It
may be reasonable to assume that regions in the
brain that show increased activity using meta-
bolic techniques are also ones that are on the
average more electrically active over time.
Thus, a simple way to incorporate this data into
the framework outlined above is to make the
prior variance estimate for a location in the
brain an increasing function of the PET or func-
tional MRI values at that location.  It would
clearly be preferable to have a more precise,
empirically-based model of how the processes
that affect PET and functional MRI signals
(e.g. cerebral blood flow or hemoglobin oxy-
genation) are related to the current dipole dis-
tribution of the EEG and MEG.

D̂ 1
n

x1 … xn x1 … xn

T
=
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FINDING THE CORTICAL SURFACE
For the approach described above to be

practically useful, the shape of the cortical
sheet (and the location of possible subcortical
sources) must be known.  Since the precise ge-
ometry of the cortical manifold varies substan-
tially among different people, it is essential to
be able to reconstruct the cortical sheet of each
subject from non-invasive imaging techniques,
like MRI.  This poses two daunting challenges:
(1) the MRI data has to have sufficient spatial
resolution in all directions to resolve all the sul-
ci and gyri, while also providing sufficient con-
trast between the relevant tissue types, (2) a
computationally tractable algorithm has to be
developed for automatically constructing a
wire-frame representation of the cortical sheet
based on the MRI data.

Three-Dimensional MRI Reconstruction
With conventional two-dimensional

MRI, it is possible to obtain images with excel-
lent contrast between most relevant tissue
types, like cortical gray and white matter, cere-
brospinal fluid, skull, and scalp with an in--
plane resolution of better than 1 mm.  However,
the resulting 2-D sections are usually relatively
thick (e.g., 3-6 mm).  Thus, the resolution in the
direction perpendicular to the plane of section
is much poorer than within the plane—individ-
ual volume elements (voxels) are elongated.
This causes problems whenever the cortical
surface deviates from being nearly perpendicu-
lar to the slice plane; single voxels will then av-
erage gray and white matter together, generat-
ing a smeared image of the cortical mantle.

Using so-called volume acquisition tech-
niques, it is theoretically possible to achieve
resolutions of 1 mm in all directions.  Unfortu-
nately, current volume acquisition protocols
are inherently less flexible than the protocols
possible with 2-D scans (since each pulse ex-
cites the entire volume of the brain, interleav-
ing is not possible, restricting protocols to
smaller flip angles and shorter TR values).  On
the standard MRI scanner available to us for
this study, the contrast between cortical gray

and white matter possible with an optimal 2-D
inversion recovery (IR) protocol was far supe-
rior to that possible using volume acquisition.
Since the tessellation of the cortex depends on
a clear gray/white matter distinction (see be-
low), we had to find a way to overcome the
“partial-voluming” problem.

We have developed a method for combin-
ing three orthogonal (coronal, sagittal, horizon-
tal) series of conventional, moderately thick
sections into a single volumetric data set with
the same high (i.e., subslice) resolution in all
three directions.  The method is based on the
simple observation that each pixel in a typical
2-D scan represents a weighted average of the
signal emitted from an elongated rectangular
prism of tissue (pixel x-size by pixel y-size by
slice thickness).  By combining data from dif-
ferent directions it is possible to estimate the
signal emitted from cubic voxels of smaller
size using a linear estimation technique very
similar to that described above for current
source localization (see Appendix B).

A major advantage of this technique is
that any 2-D acquisition protocol can be used,
including inversion recovery (IR) protocols for
T1 weighting, and spin-echo (SE) protocols
with long repetition times for proton-density
and T2 weighting.  By combining spatially reg-
istered 3-D data sets made with different proto-
cols, it is possible to simultaneously classify all
major tissue types, which is not possible using
any single scan type (cf. Buxton & Greensite,
1991).  Thus, we can retain optimal grey/white
matter contrast (crucial for cortical surface re-
construction) while still being able to distin-
guish gray and white matter from skull, skin,
and cerebrospinal fluid (necessary for automat-
ic skull removal).

Figure 1A shows a stack of 6 mm thick
coronal T1 weighted (inversion-recovery) slic-
es of the brain (see Methods).  The resolution
within the section plane is obviously much bet-
ter than in the anterior-posterior direction.  The
3-D reconstruction resulting from combining
the sagittal and horizontal slice series with the
coronal series is shown in Figure 1B.  The res-
olution in the anterior-posterior direction is
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Figure 1.  Three-dimensional MRI reconstruction.  Coronal sections (6 mm thick) from an 
inversion recovery protocol are merely stacked in A.  In B, the coronal series has been 
combined with a horizontal and a sagittal series using a linear deblurring technique to give an 
image with uniformly high resolution.  C and D illustrate the same deblurring technique 
applied to proton density and T2-weighted images.  The contrast between the gray and white 
matter is much reduced in comparison to the T1-weighted inversion recovery image.
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greatly improved at only a small cost to the in--
plane resolution.  Note that this image could
have been sectioned in any other (non-orthogo-
nal) plane without a loss in resolution.  The
three-dimensional reconstruction of the proton
density and T2 weighted data sets are shown in
Figures 1C and 1D, for comparison.  Clearly,
the contrast between the gray and white matter
is most striking in the T1 image.

“Shrink-Wrap” Surface Reconstruction
A very realistic-appearing image of the

cortex can be generated by displaying stacked
sections using interslice interpolation and
transparency (see e.g., Damasio and Frank,
1991).  Such an image, however, cannot be di-
rectly used to constrain the orientations of
source dipoles.  For this, we need to construct a
wireframe model that explicitly recovers the to-
pology of the cortical sheet.  A typical approach
to this problem has been to manually trace the
outline of the cortex in series of 2-D sections,
and then use some heuristic algorithm (or a
practiced hand) to connect the contours in each
section into a continuous surface.  The main
problems with this approach are:  (1) it requires
considerable manual work for each subject, (2)
it has trouble with sulci or gyri that are  parallel
to the plane of section, (3) the topology of the
resulting surface may be incorrect, especially
when contours in each section have been made
continuous for computational reasons (e.g., in
sections where the temporal lobe is ’de-
tached’ ), and (4) the resulting surface is diffi-
cult or impossible to unfold accurately.  

The method we have developed for re-
constructing the cortical surface largely over-
comes these problems by adopting an automat-
ic deformable template algorithm (see e.g.,
Yuille, 1991).  The basic idea behind this meth-
od is to start with a simple surface with the cor-
rect topology—e.g, a circle in 2-D, or a spheri-
cal shell in 3-D—and then gradually deform
the shape of the surface by rubber-sheet trans-
formations to conform to the cortical sheet.
The location of each vertex of the surface is up-
dated iteratively according to elastic “ forces”
between neighboring vertices, and repulsive

and attractive forces along the local surface
normal depending on the MRI data at the ver-
tex.  A nice feature of this technique is that all
computations needed in the “shrink-wrapping”
process are local.  The motion of each vertex
can be calculated based on local information
about neighboring vertices, and local MRI data.
The more global topological constraint is en-
forced implicitly by the connectivity of the ver-
tices (see Appendix C).

In order to speed up convergence of the
3-D “shrink-wrap”  (and to avoid the computa-
tional expense of determining whether the sur-
face has passed through itself at each time
step), an initial estimate of the boundary be-
tween the cortical gray and white matter was
obtained using a three-stage flood-filling algo-
rithm.  The white matter of the brain, as classi-
fied by MRI data, is initially filled in 3-D from
one or more seed locations inside the white
matter.  Then, a second fill of the volume out-
side the volume filled by the initial fill is per-
formed to eliminate internal holes.  Finally, the
volume inside the volume filled by the second,
external fill is itself filled, to eliminate external
islands.  The result is a connected volume rep-
resentation of the white matter.  A single,
closed tessellation of the white matter surface
can then be constructed from the faces of filled
voxels bordering unfilled voxels.  Figure 2A
shows the result of “shrink-wrapping”  the ini-
tial tessellation of the flood-filled white matter
against the MRI data to smooth it.  The local re-
pulsive criterion has been set so that the com-
puted surface settles near the surface of the
gray matter.

Flattening the Cortex
A straightforward adaptation of the tech-

nique described above can be used to computa-
tionally flatten the cortical sheet.  The surface
is relaxed towards minimal surface tension  by
including only the local elastic forces—i.e., by
freeing it from the MRI data.  The algorithm
will then gradually unfold the cortex while pre-
serving its topology and minimizing local geo-
metric distortions.  Figures 2B, 2C, and 2D
show snapshots of the cortical surface during
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the flattening process (after 30, 200, and 1000
iterations; eventually the surface will approach
a sphere).  In these figures, locations on the ini-
tial folded surface with large positive curvature
(~sulci) are colored red, while locations with
large negative curvature (~gyri) are stained
green.  Notice how some of the major sulci
(e.g., the superior temporal sulcus) that are hard
to distinguish from minor ones in the initial
folded cortex have become much more con-
spicuous after a partial flattening.  This con-
firms our experience in physically flattening
the cortex of post-mortem specimens of the hu-
man occipital lobe (Sereno, McDonald, &
Allman, 1988; Sereno & Allman, 1991).

A particular advantage of this partially
flattened representation is that the cortex re-
tains its global shape, appearing as if it has been
gently inflated.  This effectively exposes hid-
den sulcal cortex without the rigors of a com-
plete flattening to a plane, which requires cuts
in order to relax the surface, and which is much
harder to interpret (see e.g., Jouandet et al.,
1989).  The partially flattened images are quite
reminiscent of a macaque brain.  Solutions dis-
played on such an “ inflated”  representation are
much easier to parse.  This representation could
easily be adapted to display patterns of activity
detected by other techniques like PET or func-
tional MRI; the folded cortical model would
simply be colored with the activity data and
then inflated.

MODEL STUDIES
In the following we present some results

of applying the source localization technique
described above to simulated EEG and MEG
data.  In the 2-D studies the cortical contour was
approximated by about 400 vertices and was
computed from a coronal MRI image using the
“shrink-wrapping”  algorithm described above.
Similarly, the 3-D studies were done on the po-
lygonal representation of the folded cortical sur-
face, with dipoles at the vertices oriented along
the locally estimated  surface normal.  The orig-
inal 150,000 vertices of the surface tessellation
were evenly subsampled to about 10,000 di-
poles, for a spacing between adjacent dipoles of

about 4 mm.
 The forward transformation matrix A

was computed based on the locations of the
sensors and the location and orientation of each
dipole, using the equations for the EEG and
MEG given in Appendix A.  The results of the
2-D studies are shown  on a slightly tilted shad-
ed 3-D rendering of the “shrink-wrap”  solution
onto a coronal MRI section, with EEG elec-
trodes and MEG sensors shown as small planar
patches in a concentric circular arrangement.
The inner circle represents the EEG electrodes
and the outer circle represents the MEG sen-
sors.  For the 3-D studies a geodesic arrange-
ment of 61 electric and 61 magnetic sensors
was assumed, resulting in an approximately
uniform distribution of sensors over the head,
for a spacing between sensors of about 40 mm.
The sensor coordinates were calculated based
on the vertices of a half icosahedron subdivided
with a frequency of 3 (see Kenner, 1976).  The
arrangement was scaled according to the radius
of the head, as estimated by half the distance
from the nasion to the inion, and rotated so as
to align the equator of the arrangement with a
line from the nasion to the inion, based on MRI
data.  Note that this spherical approximation to
the head tends to overestimate the distance
from sensors on the lateral parts of the head to
the brain, since the head is typically not quite as
wide as it is long.

The  dipole strengths and recording val-
ues are color coded.  Positive values are indi-
cated by red, while negative values are indicat-
ed by green.  The magnitude is coded by the
saturation of the color; gray indicates that the
value is close to zero, saturated red indicates a
large positive value, and saturated green  indi-
cates a  large negative value.

Single Radial or Tangential Dipole
Figure 3A shows the location of a single

superficial, nearly radial dipole.  Figures 3B,
3C and 3D show the corresponding linear in-
verse solution using electric data alone, mag-
netic data alone, and both kinds of data togeth-
er.  Notice that the solution based on magnetic
data alone is much worse than that based on
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Figure 5.  Deep dipole.  A radial source in the 
insula (A) illustrates a well-known problem 
with minimum-norm-like solutions.  Even with 
both electric and magnetic information, deep 
focal activity is interpreted as superficial 
spread-out activity (B).  Dramatic improvement 
in the solution results when temporal 
information is taken into account (D).  We have 
assumed white noise and a signal to noise ratio 
of 3:1.  The corresponding calculated variance 
estimates Rii for each dipole are shown in C.

Figure 4.  A single superficial, 
nearly tangential dipole source is 
shown in A.  The linear inverse 
solutions for electric data alone 
(B), magnetic data alone (C), and 
both kinds of data (D) now show 
that the solution based on 
magnetic data alone is much better 
than that based on electric data 
alone.

Figure 3.  A single superficial, nearly radial dipole 
source is shown in A.  The forward solutions are 
shown on the sensors, and the linear inverse 
solution on the cortical ribbon for electric data 
alone (B), magnetic data alone (C), and both 
kinds of data (D).  The dipole strengths and 
recording values are color coded and the inner and 
outer circles represent the EEG and MEG sensors.  
Positive values are indicated by red, while 
negative values are indicated by green.  The 
solution based on magnetic data alone is much 
worse than that based on electric data alone.
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electric data alone.
Figure 4A shows the location of a single su-

perficial, nearly tangential dipole.  Figures 4B,
4C and 4D show the corresponding linear in-
verse solution again for electric data alone,
magnetic data alone, and both kinds of data to-
gether.  The solution based on magnetic data
alone is now much better than that based on
electric data alone.

Interestingly, even though the MEG by it-
self is essentially blind to radial sources, it can
help rescue radial sources when combined with
EEG.  This is because it can rule out incorrect
alternative interpretations of the EEG data.  For
example, a radial dipole near a tangential di-
pole generates a scalp current distribution sim-
ilar to that produced by a single, laterally
displaced radial dipole; adding MEG data picks
out the tangential dipole, thus restoring the ra-
dial dipole to its rightful location.

Deep Dipole
Figure 5A shows the location of a radial di-

pole located deep inside the insula.  Figure 5B
shows the corresponding linear solution using
both electrical and magnetic information.  This
illustrates the well-known problem that mini-
mum-norm-like techniques tend to interpret
deep, focal activity as more spread-out, super-
ficial activity. 

 Figure 5D shows the dramatic improve-
ment in the solution made possible by taking
temporal information into account.  In this sim-
ple case with only a single dipole active, the
sensor covariance matrix will be equal to the
outer product of the gain vector of the active di-
pole location with itself plus some multiple of
the identity matrix (see Eq. 15).  We have as-
sumed white noise and a signal to noise ratio of
3:1.  The variance estimates Rii for each dipole
are shown in Figure 5C.

3-D Studies
The locations of eight assumed sources are

illustrated on the unfolded cortex in Figure 6A.
The estimated solution shown in Figure 6C (the
sensors are omitted) demonstrates that these
well-separated sources can all be distinguished.

The sensor covariance matrix was computed
assuming correlation between each of the
sources of 0.5, additive white noise, and a sig-
nal to noise ratio of 10:1.  Figure 6B shows the
corresponding calculated variance estimate Rii
for each dipole.  Nearby correlated sources will
merge, however, if they are close enough to
each other.  In Figures 7A-C, the similarly--
signed (green) source pair at the left are begin-
ning to merge.  Nearby sources with different
signs can sometimes be distinguished at closer
distances (red-green pair at right), but will
eventually cancel each other if they are close
enough (upper red-green pair).

It should also be noted that using sensor co-
variance information does not always rescue
deep sources.  If the magnitude of the signal
produced by a deep source is too weak com-
pared to the noise, or if there are active superfi-
cial sources which could produce a signal close
to that of the deep source, some of the activity
of the deep source will be attributed to the su-
perficial sources.  This uncertainty in the esti-
mate of the strength of a deep source can be
detected by analyzing the predicted estimation
error as described previously.  

CONCLUSION
All known techniques for imaging brain

activity have limitations in temporal and spatial
resolution.  Some of these limitations can be
overcome by combining data obtained using
different techniques in a way that takes advan-
tage of the strengths of each technique to obtain
a single optimal solution.  Note that this is very
different from finding solutions using each
technique independently and then comparing
the results.  If the solutions are different, it is
not clear which part of which solution to trust.

There are a number of advantages of the
linear approach over traditional approaches to
the problem of source localization and imag-
ing.

(1) It provides a principled framework for
combining EEG and MEG recording data with
information about cortical geometry from MRI.

(2) Since it makes no assumptions about the
number of equivalent dipole sources, this tech-



 COMBINING EEG AND MEG WITH MRI      15

Figure 7.  Nearby sources.  Correlated sources can 
merge if they are close together.  The lower left pair of 
similarly-signed sources in A are beginning to merge 
in the variance estimates in B and in the solution in C; 
even nearer pairs can be distinguished if they are of 
opposite sign (lower red-green pair at right), but 
eventually cancel each other if close enough (upper 
red-green pair).

Figure 6.  3-D model studies.  The locations of eight 
sources are displayed on the flattened cortex in A (all 
calculations were performed using the folded cortex).  
The solution using temporal information is shown in C 
(61 EEG and MEG sensors placed in a geodesic 
arrangement are omitted; the sensor covariance matrix 
was computed assuming between-source correlation of 
0.5 and additive white noise with signal to noise ratio 
of 10; the 150,000 polygon surface was subsampled to 
about 10,000 dipoles for these solutions).  The 
corresponding calculated variance estimates Rii  for 
each dipole are shown in B.
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nique is well suited to situations with many cor-
related sources of cortical activity.

(3) By incorporating an improved soft con-
straint based on the observed covariance of
sensors over time for a particular event, local-
ization of deep sources is greatly improved,
without disallowing spread-out solutions.

(4) Other sources of data like PET or func-
tional MRI can be easily incorporated.

(5) The recovery of the topology of the cor-
tical manifold makes it possible to convenient-
ly view the solutions (as well as data from other
activity imaging techniques) after gently “ in-
flating”  the brain, as well as allowing more ef-
fective intersubject comparisons.

(6) The expected error of the solution can
be computed for different source configura-
tions, providing a principled way to quantify
statistical significance of various hypotheses.

(7) The spatial resolution is comparable to
that of PET or functional MRI without sacrific-
ing fine-grained temporal resolution.

METHODS

MRI images
The brain of the second author was scanned

on a GE SIGNA system with a 1.5T magnet
and the ADVANTAGE software upgrade.  The
scanning sequence consisted of three orthogo-
nal T1/inversion recovery slice sequences
(TR=2000, TI=708, TE=12) and three orthogo-
nal T2/proton density spin-echo slice sequenc-
es (TR=2000, TE=11, 70) for a total scan time
of 82 minutes.  All scans used a 25 cm field--
of-view, a matrix size of 256 x 192, and contig-
uous 6 mm slices.  Since the linear
“de-voluming”  of the images was quite sensi-
tive to movement between successive images, a
special effort was made to stabilize the head,
and, in particular, to prevent rotation in the sag-
ittal plane.

By evaluating the expression for absolute
value of the inversion recovery signal strength
(with Mathematica on the NeXT computer) for
different repetition (TR) and inversion (TI)
times using T1 values for gray and white matter
(Mitchell et al., 1984; Hyman et al., 1989; R.

Buxton, personal communication), it was pos-
sible to search for the TI/TR combination giv-
ing the best contrast between these two tissue
types.

Software
The major computational routines for the

project (linear de-voluming, tissue typing and
skull removal, flood-filling, surface tessella-
tion, geodesic sensor placement, cortical
shrink-wrapping and inflation, forward solu-
tion, inverse solution, sensor covariance
weighting) were written in C.  Display software
for the 2-D slice and 3-D cortical surface imag-
es was also written in C using Silicon Graphics
GL routines, which take advantage of fast hard-
ware implementation of 3-D transformations,
polygon filling, and lighting calculations on
Silicon Graphics machines.

APPENDIX A:  FORWARD SOLUTION
In the following we will present the actual

equations used in the model studies  for calcu-
lating the forward solutions for the EEG and
MEG.  The idealized assumptions made here
about head geometry and electrical parameters
are not essential for the general  linear approach
to the inverse problem, since these assumptions
affect only the values in the coefficient matri-
ces, E and B.  These are simply treated as arbi-
trary arguments in the inverse calculations.
More realistic forward calculations, based on
the exact shape of the scalp, skull, and brain,
can be done using finite element methods
(FEM), in order to generate more realistic E
and B matrices.  Quantitative estimates of the
shape and thickness of the real scalp, skull, and
conductive bone sutures are, of course, directly
available from the same MRI images used to
find the cortical manifold.

EEG Calculations
To calculate the EEG, we assume a single

dipole in a 3-shell inhomogeneous spherical
conductor.  The shell model consists of a ho-
mogenous sphere of neural tissue with radius
r1, surrounded by a concentric spherical shell
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of outside radius r2, representing the skull, and
another concentric spherical shell of outside ra-
dius R representing the scalp.   The scalp and
the neural tissue are assumed to have the same
conductivity σ, and the skull to have conduc-
tivity σs.  To simplify the calculations the co-
ordinate system is assumed rotated so that the
dipole lies on the z-axis, pointing in the x-z
plane.

The potential  recorded at location (α,β)
on the scalp can be expressed as

        

(A.24)

(A.25)

where ξ = σs  / σ,  f1 = r1 / R and  f2 = r2 / R.
st and sr are the tangential and radial compo-
nents of the dipole moment, or strength s.  Pn
and Pn

1 are the Legendre and the associated
Legendre polynomials, respectively (Ary,
Klein and Fender, 1981).

MEG Calculations
Making assumptions similar to those

made for the EEG calculations we get the fol-
lowing expression for the radial component of
the magnetic field h observed at location
(r,α,β) outside the head

, (A.26)

where (A.27)

Somewhat more complicated expressions can
be found for the non-radial components of the
magnetic field (Cuffin and Cohen, 1977).  Note
that the magnetic field is independent of the ra-
dial component sr of the dipole.
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APPENDIX B:  ORTHOGONAL MRI
SLICE COMBINATION (“ DEVOLUM-
ING”)

The intersection between any three or-
thogonal MRI sections forms a cube, with sides
equal to the section thickness (typically several
times the in-plane pixel width).  Let v denote
the vector of N3 unknown cubic volume ele-
ments (voxels) inside this cube; and let c, h, and
s denote vectors of N2 known picture elements
(pixels) of the coronal, horizontal and sagittal
sides of the cube, respectively.  Then, if each
pixel in a section reflects the linearly weighted
sum of MRI signal from the tissue throughout
the thickness of the section, the following “ for-
ward” equations hold:

,  ,  , (B.1)

where C, H and S are the easily derived linear
operators that map N3 voxel values into N2 pix-
el values in the coronal, horizontal and sagittal
planes, respectively.  A least-squared-error es-
timate of v is then given by

(B.2)

where R is a regularization matrix, which is
typically set equal to a small multiple of the
identity matrix.

APPENDIX C:  CORTICAL SURFACE
REFINEMENT (“SHRINK-WRAPPING”)

In the “shrink-wrapping”  procedure, the
position of each vertex is updated iteratively
using a data term and smoothness term accord-
ing to the following equations:

, where (C.1)

, (C.2)
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research and graduate support.

Notes
1.  This does not address the problem of 

non-additive “noise”  arising from errors in 
the forward solution (coefficients of the A 
matrix).  This noise can be reduced by using 
a more realistic forward solution (see 
Appendix A).

2.  Leaving out the normalizing denominator in 
Equation 20 results in 1/ξi having the same 
units as σi

2.  However, this has the undesir-
able effect of assigning very large a priori 
variance estimates for dipole locations with 
gain vectors of small magnitude (e.g., deep 
sources).
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