Foundations of Neuroimaging

Professor:

Marty Sereno -- email: msereno@ucsd.edu example time: MWF 9:00-9:50 AM, grad/advanced: F 8:00-8:50 take hand-written notes for better memory consolidation! take-home exams, final/paper based on lecture content

Course Content:

Sereno Lectures:

https://pages.ucsd.edu/~msereno/neuroimaging/lectures.html
Sereno Lecture Notes PDF (single-page links on homepage)
https://pages.ucsd.edu/~msereno/neuroimaging/notes.pdf

Background reading:
Huettel, S., A.W. Song, and G. McCarthy (2014) Functional
Magnetic Resonance Imaging, 3rd ed. (also 2nd ed.) Additional background readings, references:

https://pages.ucsd.edu/~msereno/neuroimaging/readings.html

Assignments:

Homework #0 (practice, not due)
Homework #1 (due end of 6th week) Homework #2 (due end of 12th week, test img here)
Final Paper: 5(ugrad)/10(grad)-page literature review on narrow methodological topic (~1 paper) (start search in Magnetic Resonance in Medicine, Neuroimage, Human Brain Mapping)

Learning Objectives:

Students will be able to do the following:

(1) explain precession/excitation/recording/contrast of magnetic resonance signals and echoes using the Bloch equation

(2) compute Fourier transform, use it to explain how RF simulation, gradients, and RF coil signals generate k-space data and how brain images are reconstructed from that data

(3) diagram main classes anatomical/functional pulse sequences (4) describe diffusion, perfusion, and spectroscopic imaging (5) describe origin/localization of EEG/MEG signals, cortical

surface-based methods, and how to combine them w/fMRI

Lecture Topics (e.g., Fall semester course):

Week 1 (MWF) -- Introduction

Introduction to Neuroimaging -- MRI, fMRI, EEG, MEG MRI hardware Spin and Precession

Week 2 (MWF) -- Bloch Equation

Bloch Equation Dot/Cross/Complex Products Precession solution Initial-Value Solutions to Differential Equation T1, T2 solutions
Bloch Equation/Solution -- matrix version

Week 3 (WF) -- Signal Equation

[no class: Mon] RF Excitation Signal Equation Phase-Sensitive Detection

Week 4 (MWF) -- Echoes

Free Induction Decay Spin Echo Spin Echo Equations Stimulated Echo, Spin Echo Trains Gradient Echo, Gradient Echo Trains

Week 5 (MWF) -- Using the Bloch Equation

Saturation-Recovery Signal Inversion-Recovery Signal Spin Echo Signal Gradient Echo Signal Gray-White Contrast Signal-to-Noise

Week 6 (MWF) -- Fourier Transform

Complex Algebra Fourier Transform

Negative Exponents, Orthogonality Spatial Frequency Space (k-Space)
One k-Space Point -- 3 representations

Week 7 (MWF) -- Gradients, Slice Selection

Gradient Fields **Gradient Combination** Slice Selection RF Pulse Details

Week 8 (MWF) -- MRI Image Formation

<u>1st Take-Home Exam Due</u> Frequency-Encoding -- A Misnomer Frequency-Encoding -- Incorrect and Correct Intuition Imaging Equation (ID)
Phase Encoding 3D Imaging
Spin Phase in Image Space
Gradients Move Signal in k-Space

Week 9 (MWF) -- Image Reconstruction

Image Reconstruction Aliasing and FOV Under/Over Sample

Replicas, FTs
General Linear Inverse for MRI Reconstruction

Week 10 (MWF) -- Practical Pulse Sequences

Fast Spin Echo Fast Gradient Echo Quantitative T1/PD/T2* Methods Gradient Echo EPI, Spin Echo EPI, Single-Shot Spiral SENSE, GRAPPA, Simultaneous Multi-Slice, 3D EVI

Week 11 (MWF) -- Image Artifacts

Fourier Shift Artifacts
EPI vs. Spiral Artifacts
Image-Space View Localized B0 Defect Effect Local B0 Defect on Reconstruction Shimming, B0-Mapping, Navigators Gradient Non-linearities RF Field Inhomogeneities

Week 12 (MW) -- Diffusion and Perfusion Imaging

Diffusion-Weighted Imaging and Tract Tracing Perfusion Imaging (Arterial Spin Labeling) [no class: Fri]

Week 13 (MWF) -- Phase-Encoded, Block Design

Phase-Encoded Stimulus for Mapping Convolution General Linear Model and Solution, Geometric Picture Cluster Correction -- 3D and Surface-Based Normalize, Strip Skull, Non-Isotropic Filtering Region-Growing, Tessellation: 3D -> 2D Cortical Unfolding and Flattening Sulcus-Based Alignment

Week 14 (M) -- Cortical Surface Methods

<u> 2nd Take-Home Exam Due</u> Cortical Thickness Measurement Mapping Cortical Visual Areas [no class: Wed, Fri]

Week 15 (MWF) -- Source of EEG/MEG

Intracortical Source of EEG/MEG Grad, Div, Curl 1D/2D/3D Current Source Density Why We Can Ignore Magnetic Induction

Week 16 (MWF) -- Neuroimaging EEG/MEG

Forward Solution Minimum Norm Linear Inverse Noise-Sensitivity Normalization

Week 17 (M)

Spatiotemporal Covariance Filters

Final Paper Due