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Abstract

B We describe a comprehensive linear approach to the prob-
lem of imaging brain activity with high temporal as well as
spatial resolution based on combining EEG and MEG data with
anatomical constraints derived from MRI images, The “inverse
problem” of estimating 1he distribution of dipole strengths over
the cortical surface is highly underdetermined, even given
closely spaced EEG and MEG recordings. We have obrained
much better solutions 10 this problem by explicitly incorpo-
rating both local cortical orieniation as well as spatial covari-
ance of sources and sensors inte our formulation. An explicit
polygonal model of the cortical manifold is first constructed as
follows: (1) slice data in three orthogonal plines of section
{needle-shaped voxels) are combined with 2 lingar deblurring
technique to make a single high-resolution 3-I image {cubic
voxels), (2) the image is recursively flood-lilled 10 determine

INTRODUCTION

Over the past few decades a variety of techniques for
noninvasively measuring brain activity have been devel-
oped. Each of these techniques has important and unique
advantages, but also significant limitations. For example,
the positron-emission tomography (PET} technique us-
ing labeled water 10 detect blood flow has good (~cm),
uniform spatial resolution, but relatively poor {~10s of
sec) temporal resolution. Several recently developed
magnetic resonance imaging (MRI) techniques—measur-
ing blood volume changes with a contrast agent {Belli-
veau, Kennedy, McKinstry, Buchbinder, Weisskopf,
Cohen, Vevea, Brady, & Rosen, 1991) and meusuring
hemoglobin oxygenation via its effects on nearby water
(Ogawa, Tank, Menon, Ellermann, Kim, Merkle, & Ugur-
bil, 1992}—promise somewhat better spatial and tem-
poral resolution. As with PET, however, the indirect con-
nection between the neural activity and its measured
metabolic consequences conceals the line {subsecond)
structure of the underlying neural events.

A widely used technique with better (~msec) tem-
poral reselution is electroencephalography (EEG), which
measures the potential difference between various lo-
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the topology of the gray-white matter border, and (3) the re-
sulting continucus surface is refined by relaxing it against the
original 3-D gray-scale image using a deformable template
method, which is also used 1o computationally aren the cortex
for vasier viewing. The explicit solution to an error minimi-
zation formulation of an optimal inverse linear operator (for a
particular cortical manifold, sensor placement, noise and prior
source covariznce) gives rise to a compact expression that is
practically computable for hundreds of sensors and thousands
of sources. The inverse solution can then be weighted for a
particular (averaged) event using the sensor covariance for that
event. Model studies suggest that we may be able 1o localize
multiple cortical sources with spatial resolution as good as PET
with this technique, while retaining a much finer grained pic-
ture of activity over time. l

cations on the scalp. A number of interesting correlations
berween features of the measured waveforms and various
aspects of attention, memory, and linguistic tasks have
been discovered (see, eg., Luck & Hillyard, 1990; van
Petten & Kutas, 1991; Neville, Nicol, Burss, Forster, &
Garrett, 1991). The temporal resolution of this technique
is essentially limited only by the time scale of the hio-
togical processes producing the potentials. The spatial
resolution, however, is limited by several factors. One
problem is that activity in a small region of the brain—
especially if it is located deep inside the head—can pro-
duce potentials that are spread rather widely across the
scalp, strongly overlapping potentials produced by other
sOurces.

Closely related to EEG is magnetoencephalography
(MEG), which measures minute fluctuations in the mag-
netic field outside the head using extremely sensitive
(SQUID) sensors (see, e.g.,, Wood, Cohen, Cuffin, & Al-
lison, 1985; Hari & Lounasmaa, 1989; Pantev, Hoke, Leh-
nertz, Lutkenthoner, Fahrendorf, & Stober, 1990; Woaod,
George, Lewis, Ranken, & Heller, 1990). The EEG and
MEG are fundamentally related through Maxwell’s equa-
tions to the distribution of dipole moment throughout
the brain and head and hence have similar temporal
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resolution. However, the MEG has the advantage of being
less affected by head inhomogencities, and somewhat
less smeared out spatially by skull impedance than the
EEG. On the other hand, a weakness of the MEG is its
relative insensitiviry to deep or radially oriented sources,
muking it effectively blind to certain patterns of activity
in the brain that would produce an ohservahle EEG.

The so-called forward profiem of calculating the elec-
tric and magnetic fields owside the head, given the cur-
rent distribution inside the head and the conductive
properties of the head and brain, is a wetl-defined prob-
lem of electrostatics (Nunez, 1981). By contrast, the so-
called frverse problem of finding the distribution of cur-
rents inside the head, based on electric and magnetic
recordings outside the head, is fundamentally ill-posed—
that is, it has no unique solution. For any set of mea-
surements outside the head, there are infinitely many
current distributions inside the head that are compatible
with those recordings. Although combining both electric
and magnetic data about the same event reduces the
space of indistinguishable solutions, additional con-
straints are needed in order 1o make the problem solu-
tion unique in a principled way. Additional constraints
come from assumptions about likely current source dis-
tributions and statistics, sensor statistics, and information
from other activity imaging techniques like PET or func-
tional MRI.

In the following we will present a single framework
for combining data from (1) EEG and MEG recordings
(and PET or functional MRI, if available), (2) cortical
surface reconstructions based on MRI images, (3) prior
assumprtions about typical spatial distributions of brain
activity, and (4) information about covariance of the sen-
sors for a particular (averaged) event. Our primary goal
is to retain a linear approach, but constrain it so that the
ill-posedness of the inverse problem is greatly reduced.
A particularly insidious type of ill-posedness is when
sources cancel each other, leading to equivalent solutions
that are qualitatively very different. Qur studies suggest
that the ill-posedness that remains is usually benign;
nearby sources may not be resolved, but the qualitative
structure of the solution is preserved. By solving directly
onto the cortical manifold, it is much easier to assess and
view solutions, especially after the cortex has been par-
tially “inflated” (PET or functional MRI data by themselves
could also advantageously be viewed this way).

Several components of the current approach to the
inverse problem have been considered individually by
other authors (Nunez, 1981; Scherg, 1989; Ioannides,
Bolton, & Clarke, 1990; Smith, Dallas, Kullmann, &
Schlit, 1990; Wood et al.,, 1990; Mosher, Lewis, & Leahy,
1992; George, Lewis, Ranken, Kaplan, Aine, & Wood,
1992; Greenblatt, personal communication). By integrat-
ing multiple constraints into a unitary framework, how-
ever, we have been able to obtain much better hehaved
solutions than those obtained with any technique used
by itself. Model studies suggest that we may be able to

localize multiple cortical sources with spatial resolution
comparable 1o PET or functional MRI while retaining a
fine-grained picture of activity over time,

A LINEAR APPROACH TO THE
INVERSE PROBLEM

In the ypical frequency range of neural electric activity
of less than a fesy hundred Hz, the electric and magnetic
fields of the brain can be well accounted for by the
quasistatic case of Maxwell's equations—ithat is, magnetic
induction and capacitive effects are negligible (Nunez,
1981). As has been noted previously by numerous au-
thors, this results in a simple linear relationship between
the clectric and magnetic recordings, and the compo-
nents of dipole moment at any location in the brain.
More precisely, if we divide the brain volume into N3
small volume elements and approximate the local dipole
moment within cach volume element with #s decom-
position oo three orthogonal components, we get

LY
=2 eys (1)
“
or in matrix form

v=Es (2)

where ¢, is the potential at the #h electrode relative to a
point at infinity, and 5 is the strength of 1he jth dipole
component. The fth row of the E matrix specities the
lead field of the ith electrode, ie, how the potential at
the 7th electrode varies with the strength of each dipole
component. The sum in Eq. (1) ranges over all three
dipole components of all volume elements. Similarly, the
Jth coltnin of E specifies the gain vector for the jth
dipole compaonent, ie., how much the measurement at
each electrode varies with the strength of the fth com-
ponent. The coefficients in E are in general complicated
nonlinear functions of the electrode locations, and the
shape and electrical properties of the head (see Appen-
dix A),
For the magnetic recordings we have

"
m; = 2 b!';Sj (3)
F

or in matrix form
m = Bs (4)

where #; is the component of the magnetic field along
the orientation of the jth magnetic sensor. The columns
of the matrix B specify the magnetic gain vector of each
dipole component.

Note that Egs. (2) and (4) can be combined into one
equation expressing the linear relationship between each
dipole component strength and the composite electric
and magnetic recordings:
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x = As, wherex = [ v] and A = [E] (5)
m B

More generally, if we assume additive noise at the sen-
sots, we get

XxX=As+n (6)

where n is a4 zero-mean random vector.!

Inverse Solution

The inverse problem can be stated as one of finding the
distribution of dipole strength s given recording data x.
Clearly, if the variance of the noise is nonzero, there will
exist no well-defined solution to this problem. Also, since
the rank of A is always less than or equal to the number
of sensors, there will exist infinitely many indistinguish-
able solutions whenever the number of unknowns (di-
pole components) exceeds the number of knowns
(sensor locations). However, if a priori information exists
about the statistical distribution of dipole moment and
sensor noise, the inverse problem can be staled in terms
of statistical estimation theory. In the linear case, this
corresponds to finding the linear operator that mini-
mizes the expected difference benveen the estimated and
the correct solution. More specifically, the expected error
Eyrw can be defined as

Errw={|Wx—s| ) (7)

where W is a linear operator that maps a recording vector
x into an estimated solution vector §. If we assume that
both the noise vector n and the dipole strength vector s
are normally distributed with zero mean and covariance
matrices C and R, respectively, Eq. (7) becomes

Errw={| W(AS +n) —s | ) (8)
={|[(WA-Ds+Wn|*) (9)
=(|Ms+Wn| 32, whereM=WA-1 (10)
= ([ Ms || % + | wa | %) (1

*(12)

This expression can be explicitly minimized by taking
the gradient, setting it to zero, and solving for W. This
yields an optimal linear estimator,

W =RA"(ARA" + C)"! (13)

= 7» (MRM") + Tr (WCW")

The expression for the optimal inverse linear operator
W given in (13) can be shown 10 be equivalent to the so
called minimum-norm solution (Tikhonov & Arsenin,
1977; Hamalainen & Ilmoniemi, 1984}, provided the co-
variance matrices € and R are proportional to the identity
matrix. This corresponds to the assumption that both the
noise at each sensor and the strength of each dipole are
independent and of equal variance. An advantage of the
present formulation is that any empirical observations or
reasonable assumptions about the second order statistics
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of the sensor noise and the dipole strengths can be
explicitly incorporated to constrain the solution.

It is also worth pointing out that evaluating W from
Eq. (23) only requires inversion of a matrix square in
the number of knowns (sensors), rather than square in
the number of unknowns (dipole components). This is
important since the time required to invert an ¥ by N
matrix is proportional o N, and the number of sensors
will typically be much smaller than the large number of
dipole components (~10,000) that are required to ac-
curately tile the cortical mantle (see below). The only
potentially time consuming part of evaluating W is the
matrix muliplication with R, which in the worst case
will take time proportional to the square of the number
of dipole components. However, if we conservatively
make no a priori assumptions about long-range corre-
lations, then the R matrix will be very sparse, and the
meniory and time needed for calculating W will increase
more or less linearly with the number of unknowns.

Error Prediction

An important advantage of the linear estimation approach
to the inverse problem is that it is possible 1o quantify
the influence of sensor noise and activity of other dipoles
on estimated dipole strengths. More precisely, the ith
row of the matrix M = WA — I specifies how much a
unit of dipole strength at each dipole location would
contribute o the estimation error of the ith dipole. Con-
sequently, the expected squared error of the strength of
the ith dipole due to activity of other dipoles is given by
MRM,", where M, is the #th row of M, and R is the
covariunce matrix of the sources. Similarly, the ith row
of the matrix W specifies how much a unit of noise at
each sensor contributes to the estimation error of the
ith dipole strength. The expected squared estimation
error for 1he ith dipole due o noise is given by W,CW},
where W; is the ith row of W and C is the covariance
matrix of the noise,

Such expressions for the likely estimation errors can
be quite useful for quantifying confidence intervals for
hypothesis testing, as well as for designing sensor con-
figurations that optimize the estimation accuracy in some
region of interest. Similar measures are difficult to obtain
for iterative nonlinear approaches to the inverse problem
without explicit, computationally intractable searches for
alternate solutions.

CONSTRAINING THE INVERSE
SOLUTION

The inclusion of electric and magnetic data in a single
formulation constrains the solution to the inverse prob-
lem since these two recording techniques often vield
complementary information (see Model Studies below).
Nevertheless, many equivalent solutions will remain,
even in the presence of a single source, and it is neces-
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sary to add additional constraints in the form of a priori
information about likely solutions. Ideally, we would like
to avoid arbitrary a priori constraints—such as having 1o
decide how many source dipoles the solution will con-
tain {cf. Scherg, 1989). In the following, we describe how
more biologically plausible constraints can be incorpo-
rated into the linear estimation approach outlined above.
Our goal is 10 constrain our solutions while retaining a
relatively “automatic” procedure in which the user is
spared sensitive, yet arbitrary decisions.

Using Anatomical Constraints

A crucial way 10 reduce the ambiguity of the inverse
problem is to incorporate anatomical constraints ex-
plicitly into the solution (see also Wood et al, 1990;
George et al.,, 1992). We can consider in the forward
solution only these dipele locations and orientations that
are consistent with the anatomical data.

A common assumption is that much of the EEG and
MEG observable ar a distance is produced by currents
flowing in the apical dendrites of cortical pyramidal cells.
Because of the columnar organization of the cortex, the
resulting local dipole moment would be oriented per-
pendicularly to the cortical surface. Subdural and intra-
cortical recordings of field patentials at varying distances
from an activated cortical locus are consistent with this
picture {see, e.g., Mitzdorf, 1987; Dagnelie, Spekreijse, &
van Dijk, 1989; Barth & Di, 1990}, in general, having
revealed substantial vertical, hut little local horizontal
variation in potential. Thus, if the shape of the cortical
sheet is known, the locations and orientations of cortical
sources can be constrained by dividing the sheet into
patches that are sufficiently small so that 4 dipole in the
center of a patch accounts for any distribution of dipole
moment within the pawch. The inverse problem then
reduces to estimating the scalar distribution of dipole
strength over the oriented cortical patches. This should
be compared to the unconstrained situation where we
would have to solve onto the orthogonal triples of “re-
gionat dipoles” distributed throughout the volume of the
forebrain (see, e.g., Smith et al., 1990); for a given num-
ber of dipoles, the solution is not only less constrained,
but much coarser.

It is important to note that the EEG and MEG may be
generated by activity in subcortical structures. To localize
such activity correctly, the model must include dipole
companents in these locations as well as in cortical ones.
Since subcortical sources are generally located much
farther away from the EEG and MEG sensors than are
the cortical sources, the discretization of these regions
can be coarser. Some of these structures are laminated
and contain cells with elongated dendrites perpendicular
to the laminae (e.g., the medial superior olive). In struc-
tures without clearly elongated cellular morphology, one
“regional” dipole triple in the center of each nucleus

may be sufficient to account for any distribution of cur-
rent flow within it,

Using the Assumed Source Covariance

Another useful type of constraint on the inverse problem
comes from a priori information about the correlation
between the dipole strength at different locations. For
instance, it is probably reasonable to assume that activi-
ties in two neighboring patches of cortex are not com-
pletely independent, but somewhat positively correlated.
If the correlation between any two cortical patches is
known, the prior source covariance matrix R is given by

R, = c.0,Corr(iy) (14)
where o7 is the variance of the strength of the ith dipole,
and Corr(ij} is the correlation berween the strengths of
the #th and the jth dipoles. The actual correlation of
dipole strength as a function of distance on the cortical
surface could be estimated by invasive recordings in
animals or in human patients,

Note that if the dipoles are assumed a priori o be
completely independent (Corr(éy) = 0, if § # 3}, and have
the sume variance (a7 = o}), then the method reduces
exactly w the minimum-norm approach mentioned
above.

Using the Observed Sensor Covariance

Even after incorporating the constraints described above,
localized sources still tend to be smeared out by the
inverse solution. Denser sensor arrays help for superfi-
cial sources, but deep sources are often displaced to the
surface and spread over several gyri (see Model Studies
below). An additional powerful constraint on the inverse
solution that we now turn to comes from considering
the entire time course of the elecric and magnetic re-
cordings, rather than just a single time point,

A commonly made assumption is that recordings
throughout an epoch are caused by activity in a limited
number of locations in the brain, each represented by a
single dipole with fixed orientation. For the sake of anal-
ysis, it is useful to make the following additional as-
sumptions: (1) the activity of each of the, say, £ locations
is not completely correlated with the activity in any of
the other locations, (2} the gain vectors of the active
locations are linearly independent, (3) the sensor noise
is additive and white with constant variance o2, ie, C =
o’L The sensor covariance matrix

D= (xx") =0’ + 2 3 0.0,Com(iNAA]  (15)
i

where the summations range over all active dipoles, has
a singular value decomposition given by
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R} 0 (] :
D=UAUT=[U, ~U[0 ~ 0 J{Ui~Us" (@16
0 0 Ax

The first £ column vectors U, - Ue of U form an ortho-
normal basis for the so-called signal subspace spanned
by the & linearly independent gain vectors for the active
locations, and Ug.; — Uy form an orthonormal hasis for
the so-called roise subspace, defined as the orthogonal
complement of the signal subspace. Each eigenvalue A,
specifies the component of sensor covariance in the di-
rection of the corresponding eigenvector.

The noise subspace projection 1, of a gain vector A,
which can be written

- A«T[ UJ.-+1 o U,-\-'][Ukﬂ U,-V]TA."
AJA

(17)

i
vanishes for true dipole locations. It remains finite for
locations whose gain vectors do not lie entirely within
the signal subspace. The locations of the true dipoles can
thus be estimated, based on the peuks in a plot of 1/m;
as a function of location, which is essentially the idea
behind the MUSIC algorithm (Mosher et al., 1992).

One limitation of this approach is that it requires a
clear-cut separation between signal space and noise
space. Since the eigervalues of the sensor covariance
matrix typically decrease smoothly, the choice of eigen-
vatue threshold is somewlhat arbitrary. One way 1o avoid
this problem is by using a more graded notion of noise
subspace and signal subspace. For instance, by weighting
the projection of the gain vectors onto every eigenvector
U; of D by the reciprocal of the corresponding eigen-
value A;, 2 measure can be obtained that is large for any
gain vector that has a significant component in a direction
of low sensor covariance (“noise subspace” compaonent),
without requiring an explicit eigenvalue threshold. More
precisely, a new measure £ can be defined as

_ ATUATU"A,

A/A, (18)

3
Note that £ converges to 1, 35 k. x— @ and Apsy w2
1.
This measure can then be incorporated into the linear
estimation framework as something similar to an a priori
variance estimate? for the 7th dipole as

% =/(g)

where f is a continuous, nondecreasing function. As be-
fore, information about correlation between dipole com-
ponent strengths of neighboring locations can be coded
into the estimated source covariance matrix R by

(19)

Ry = VRiRy; Corr(if) (20)
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Naote that if the condition number of D is close to unity
(i.e., all eigenvalues equal), then all R, are also equal
and this method essentially reduces to the minimum-
norm-like appreach discussed above. However, if the
largest and smallest eigenvalues are significantdy differ-
ent, as is usually the case, this method will assign low a
priori variance estimates to dipole components with sig-
nificant “noise-space” projections, essentially eliminating
many of the locations in the brain from consideration.
In the model studies that follow, we have chosen fix) =
x. However, the localization of deep, point-like sources
can be further improved by choosing an flx) that pushes
small arguments closer to zero.

Although the sensor covariance matrix DT cannot be
measured directly, it can be approximated by D = 1/n
X - X)X - x.], where x; - x,, are the recording
vectors at # diflerent times. With extended epochs of
activity, it may be preferable to calculate a new set of Ry's
for each of a series of subepochs to help tease apart
nearby sources, since different combinations of sources
may be active in different subepochs. Note that Eq. (18)
applies only to dipoles whose orientation is known.
However, it can be extended to handle “regional dipoles™
in a manner similar 1o that developed in Mosher er al.
(1992).

One advantage of integrating a cortical anatomical con-
straint into our formulation is that it can rule cut “ghost”
sources that would otherwise appear in between two
termporally correlated sources with an unconstrained
MUSIC approach—the particulur morphology of the cort-
ical sheet greatly reduces the probability of there being
an appropriately situated ghost source dipole.

Using PET or Functional MRI Information

Although activity imaging techniques like PET and func-
tional MRI may provide little information about the fine-
grained temporal sequence of brain activity, they do pro-
vide information about average brain activity with rela-
tively high and uniform spatial resolution. It may be
reasonable to assume that regions in the brain that show
increased activity using metabolic techniques are also
ones that are on the average more electrically active over
time. Thus, a simple way to incorporate these data into
the framework outlined above is to make the prior var-
fance estimate for a location in the brain an increasing
function of the PET or functional MRI values at that
location. It would clearly be preferable to have a more
precise, empirically based model of how the processes
that affect PET and functional MRI signals (e.g., cerebral
blood flow or hemoglobin oxygenation) are related to
the current dipole distribution of the EEG and MEG.

FINDING THE CORTICAL SURFACE

For the approach described above to be practically use-
ful, the shape of the cortical sheet (and the location of
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possible subcortical sources) must be known. Since the
precise geometry of the cortical manifold varies substan-
tially among different people, it is essential 1o be able to
reconstruct the cortical sheet of each subject using non-
invasive imaging techniques, like MRI. This poses two
daunting challenges: (1) the MRI data have 1o have suf-
ficient spatial resolution in all directions to resolve all
the sulci and gyri, while also providing sufficient contrast
between the relevant tissue types, and (2) a computa-
tionally tractable algorithm has 1o be developed for au-
tomatically constructing a wire-frame representation of
the cortical sheet based on the MRI data.

Three-Dimensional MRI Reconstruction

With conventional two-dimensional MR, it is possible 1o
obtain images with excellent contrast between most rel-
evani tissue types, like cortical gray and white matter,
cerebrospinal fluid, skull, and scalp with an in-plane
resolution of better than 1 mm. However, the resulting
2-D sections are usually relatively thick (e.g., 3-6 mm).
Thus, the resolution in the direction perpendicular to
the plane of section is much poorer than within the
plane—individual volume elements (voxels) are elon-
gated. This causes problems whenever the cortical sur-
face deviates from being nearly perpendicular to the slice
plane; single voxels will then average gray and white
matter together, generating a smeared image of the cort-
ical mantle.

Using so-called rolume acquisition techniques, it is
theoretically possible to achieve resolutions of 1 mm in
all directions. Unfortunately, current volume acquisition
protocols are inherently less flexible than the protocols
possible with 2-D scans {since each pulse excites the
entire volume of the brain, interleaving is not possible,
restricting protocols to smaller flip angles and shorter
TR values). On the standard MRI scanner available to us
for this study, the contrast between cortical gray and
white matter possible with an optimal 2-D inversion re-
covery (IR) protocol was far superior to that possible
using volume acquisition. Since the tessellation of the
cortex depends on a clear gray/white matter distinction
(see below), we had to find a way to overcome the
“partial-voluming” problem. :

We have developed a method for combining three
orthogonal (coronal, saginal, horizontal) series of con-
ventional, moderately thick sections into a single volu-
metric data set with the same high (ie, subslice)
resolution in all three directions. The method is based
on the simple observation that each pixel in a typical 2-
D scan represents a weighted average of the signal emit-
ted from an elongated rectangular prism of tissue (pixel
x-size by pixel y-size by slice thickness). By combining
data from different directions it is possible to estimate
the signal emitted from cubic voxels of smaller size using
a linear estimation technique very similar to that de-
scribed above for current source localization (see Ap-
pendix B).

A major advantage of this technique is that any 2-D
acquisition protocol can be used, including inversion
recovery (IR) protocols for T1 weighting, and spin-echo
(SE) protocols with long repetition times for proton-
density and T2 weighting. By combining spatially regis-
tered 3-D data sets made with different protocols, it is
possible to simultaneously classify all major tissue types,
which is not possible using any single scan type (cf.
Buxton & Greensite, 1991). Thus, we can retain optimal
gray/white matter contrast (crucial for cortical surface
reconstruction) while still being able to distinguish gray
and white matter from skull, skin, and cerebrospinal fluid
(necessary for automatic skull removal).

Figure 1A shows a stack of 6 mm thick coronal T1
weighted (inversion-recovery) slices of the brain (see
Methods). The resolution within the section plane is
obviously much better than in the anterior—posterior
direction, The 3-D reconstruction resulting from com-
bining the sagittal and horizontal slice series with the
coronal series is shown in Figure 1B. The resolution in
the anterior—posterior direction is greatly improved at
only a small cost to the in-plane resolution. Note that
this image could have been sectioned in any other (non-
orthogonal) plane without a loss in resolution. The three-
dimensional reconstructions of the proton density and
T2 weighted data sets are shown in Figures 1C and 1D,
for comparison. Clearly, the contrast between the gray
and white matter is most striking in the T1 image.

Surface Reconstruction by
“Shrink-Wrapping”

A very realistic-appearing image of the cortex can be
generated by displaying stacked sections using interslice
interpolation and transparency (see, e.g, Damasio &
Frank, 1991). Such an image, however, cannot be directly
used to constrain the orientations of source dipoles. For
this, we need to construct a wireframe model thar ex-
plicitly recovers the topology of the cortical sheet (cf,
Carman, 1990; Schwartz, 1990). A typical approach to this
preblem has been to trace the outline of the cortex in
series of 2-D sections, and then use some heuristic al-
gorithm (or a practiced hand) to connect the contours
in each section into a continuous surface. The main
problems with this approach are (1) it requires consid-
erable manual work for each subject, (2) it has trouble
with sulci or gyri that are parallel to the plane of section,
(3) the topology of the resulting surface may be incor-
rect, especially when contours in each section have been
made continuous for computational reasons (e.g., in sec-
tions where the temporal lobe is “detached™), and (4)
the resulting surface is difficult or impossible to unfold
accurately.

The method we have developed for reconstructing the
cortical surface largely overcomes these problems by
adopting an automatic deformable template algorithm
(see, eg., Yuille, 1991). The hasic idea behind this

Dale and Sereno 167




Figure 1. Three-dimensional MRI reconstruction. Coronal sections (6 mm thick) from an inversion recovery protocol are merely stacked in A.
In B, the coronal series has been combined with a horizontal and a sagittal series using a linear deblurring technique to give an image with
uniformly high resolution. C and D illustrate the same deblurring technique applied o proton density and T2-weighted images. The contrast
berween the gray and white matter is much reduced in comparison to the Tl-weighted inversion recovery image.

Figure 2. Surface reconstruction by “shrink-wrapping.” An initial closed tessellation of the gray—white mawer boundary derived from recursive
flood-flling was relaxed onto the 3-1) inversion recovery image with the outward force set so that the computed surface rose nearly to the pial
surface. The result is shown in A. The surface (150,000 polygons) was then released from the MRI data, allowing surface tension to gradually
flatten it. Several stages of flattening are shown in B (30 iterations), € (200 iterations), and D (1000 iterations), with green indicating portions o
the original folded surface that were convex (~gyri) and red indicating regions that were concave (~sulci). The images in B-ID were scaled to
keep total surface area constant. The major sulcal features are much easier to discern in the partially flavened images.
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method is to start with a simple surface with the correct
opology—e.g, a circle in 2-D, or a spherical shell in
3-D—and then gradually deform the shape of the surface
by rubber-sheet transformations ta conform to the cort-
ical sheet. The location of each vertex of the surface is
updated iteratively according to elastic “forces” between
neighboring vertices, and repulsive and attractive forces
along the local surface normal depending on the MRI
data at the vertex. A nice feature of this technique is thart
all computations needed in the “shrink-wrapping™ pro-
cess are local. The motion of each vertex can be calcu-
lated based on local information about neighboring
vertices, and local MRI data. The more global topological
constraint is enforced implicitly by the connectivity of
the vertices (see Appendix C).

To speed up convergence of the 3-D “shrink-wrap”
(and to avoid the computational expense of determining
whether the surface has passed through itself at each
time step), an initial estimate of the boundary between
the cortical gray and white matter was obtained using a
three-stage flood-filling algorithm. The white mater of
the brain, as classilied by MRI data, is initially filled in 3-
D from one or more seed locations inside the white
matter. Then, a second fill of the volume ontside the
volume filled by the inital fill is performed to eliminate
internal holes. Finally, the volume inside the volume
filled by the second, external fil is itself filled, 10 elini-
nate external islands. The resukt is a connected volume
representation of the white matter. A single, closed tes-
sellation of the white mater surface can then be con-
structed from the faces of filled voxels bordering unfilled
voxels. Figure 2A shows the result of “shrink-wrapping”
the initial tessellation of the flood-tilled white matter
against the MRI data to smooth it. The local repulsive
criterion has been set so that the computed surface set-
tles near the surface of the gray matter.

Flattening the Cortex

A straightforward adaptation of the technique described
above can be used to computationally flatten the cortical
sheet, The surface is relaxed toward minimal surface
tension by including only the local elastic forces—i.e,,
by freeing it from the MRI data. The algorithm will then
gradually unfold the cortex while preserving its topology
and minimizing local geometric distortions. Figures 2B,
2C, and 21> show snapshots of the cortical surface during
the flattening process (after 30, 200, and 1000 iterations;
eventually the surface will approach an ellipsoid). In
these figures, locations on the initial folded surface with
large positive curvature (~sulci) are colored red, while
locations with large negative curvature (~gyri) are
stained green. Notice how some of the major sulci (eg.,
the superior temporal sulcus) that are hard to distinguish
from minor cnes in the initial folded cortex have become
much maore conspicuous after a partial flattening. This
confirms our experience in physically flattening the cor-
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tex of postmortem specimens of the human occipital
lobe (Sereno, McDonald, & Allman, 1988; Sereno & All-
man, 1991; Sereno, 1991),

A particular advantage of this partially flattened rep-
resentation is that the cortex retains its global shape,
appearing as if it has been gently inflated. This effectively
exposes hidden sulcal cortex without the rigors of a
complete flattening to a plane, which requires cuts in
order to reluax the surface, and which is much harder 1o
interpret (see, g, Jouandet, Tramo, Herron, ilermann,
Lofius, Bazell, & Gazzaniga, 1989). The partially flattened
images are quite reminiscent of a macaque brain.

Solutions displayed on such an “inflated” representa-
tion are much easier to parse. This representation could
casily be adapted to display patterns of activity detected
by other techniques like PET or functional MRI; the
folded cortical model would simply be colored with the
activity data and then inflated.

MODEL STUDIES

In the following we present some results of applying the
source localization technique described above to simu-
lited EEG and MEG data. In the 2-D studies the cortical
contour was approximated by about 400 vertices and was
computed from a coronal MRI image using the “shrink-
wrapping” algorithm described above. Similarly, the 3-D
studies were done on the polvgonal representation of
the folded cortical surface, with dipoles at the vertices
oriented along the locally estimated surface normal. The
original 150,000 vertices of the surface tessellation were
evenly subsampled to about 10,000 dipoles, for a spacing
between adjacent dipoles of about 4 mm.

The forward transformation matrix A was computed
based on the locations of the sensors and the location
and orientation of each dipole, using the equations for
the EEG and MEG given in Appendix A, The results of
the 2-D studies are shown on a slightly tifted, shaded
3-D rendering of the “shrink-wrap” solution onto a co-
ronal MRI section, with EEG electrodes and MEG sensors
shown as small planar patches in a concentric circular
arrangement. The inner circle represents the EEG elec-
trodes and the outer circle represents the MEG sensors.
For the 3-D studies, a geodesic arrangement of 61 electric
and 61 magnetic sensors was assumed, resulting in an
approximately uniform distribution of sensors over the
head, for a spacing between sensors of about 40 mm.
The sensor coordinates were calculated based on the
vertices of a half icosahedron subdivided with a fre-
quency of 3 (see Kenner, 1976). The arrangement was
scaled according 10 the radius of the head, as estimated
by half the distance from the nasion to the inion, and
rotated so as to align the equator of the arrangement
with a [ine from the nasion to the inion, based on MRI
data. Note that this spherical approximation to the head
tends to overestimate the distance from sensors on the
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lateral parts of the head to the brain, since the head is
typically not quite as wide as it is long.

The dipole strengths and recording values are color
coded. Positive values are indicated by red, while nega-
tive values are indicated by green. The magnitude is
coded by the saturation of the color; gray indicates that
the value is close to zero, saturated red indicates a large
positive value, and saturated green indicates a large neg-
ative value.

Single Radial or Tangential Dipole

Figure 3A shows the location of a single superficial,
nearly radial dipole. Figures 3B, 3C, and 3D show the
corresponding linear inverse solution using electric data
alone, magnetic data alone, and both kinds of data to-
gether. Notice that the solution based on magnetic data
alone is much worse than that based on electric data
alone.

Figure 4A shows the location of a single superficial,
nearly tangential dipole. Figures 4B, 4C, and 4D show
the corresponding linear inverse solution again for ¢lec-
tric data alone, magnetic daa alone, and both kinds of
data together. The solution based on magnetic data alone
is now much better than that based on ¢lectric data alone.

Interestingly, even though the MEG by itself is essen-
tially blind to radial sources, it can help rescue radial
sources when combined with EEG. This is because it can
rule out incorrect alternative interpretations of the EEG
data. For example, a radial dipole near a tungential dipole
generates a scalp current distribution similar to that pro-
duced by a single, laterally displaced radial dipole;
adding MEG data picks out the tangential dipole, thus
restoring the radial dipole to its rightful location.

Deep Dipole

Figure 5A shows the location of a radial dipole focated
deep inside the insula. Figure 5B shows the correspond-
ing linear solution using both electrical and magnetic
information. This illustrates the well-known problem that
minimum-norm-like techniques tend to interpret deep,
focal activity as more spread-out, superficial activity,

Figure 5D shows the dramatic improvement in the
solution made possible by taking temporal information
into account. In this simple case with only a single dipole
active, the sensor covariance matrix will be equal to the
outer product of the gain vector of the active dipole
location with itself plus some multiple of the identity
matrix [see Eq. (15)]. We have assumed white noise and
a signal-to-noise ratio of 3:1. The variance estimates Ry
for each dipole are shown in Figure 5C.

3-D Studies

The locations of eight assumed sources are illustrated
on the unfelded cortex in Figure 6A. The estimated so-

lution shown in Figure 6C {(the sensors are omitted)
demenstrates that these well-separated sources can all
be distinguished. The sensor covariance matrix was com-
puted assuming correlation berween each of the sources
of 0.5, additive white noise, and a signal-to-noise ratio of
10:1. Figure 6B shows the corresponding calculated var-
tance estimate Ry for each dipole. Nearby correlated
sources will merge, however, if they are close enough ©
each other. In Figures 7A4-C, the similarly signed (green)
source pair at the left is beginning to merge. Nearby
sources with different signs can sometimes be distin-
guished at closer distances (red-green pair at right), but
will eventually cancel each other if they are close encugh
(upper red—green pair).

It should also be noted that using sensor covariance
information does not always rescue deep sources. If the
magnitude of the signal produced by a deep source is
too weak compared to the noise, or if there are active
superficial sources that could produce a signal close 10
that of the deep source, some of the activity of the deep
source will be auributed to the superficial sources. This
uncerwinty in the estimate of the strength of a deep
saurce can be detected by analyzing the predicted esti-
mation error s described previously.

CONCLUSION

All known techniques for imaging brain activity have
limitations in remporal and spatial resolution. Some of
these limitations can be overcome by combining data
obtained using different techniques in a way that takes
advantage of the strengths of each technique to obtain a
single optimal solution. Note that this is very different
from finding solutions using each technique indepen-
dently and then comparing the results. If the solutions
are different in that case, it is not clear which part of
which solution to trust.

There are a number of advantages of the linear ap-
proach over traditional approaches to the problem of
source localization and imaging.

1. I provides a principled framework for combining
EEG and MEG recording data with information about
cortical geometry from MRIL

2. Since it makes no assumptions about the number
of equivalent dipole sources, this technique is well suited
o situations with many correlated sources of cortical
activity.

3. By incorporating an improved soft constraint based
on the observed covariance of sensors over time for a
particular event, localization of deep sources is greatly
improved, without disallowing spread-out solutions.

4, Other sources of data like PET or functional MRI
can be easily incorporated.

5. The recovery of the topology of the cortical mani-
fold makes it possible to conveniently view the solutions
(as well as data from other activity imaging techniques)
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Figure 3. A single superficial, nearly radial dipole source is shown in A The forward solutions are shown on the sensors, and the linear inverse
solution on the cortical ribbon for electric data alone (B), magnetic data alone (), and both kinds of data (D), The dipole strengths and recording
values are color coded and the inner and outer circles represent the EEG and MEG sensors. Positive values are indicated by red, while negative
values are indicated by green. The solution based on magnetic data alone is much worse than that hased on electric data alone.

> solutions for electric daw alone (B), magnetic data

Figure 4. A single superficial, nearly fangential dipole source is shown in A The linear invers
alone (C), and both kinds of data (D) now show that the solution based on magnetic dat alone
Figure 5. A deep radial source in the insula {A) illustrates a well-known problem with minimum-norm-like solutions. Even with both electric and
magnetic information, deep focal activity is interpreted as weaker superficial spread-out activity (B). Dramatic improvement in the solution results
when temporal information is taken into account (D). We have assumed white noise and a sigrial-to-noise ratio of 3:1. The corresponding calculated
variance estimates Ry for each dipole are shown in C.

Figure 6. 3-D model studies. The locations of eight sources are displayed on the flatened cortex in A (all calculations were performed using the
folded cortex). The solution using temporal information is shown in € (61 EEG and MEG sensors placed in a geodesic arrangement ure omitted; the
sensor covariance matrix was computed assuming between-source correlation of 0.5 and additive white noise, with a signal-to-noise ratio of 10; the
150,000 polygon surface was subsampled 1o about 10,000 dipoles for these solutions). The corresponding calculated variance estimates Ry for each
dipole are shown in B.

Figure 7. Nearby sources. Correlated sources can merge if they are close together (between-source correlation of 0.5). The lower left pair of
similarly signed sources in A are beginning to merge in the variance estimates in B and in the solution in C; even nearer pairs can be distinguished
if they are of opposite sign (lower red-green pair at right), but eventually cancel each other if close enough (upper red-green pair).
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after gently “inflating” the brain, as well as allowing more
effective intersubject comparisons.

6. The expected error of the solution can be com-
puted for different source configurations, providing a
principled way to quantify statistical significance of var-
ious hypotheses.

7. The spatial resolution is comparable to that of PET
or functional MRI without sacrificing fine-grained tem-
poral resolution,

METHODS
MRI Images

The brain of the second author was scanned on a GE
SIGNA system with a 1.5T magnet and the ADVANTAGE
software upgrade. The scanning sequence consisted of
three orthogonal T¥inversion recovery slice sequences
(TR=2000, TI=708, TE=12) and three orthogonal T2/
proton density spin-echo slice sequences { TR=2000,
TE=11, 70) for a tolal scan time of 82 min. All scans
used a 23-cm field-of-view, a4 matrix size of 256 X 192,
and contiguous 6-mm slices. Since the linear “devolums-
ing” of the images was quite sensitive to movement be-
ween successive images, a special effort was made 1w
stabilize the head, and, in particular, to prevent rotation
in the sagittal plane.

By evaluating the expression for absolute value of the
inversion recovery signal strength (with Mathematica on
the NeXT computer) for different repetition (TR) and
inversion (TI) times using T1 values for gray and white
matter (Mitchell, Conturo, Gruber, & Jones, 1984; Ivman,
Kurland, Levy, & Shoop, 1989; Buxton, personal com-
munication}, it was possible to search for the TI/TR com-
bination giving the best contrast berween these two tissue
npes.

Software

The major computational routines for the project (lincar
devoluming, tissue typing and skull removal, flood-filling,
surface tessellation, geodesic sensor placement, cortical
shrink-wrapping and inflation, forward solution, inverse
solution, sensor covariance weighting) were written in
C. Display software for the 2-D slice and 3-D cortical
surface images was also written in C using Silicon Graph-
ics GL routines, which take advantage of fast hardware
implementation of 3-D transformations, polygon filling,
and lighting calculations on Silicon Graphics machines.

APPENDIX A: FORWARD CALCULATIONS

In the following we will present the actual equations

used in the model studies for calculating the forward -

solutions for the EEG and MEG. The idealized assump-
tions made here about head geometry and electrical
parameters are not essential for the general linear ap-
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proach to the inverse problem, since these assumptions
affect only the values in the coefficient matrices, E and
B. These are simply treated as arbitrary arguments in the
inverse calculations. More realistic forward calculations,
based on the exact shape of the scalp, skull, and brain,
can be done using finite element methods (FEM), in
order 1o generate more realistic E and B matrices (see,
e.g., Meijs, Bosch, Peters, & Lopes da Silva, 1987, Yan,
Nunez, & Hart, 1991). Quantitative estimates of the shape
and thickness of the real scalp, skull, and conductive
bone sutures are, of course, directly available from the
same MRI images used to find the cortical manifold.

EEG Calculations

To calculate the EEG, we assume a single dipole in a
three-shell inhomogencous spherical conductor. The
shell model consists of a homogenous sphere of neural
tissue with radius 7y, surrounded by a concentric spher-
ical shell of outstde radius 7., representing the skull, and
another concentric spherical shell of ouside radius
representing the scalp. The scalp and the neural tssue
are assumed to have the same conductivity o, and the
skull to have conductivity 0. To simplify the calculations
the coordinate system is assumed rotated so that the
dipole lies on the z-axis, pointing in the x—z plane.

The potential recorded at location (w,8) on the scalp
can be expressed as

_ 1 St §(2n+1)2) (A1)
V) 4ma ,;g] 1 b(a’,, (n+1)
(15,P, cOS @ + S5 cos o cos B)
d, = +1)§+n](£+1)+
" " n+t1

(1 — E[(n + DHE+ ??](f%r£+[ _f;_”.'_l)

—n(1—-§)y (Jf—,l)zm

where { = o,/ 0, fi=r/Randfo = r2 /R s, and s,
are the tangential and radial components of the dipole
moment, or strength s. 2, and £, are the Legendre and
the associated Legendre polynomials, respectively (Ary,
Klein, & Fender, 1981),

MEG Calculations

Making assumptions similar to those made for the EEG
calculations we get the following expression for the ra-
dial component of the magnetic field » observed at lo-
cation (r,o,B) outside the head

bsinasinf s,

rof) = 4,“_’,2,?3;2

(A2)
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where

.
_2hcosa + (fz)

r r

Somewhat more complicated expressions can be found
for the nonradial components of the magnetic field (Cuf-
fin & Cohen, 1977). Note that the magnetic field is in-
dependent of the radial component s, of the dipole.

=1

APPENDIX B: ORTHOGONAL MRI SLICE
COMBINATION (“DEVOLUMING™)

The intersection between any three orthogonal MRI sec-
tions forms a cube, with sides equal to the section thick-
ness (typically several times the in-plane pixel width).
Let v denate the vector of N’ unknown cubic volume
elements (voxels) inside this cube, and let ¢, h, and s
denote vectors of N* known picture elements (pixels) of
the coronal, horizontal, and sagittal sides of the cube,
respectively. Then, if each pixel in a section reflects the
linearly weighted sum of MRI signal from the tissue
throughout the thickness of the section, the following
“forward” equations hold:

¢=Cv, h=Hy, s=S8v (B.1)

where C, H, and 8 are the easily derived linear operators
that map & voxel values into & pixel values in the
corona, horizontal, and sagiwal planes, respectivelv. A
least-squared-error estimate of v is then given by

v=(C'C+HH+SS+R)™

(C'c + H'h + §'s) (B.2)
where R is a regularization matrix, which is nypically set
equal to a small muttipte of the identity matrix.

APPENDIX C: CORTICAL SURFACE
REFINEMENT (“SHRINK-WRAPPING”)

In the “shrink-wrapping” procedure, the position of each
vertex is updated iteratively using a data term and
smoothness term according to the following equations:

1
pf”” =p5:) + aF(pE”)nf«” + B}\_{ > vi;_) (C.1)
i JEw,
where
1
n= (e ) X 1t ) + (e ¢ X 2t ) +
B (u,f. H';'\-' * H,‘I N}l)] (C.Z)
Vis
Uiy = ,—L' (€3)
v,-_,-
Vig =P — M (C.4)
where pf-') is the position of the dth vertex at iteration ¢,

N; is the ordered set of N; vertices neighboring the #th

vertex, N7 is the jth element of this set. By convention,
the elements of the set R, are ordered so that the cross
products #, X .0 point toward the outside of the
surface. The function Fp,) determines the repulsive or
auractive force acting on the #th vertex in a direction
perpendicular to the surface. It typically depends only
on the MRI values at the point p, taking on a negative
(awractive) value for CSF, and a positive (repulsive) value
for white matter. In the present study we used Fp) =
tanh{Y(/R(p) — IRwy)], where IR(p) is the inversion re-
covery image value ar location p, fRgny is the typical
inversion recovery image value for cortical gray matier,
and <y is a suitably chosen constant.

By varying the parameters o and B it is possible w0
control the influence of the data term o8 1" and the
smoothness wrm

1
B 2 v

¥ jox,
on the solution. Ierative “tltening”™ of the surface is
achieved by setting « equal to zero, which releases the
surface from the data.
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Notes

1. This does not address the problem of nonadditive “noise”
arising from errors in the forward solution (coefficicnts of the
A matrix}. This noise can be reduced by using a more realistic
forward solution (see Appendix A).

2. Leaving out the normalizing denominator in Eq. (18) results
in 1/ having the same units as of. However, this has the
undesirable effect of assigning very large a priori variance
estimates for dipole locations with gain vectors of small mag-
nitude (e.g., deep sources).
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of Neurosciences 0201, University of California, San Diego,
La Jolla, CA 92093-0201.

REFERENCES

Ary, ). B, Klein, 5. A, & Fender, D. H. (1981). Locations of
sources of evoked scalp potential: Corrections for skull and
scalp thicknesses. IEEE Transactions on Biomedical Engi-
neering, BME-28, 447-452.

. Barth, D. 8., & Di, 8. (1990). Three-dimensional analysis of

auditory-evoked potentials in rat neocortex. journal of
Nerrophysiology, 64, 1527-1536.
Belliveau, ). W, Kennedy, . N, McKinstry, R C., Buchbinder,

Derle and Sereno 175



B. R, Weisskopf, R. M., Cohen, M. S, Vevea, J. M., Brady, T. ],
& Rosen, B. R. (1991). Functional mapping of the human
visual cortex by magnetic resonance imaging. Scienice, 254,
716-719.

Buxton, R B., & Greensite, F. (1991). Target-point combina-
ticn of MR images. Magnetic Resonance in Medicine, 18,
102-115.

Carman, G. J. (1990). Mappings of the Cerebral Cortex. Ph.D.
diss., California Institute of Technology.

Cuffin, B. N., & Cohen, D. {1977). Magnetic fields of a dipole
in special volume conducior shapes. JEEE Trenisactions in
Biomedical Engineering, BME-24, 372-381.

Dagnelie, G., Spekreijse, H., & van Dijk, B. (1989). Topogra-
phy and homogeneity of monkey ¥1 studied through
subdurally recorded pattern-evoked potentials. Vistea! New-
roscience, 3, 509-525.

Damasio, H., & Frank, R. (1991). Three-dimensional mapping
of brain lesions in the primate brain. Society for Netwrosci-
ence, Abstracts, 17, 135.

George, 1. S, Lewis, P. S, Ranken, D. M, Kaplan, L., Aine, C. ],
& Wood, C. C (1992). Integrated computational models of
hunwan beain structure and function. In Proceedings of the
SUN Special fntevest Groupy in Medical Applications, SIGMA
{in press).

Hamalainen, M. S, & llmoniemi, R J. (1984). fnterpreting
measured wagretic fields of the brain.: Estimates of current
distribution. Helsinki University of Technology, Department
of Technical Physics Report TKK-F-A339.

Hari, R, & Lounasmaa, O. V. (1989). Recording and interpre-
tation of cerebral magnetic felds. Scierce, 244, 432-436.
Hvman, T. |, Kurland, R. [, Levy, G. G, & Shoop, J. D. (1989).
Characterization of normal brain tissue using seven calcu-
lated MRE parameters and a sttistical analysis system.

Magretic Resonance it Medicine, 11, 22-34.

Ioannides, A. A, Bolton, J. P R, & Clarke, C. [ 8. (1990),
Continuous probabilistic solutions w0 the biomagnetic in-
verse problem. freerse Problems, 6, 523-542.

Jouander, M. L., Tramo, M. K, Herron, D M., Hermann, A,
Loftus, W. C., Bazell, J., & Guazzaniga, M. S, (1989} Brain-
prints: computer-generated two-dimensional maps of the
human cerebral cortex in vivo. Journal of Cognitive
Newroscience, 1, 88-117.

Kenner, H. {1976). Geodesic math cnd bow 16 ise i Berke-
ley: University of California Press.

Luck, S. ], & Hillvard, S. A (1990). Electrophysiological evi-
dence for parallel and serial processing during visual
search. Perception and Psychophysics, 48, 603-617.

Meijs, J. W. H., Bosch, F. G. C,, Peters, M. }., & Lopes da Silva,
F. H. (1987}. On the magnetic field distribution generated
by a dipolar current source situated in a realistically
shaped compartment mede! of the head. Electroercephal-
ography and Clinical Neurophysiology, 66, 286-298.

Mitchel!, M. R, Conturo, T. E, Gruber, T. J., & Jones, J. .
(1984). Two computer models for selection of oprimal
magnetic resonance imaging (MRI} pulse sequence timing,
huestigative Radiology, 19, 350-360.

Mitzdorf, U. {(1987). Properties of the evoked potential gener-
ators: Current source-density analysis of visually evoked
potentials in the cat cortex. Infernational Journal of Neu-
roscience, 33, 33-59.

Mosher, J. C., Lewis, P. 5., & Leahy, R. M. (1992). Multiple
dipole modeling and localization of spatio-temporal MEG
data. IEEE Transactions on Biomedical Engineering, 39,
541-557.

176 Jowrnal of Cognitive Neurascience

Neville, H., Nicol, J. L., Barss, A., Forster, K. L, & Garrett, M. F.
(1991). syntactically based sentence processing classes—
evidence from event-related brain potentials. Jowrnal of
Cogritive Neuroscience, 3, 151-163.

Nunezx, P. (1981). Electric fields of the brain: The neurophysics
of EEG. New York: Oxford University Press.

Ogawa, 8., Tank, D. W, Menon, R, Ellermann, J. M., Kim,

5. G., Merkle, H., & Ugurbil, K. {1992). Intrinsic signal
changes accompanying sensory stimulation: functional
brain mapping with magnetic resonance imaging. Proceed-
ings of the National Academy of Sciences, [/SA. 89, 5951-
3955.

Pantey, C., Hoke, M., Lehnertz, K., Lutkenhoner, B., Fahren-
dorf, G., & Stober, U. (1990). Identification of sources of
brain neuronal activity with high spatictemporal resolution
through combination of neuromagnetic source localization
(NMSL) and magnetic resonance imaging (MRI). Electroern-
cephalography and Clinical Neurophysiology, 75, 173-184.

van Peuen, C., & Kutas, M. (1991). Influences of semantic and
syntactic context on open- and closed-class words. Memony
and Cognition, 19, 95-112.

Scherg, M. (1989). Fundamentals of dipole source potential
analysis. In F. Grandori, G. L. Romani, & M. Hoke {Eds.),
Aunditory evoked potentials and fields: Advances in audiol-
ogy 6. Basel: Karger.

Schwartz, E. L. (1990). Computer-aided neuroanatomy of ma-
caque visual conex. In E. L. Schwanz (Ed.), Computational
nerroscience (pp. 295-315). Cambridge: MIT Press.

Sereno, M. L (1991). Language and the primate brain. fro-
ceedings, Thirteenth Annual Conference of the Cognitive
Science Suciety (pp. 79-84). Hillsdale, NJ: Lawrence Erl-
baum Associates.

Sereno, M. L, & Allman, J. M. (1991). Cortical visual areius in
mammals. In A, G. Leventhal (Ed.), The newral basis of vis-
wal function (pp. 160-172). London: Macmillan.

Sereno, M. [, McDonald, C. T., & Allman, J. M. (1988). Mye-
loarchitecture of flat-mounted human occipital lobe: Possi-
ble location of visual area of MT. Society for Newroscience,
Abstracts, 14, 1123,

Smith, W, E., Dallas, W, J., Kullmann, W. H., & Schtitt, H. A.
(1990). Linear estimation theory applied 1o the reconstruc-
tion of a 3-D vector current distribution. Applied Optics, 29,
658-667.

Tichonoy, A, N, & Arsenin, V. Y. (1977). Solutions of fli-posed
problems, Washington D.C.: Winston {English translation by
F. John).

Wood, C. C., Cohen, D., Cuffin, B. N, & Allison, T. (1985).
Electrical sources in human somatosensory cortex: Identifi-
cation hy combined magnetic and potential recordings.
Scienice, 227, 1051-1053.

Wood, C. C., George, ]. 5, Lewis, P. 5, Ranken, D. M., &
Heller, L. (1990). Anatomical constraints for neuromagnetic
source models. Society for Netroscience, Abstracts, 16,
1241,

Yan, Y., Nunez, P. L., & Hart, R. T. (1991). A finite element
model of the human head; Scalp potentials due 1o dipole
sources. Medical and Biological Engineering and Compta-
ing, 29, 475-481,

Yuille, A L (1991). Deformable templates for face recogni-
tion. Journal of Cognitive Newroscience, 3, 59-70.

Volume 5, Number 2



