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Abstract: Studying how the timing and amplitude of visual evoked responses (VERs) vary between
visual areas is important for understanding visual processing but is complicated by difficulties in
reliably estimating VERs in individual visual areas using noninvasive brain measurements. Retino-
topy constrained source estimation (RCSE) addresses this challenge by using multiple, retinotopically
mapped stimulus locations to simultaneously constrain estimates of VERs in visual areas V1, V2, and
V3, taking advantage of the spatial precision of fMRI retinotopy and the temporal resolution of mag-
netoencephalography (MEG) or electroencephalography (EEG). Nonlinear optimization of dipole
locations, guided by a group-constrained RCSE solution as a prior, improved the robustness of
RCSE. This approach facilitated the analysis of differences in timing and amplitude of VERs between
V1, V2, and V3, elicited by stimuli with varying luminance contrast in a sample of eight adult
humans. The V1 peak response was 37% larger than that of V2 and 74% larger than that of V3, and
also �10–20 ms earlier. Normalized contrast response functions were nearly identical for the three
areas. Results without dipole optimization, or with other nonlinear methods not constrained by prior
estimates were similar but suffered from greater between-subject variability. The increased reliability
of estimates offered by this approach may be particularly valuable when using a smaller number of
stimulus locations, enabling a greater variety of stimulus and task manipulations. Hum Brain Mapp
35:1815–1833, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Despite significant advances in non-invasive measure-
ment of brain activity over the last two decades, it remains
quite challenging to reliably measure, or even estimate, the

time course of visual evoked responses (VERs) in individual
visual cortical areas in humans. Functional magnetic reso-
nance imaging (fMRI) has provided the means to study the
response properties of individual visual areas with rela-
tively good spatial resolution, but the sluggish hemody-
namic response severely limits the temporal resolution of
fMRI, such that it cannot offer meaningful information
about the relative latency of responses in visual areas or the
timing of response modulation caused by various stimulus
or task-related parameters. Magnetoencephalography
(MEG) and electroencephalography (EEG) have excellent
temporal resolution, on the order of a millisecond, but the
ill-posedness of the inverse problem presents a challenge
for accurate localization of current sources and makes it
extremely difficult to confidently estimate the time course of
activity for a given visual area.
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The use of additional constraints derived from structural
or functional magnetic resonance imaging (MRI) provides
a way to specify which, of all possible combinations of
dipoles, are most relevant to the experiment at hand [Dale
and Halgren, 2001; Dale et al., 2000; Dale and Sereno,
1993; Hamalainen et al., 1993; Scherg and Berg, 1991].
Cortical surface reconstructions from structural MRI are
used to restrict potential sources to cortical gray matter
and the orientation of each current dipole can be assumed
to be perpendicular to the cortical sheet [Dale et al., 2000;
Dale and Sereno, 1993]. To further constrain source loca-
tions for visual evoked responses, fMRI data has been
used as either an initial estimate or fixed localization con-
straint in equivalent current dipole (ECD) modeling [Di
Russo et al., 2005; Vanni et al., 2004], or as a Bayesian
prior for distributed source estimation [Auranen et al.,
2009; Dale et al., 2000; Yoshioka et al., 2008]. The assump-
tion of self-similarity of the responses within visual areas
is another promising approach for improving source local-
ization and separation of responses [Cottereau et al.,
2012a].

Despite these advances in multimodal integration, limi-
tations related to crosstalk and separation of sources
remain for visual areas such as V2 and V3 [Auranen et al.,
2009; Cottereau et al., 2012b; Di Russo et al., 2005; Vanni
et al., 2004; Yoshioka et al., 2008]. Source estimation with a
few ECDs is problematic, usually requiring that multiple
visual areas be modeled by a single dipole, even when
fMRI and MRI data are used to determine dipole locations
or orientations [Di Russo et al., 2005; Vanni et al., 2004].
Distributed source estimation methods in which thousands
of ECDs are spread evenly across the cortical surface have
limited spatial precision as well, so that despite apparently
excellent localization accuracy [Moradi et al., 2003; Sharon
et al., 2007], the estimated waveform for a given location
contains a mixture of activity from neighboring locations
within �20 mm, making it impossible to generate reliably
independent source estimates for areas such as V1, V2,
and V3 [Bonmassar et al., 2001; Dale et al., 2000; Hagler
et al., 2009; Kajihara et al., 2004; Liu et al., 2002; Moradi
et al., 2003].

A fundamental limitation is that occipital cortex contains
several visual areas in close proximity that become active
with near simultaneity [Schmolesky et al., 1998; Schroeder
et al., 1998]. When the current dipole generated by an
active patch of cortex produces a similar spatial distribu-
tion of MEG and EEG sensor amplitudes as another,
nearby patch of cortex, there is inherent ambiguity
between them, resulting in crosstalk between the estimated
source waveforms for the two dipoles [Liu et al., 1998].
Depending on cortical folding, the predicted dipole orien-
tations for two areas may be nearly parallel for particular
stimulus locations, making it impossible to separate their
actual time courses. Even if the dipoles for two areas hap-
pen to be orthogonal, small inaccuracies in specifying
dipole orientations result in blending of the two time
courses.

In two previous studies in which fMRI retinotopy and
cortical surface reconstructions were used to precisely
determine the predicted location and orientation of current
dipoles in V1, V2, and V3 for various stimulus locations,
the estimated source waveforms exhibited implausible var-
iation within a given visual area if calculated independ-
ently for each location [Hagler and Dale, 2013; Hagler
et al., 2009]. If responses to multiple stimulus locations
were instead used to simultaneously constrain the inverse
solution, crosstalk between areas—and the effect of small,
random errors in specifying dipole orientations—was
greatly reduced [Hagler et al., 2009]. This method, which
we have called retinotopy constrained source estimation
(RCSE), provides more independent source estimates than
can be obtained with conventional equivalent current
dipole or distributed source estimation methods. It is not
limited by the proximity of these visual areas because it
relies upon the distinct pattern of dipole orientation as a
function of multiple stimulus locations for each visual
area, which is determined by an individual subject’s reti-
notopy and cortical folding pattern [Ales et al., 2010a;
Hagler and Dale, 2013; Hagler et al., 2009; Slotnick et al.,
1999].

RCSE is limited, however, in that it requires accurate
representations of the cortical generators for each stimulus
location. This can be affected by a number of factors
[Hagler and Dale, 2013], including spatial and intensity
distortion in MRI and fMRI images that require special
corrections [Holland et al., 2010; Jovicich et al., 2006]. The
quality of fMRI retinotopy data is also important, but even
subjects with superior retinotopy data can present difficul-
ties in obtaining sensible RCSE waveforms. Subjects with
highly folded cortex could make it more likely that a small
displacement along the cortical surface would result in a
large change in dipole orientation from reality, thus con-
taminating the resulting source estimates. This possibility
is mitigated by the use of a large number of stimulus loca-
tions. Ales et al. attempted to further reduce the influence
of such errors through an exhaustive neighborhood search,
in which a single cortical surface mesh vertex was chosen
from a defined cortical neighborhood for each stimulus
location and visual area to obtain the best possible fit to
their EEG data [Ales et al., 2010a]. In another recent study,
Hagler and Dale used a robust estimation technique
known as iteratively reweighted least squares (IRLS) to
reduce the contribution of outliers [Holland and Welsch,
1977; Huber, 1981]; that is, stimulus locations with particu-
larly high residual error [Hagler and Dale, 2013].

In this study, this same robust estimation approach was
used with a group of subjects, in order to find the consen-
sus estimate of the visual evoked responses for V1, V2,
and V3; the group-constrained solutions can be viewed as
a probabilistic atlas of visual area time courses. To
improve the reliability of individual subject RCSE wave-
forms, a probabilistic atlas-based, nonlinear search for bet-
ter fitting dipole locations was developed for this study. In
this method, small displacements along the cortical surface
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are tested for each stimulus location to find the one that
provides a better fit to both the data and the time course
atlas. The atlas serves as an a priori estimate to guide the
dipole optimization for individual subjects and avoid im-
plausible results that can result from less constrained non-
linear optimization. This method may be particularly
valuable when using a small number of stimulus locations.

METHODS

Participants

Eight healthy adults were included in this study (6
females, mean age: 25.2 � 3.0 SD, age range, 22–30). One
additional subject (female) was excluded because fMRI ret-
inotopy data were extremely noisy and therefore unusable.
Subjects were right handed, had normal vision, with no
history of neurological disorders. The experimental proto-
col was approved by the UCSD institutional review board,
and informed consent was obtained from all participants.

Data Collection

MEG signals were measured with an Elekta/Neuromag
Vectorview 306 channel whole head neuromagnetometer
(Elekta, Stockholm, Sweden), with two planar gradiome-
ters and one magnetometer at each of 102 locations. Elec-
trooculogram electrodes were used to monitor eye blinks
and movements. The sampling frequency for the MEG re-
cording was 601 Hz with an anti-aliasing low-pass filter of
200 Hz. The locations of the nasion, preauricular points,
and additional locations on the scalp were measured using
a FastTrack 3-D digitizer (Polhemus, Colchester, VT).
Head position indicator (HPI) coils were used to establish
the position of the head relative to the MEG device. Visual
stimuli were presented with a three-mirror DLP projector
and the maximum visual angle (top to bottom of display-
able area) was fixed at 25�. For recording behavioral
responses, a finger lift device was used with a laser and
light sensor (Elekta/Neuromag).

Magnetic resonance images of brain were collected
using a GE 3T scanner with a GE 8-channel phased array
head coil (General Electric). High-resolution T1-weighted
images were acquired to generate cortical surface models
(TR ¼ 10.5 ms, flip angle ¼ 15�, bandwidth ¼ 20.83 kHz,
256 x 256 matrix, 180 sagittal slices, 1 x 1 x 1 mm3 voxels).
Echo-planar imaging (EPI) was used to obtain T2

*-
weighted functional images in the axial plane with 2.5 mm
isotropic resolution (TR ¼ 2,500 ms, TE ¼ 30 ms, flip angle
¼ 90�, bandwidth ¼ 62.5 kHz, 32 axial slices, 96 x 96 ma-
trix, FOV ¼ 240 mm, fractional k-space acquisition, with
fat saturation pulse). For each of the gradient-echo EPI
scans, a pair of spin-echo EPI images with opposing
phase-encode polarities was collected for estimating the B0
distortion field (TR ¼ 10,000 ms, TE ¼ 90 ms, identical
slice prescription as gradient-echo images). Dental impres-

sion bitebars were used to reduce head motion. Stimuli
were presented via a mirror reflection of a plastic screen
placed inside the bore of the magnet, and a standard video
projector with a custom zoom lens was used to project
images onto this screen from a distance. The maximum
visual angle was measured for each session and ranged
from 26� to 29� due to practical limitations in our ability to
adjust the visual distance for fMRI experiments. The indi-
vidualized maximum visual angle measurements were
used as input parameters in fMRI retinotopic map fitting
and MEG dipole modeling, allowing for consistent map-
ping between MEG stimuli and the cortical surface for
each subject. An MRI-compatible fiber-optical button box
was used to record behavioral responses (Current Designs,
Philadelphia, PA).

Data Processing

MEG and MRI/fMRI data were processed using an
automated processing stream written with MATLAB (The
Mathworks, Natick, MA) and Cþþ by D. Hagler, A. Dale,
and other members of the UCSD Multimodal Imaging
Laboratory, which also uses software from AFNI [Cox,
1996], FreeSurfer [Dale et al., 1999; Dale and Sereno, 1993;
Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 1999;
Segonne et al., 2004; Segonne et al., 2007], and Fiff Access
(Eleckta/Neuromag, Stockholm Sweden). Very noisy or
flat channels were excluded from analysis. Magnetometers
were excluded because they are often noisy, depending on
environmental noise, and have less focal spatial sensitivity
profiles (i.e., lead fields). After rejecting trials containing
artifacts such as eye blinks and movements, data from
remaining trials for a given stimulus location were used to
calculate average time series time-locked to stimulus onset,
with a 100 msec pre-stimulus baseline and 350 msec post-
stimulus response. Before averaging, individual trials were
band-pass filtered between 0.2 and 120 Hz with a 60 Hz
notch filter, using buffer periods of at least 450 ms dura-
tion before and after each trial to reduce filter artifacts. In
addition, the periods from �100 to 350 ms relative to each
stimulus were linearly detrended, and the average of the
baseline period, from �100 to 0 ms, was subtracted to cor-
rect for baseline shifts.

fMRI data were corrected for slice timing differences
and head motion with AFNI’s 3dvolreg. B0-inhomogeneity
distortions in fMRI data were corrected using the revers-
ing gradient method [Chang and Fitzpatrick, 1992; Hol-
land et al., 2010; Morgan et al., 2004]. Displacement fields
estimated from paired spin-echo test images with opposite
phase-encode polarity were applied to each frame of the
motion-corrected gradient-echo EPI fMRI images [Holland
et al., 2010]. In-plane and through-plane gradient warping
in structural and functional MRI images was corrected by
applying a predefined, scanner specific nonlinear transfor-
mation [Jovicich et al., 2006]. Two or more T1-weighted
structural MRI volumes for each subject were coregistered,
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averaged, and rigidly resampled into alignment with an
atlas brain. Automated registration between T2-weighted
(fMRI and dMRI) and T1-weighted structural images was
performed using mutual information [Wells et al., 1996]
with coarse prealignment based on within-modality regis-
tration to atlas brains. The FreeSurfer software package
version 4.5.0 (http://surfer.nmr.mgh.harvard.edu) was
used to create cortical surface models from T1-weighted
MRI images [Dale et al., 1999; Dale and Sereno, 1993;
Fischl et al., 1999, 2001, 2002; Segonne et al., 2004, 2007].
The resulting surfaces were thoroughly checked for errors
in occipital cortex, and manual editing of the white matter
segmentation was performed to correct local defects.

Stimuli for MEG Sessions

Visual stimuli were portions of a black and white dart-
board pattern presented for 100 msec at three levels of
luminance contrast on a gray background (15%, 71%, and
95% Michelson contrast). There were 36 total stimulus
locations, divided between 3 eccentricities (3.6, 5.3, 8.2�

visual angle, with sizes 1.2, 2.2, 3.6� visual angle, respec-
tively) and 12 polar angles (22� polar angle wide, contigu-

ous, non-overlapping portions of the visual field,
excluding 24� polar angle centered on each horizontal or
vertical meridian) (Fig. 1A). The spatial frequency of the
stimuli was varied with eccentricity, according to a log
scale, with spatial frequency decreasing from �2.5 to �1
cycles per degree, although such square wave stimuli con-
tain a broad range of spatial frequencies. To ensure that
subjects maintained a stable level of alertness and main-
tained central fixation, subjects performed a simple task in
which they made a finger lift response upon rare dimming
of the central fixation cross (approximately once every 5–
10 s). Trials within 700 ms before or after a button press
were excluded. The interval between successive stimulus
onsets was fixed at 117 ms. Ten percent of trials were
‘‘null’’ events in which no stimulus was presented. The av-
erage of these null events reflects the average, ongoing ac-
tivity that overlaps with the response to stimulus trials.
This overlap was removed by subtracting the averaged
null event from the other stimulus condition averages. In a
single MEG session with up to 45 min of stimulus presen-
tation (separated into 2.5-min blocks with rest periods of
30 s or more), up to �16,000 total trials were acquired, di-
vided approximately equally across all stimulus locations
and contrast levels.

Retinotopic Mapping and Map Fitting

Procedures for the acquisition and analysis of phase-
encoded fMRI data were similar to previous, detailed
descriptions [DeYoe et al., 1996; Engel et al., 1994; Hagler
et al., 2007, 2009; Hagler and Sereno, 2006; Sereno et al.,
1995]. Retinotopic maps of polar angle were measured using
a black and white dartboard wedge revolving around a cen-
tral fixation cross (12� polar angle wide). Eccentricity was
mapped using an expanding or contracting ring. To ensure
a stable level of alertness and maximize attention, subjects
performed a peripheral detection task, in which they
pressed a button upon rare (�5–10 s inter-stimulus interval)
presentation of a gray circle at pseudo-random locations
occluding the flickering dartboard pattern [Bressler and Sil-
ver, 2010]. For each subject, there were equal numbers of
scans with counterclockwise or clockwise stimulus revolu-
tions. Similarly for eccentricity mapping, expansion and
contraction scans were counterbalanced. fMRI time series
data were normalized by mean intensity for each voxel. Lin-
ear regression was used with the motion estimates from
3dvolreg and a quadratic polynomial to remove drift and
head motion artifacts. Fourier transforms of the fMRI time
series were computed to estimate the amplitude and phase
of periodic signals at the stimulus frequency, with phase
corresponding to the preferred stimulus location for a given
voxel. For 5 subjects, a 32-s cycle was used, with 10 cycles /
scan, and for 3 subjects, a 64-s cycle was used with 5 cycles/
scan. Real and imaginary components were averaged across
scans, with phases for clockwise polar angle and contracting
eccentricity scans reversed before averaging. Phase delays

Figure 1.

Retinotopy constrained source estimation. A: Stimuli were dis-

played at one of 36 visual field locations. B: MEG was used to

measure VERs in an individual subject, and time courses for each

location are shown for a selected mid-line occipital gradiometer.

C: A map template was fitted to fMRI retinotopy data to identify

cortical patches for each stimulus location and construct retino-

topy constrained forward models. D: Source estimates were gen-

erated for V1, V2, and V3, simultaneously constrained by all 36

stimulus locations. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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of �3 s were subtracted from the Fourier components before
averaging to account for hemodynamic delays, and the
combination of opposite direction scans removes residual
bias due to spatially varying hemodynamic delays [Hagler
et al., 2007; Hagler and Sereno, 2006; Warnking et al., 2002].
For each subject, four polar angle scans (two clockwise and
two counterclockwise) and two eccentricity scans (one out-
ward, one inward) were collected in a single MRI session.

Nonlinear optimization methods were used to fit a tem-
plate map including V1, V2, and V3 to polar angle and ec-
centricity mapping data derived from fMRI [Dougherty
et al., 2003; Hagler and Dale, 2013]. The template maps were
initialized as rectangular grids, and each grid node was
assigned a preferred polar angle and eccentricity and a
unique area code, corresponding to the lower or upper field
portions of V1, V2, and V3 (Fig. 1C). V3 is often treated as
two separate areas, V3 and VP, but for simplicity, these will
be referred to as the lower and upper field portions of V3.
To align the template map with the cortical surface, regions
of interest (ROIs) were first manually drawn for each corti-
cal hemisphere of each subject to encompass all of V1, V2,
and V3, up to the maximum eccentricity measured with
fMRI; a buffer zone was included, extending to the middle
field representations of V3A and V4 (Fig. 1C). A two part fit-
ting procedure was then performed. First, a coarse fitting
step with 21 parameters determined the overall shape and
location of the template map that best fit the data. Second, a
fine-scale fitting step smoothly deformed the template to
better match the data. Unlike the previous description of
this map fitting method [Hagler and Dale, 2013], additional
free parameters were added to allow for greater flexibility
in the fitting, including 5 to model a polynomial curve and 6
to vary the length of each upper and lower field sub-area.

Retinotopy Constrained Source Estimation

Retinotopy constrained forward and inverse matrices
were calculated as described previously [Hagler et al.,
2009], with cortical patch models derived from retinotopic
map fits [Hagler and Dale, 2013] (Fig. 1). Lead fields were
calculated using the boundary element method (BEM)
[Mosher et al., 1999; Oostendorp and van Oosterom, 1989].
Unlike EEG, MEG signals are relatively insensitive to the
conductivity profile of the head because of the low con-
ductivity of the skull that confines almost all the current
within it, and so only the inner skull boundary was used
for the MEG forward solution, which was approximated
by filling and dilating FreeSurfer’s automated brain seg-
mentation [Fischl et al., 2002]. Brain conductivity was
assumed to be 0.3 S/m. Gain matrices, specifying the pre-
dicted sensor amplitudes for a set of cortical surface loca-
tions, were calculated for dipoles oriented perpendicularly
to the cortical surface. To determine the rigid body trans-
formation between MRI and MEG reference frames, 100 or
more digitized locations on the scalp were manually
aligned to a surface representation of the outer scalp sur-

face (obtained with the FreeSurfer watershed program)
using a graphical interface written with MATLAB.

Models of the cortical sources of evoked visual
responses, limited to visual areas V1, V2, and V3, were
generated for each subject by selecting weighted cortical
surface patches based on the retinotopic map fit, as
described in detail previously [Hagler and Dale, 2013]. For
each stimulus presented during an MEG session, weight-
ing factors for each cortical surface vertex (�0.8 mm inter-
vertex distance) in V1, V2, and V3 were calculated based
on the preferred stimulus location derived from the fMRI
retinotopy template fit. Realistic receptive field size esti-
mates were used to define the extent of cortical activation
for each stimulus. Values of 0.66, 1.03, and 1.88 (degrees
visual angle) were used for V1, V2, and V3, respectively,
with slopes as a function of eccentricity of 0.06, 0.10, and
0.15 (degrees visual angle/eccentricity degrees visual
angle), derived from published group averages of recep-
tive field sizes estimated from fMRI data [Dumoulin and
Wandell, 2008]. The vertex weights were normalized so
that the sum across visual field locations equaled one, and
values less than 0.01 times the maximum for each cortical
location were set to zero. Vertices in ipsilateral cortex were
allowed (e.g., near vertical meridians) as was crossover
between the upper and lower field sub-areas (e.g., near
horizontal meridians). Each vertex was treated as a sepa-
rate dipole, with orientation assumed to be perpendicular
to the cortical surface.

Retinotopy constrained forward matrices were con-
structed from the gain matrices described above and the
cortical patch weighting factors for each stimulus location.
The gain vectors for all 36 stimulus locations—or alterna-
tively a subset of four locations—were arranged into a sin-
gle column, assuming that a given visual area has the same
evoked response regardless of stimulus location [Ales et al.,
2010a; Hagler and Dale, 2013; Hagler et al., 2009; Slotnick
et al., 1999]. The size of the forward matrix was the number
of measurements (# of sensors X # of stimulus locations) by
the number of sources (visual areas). An inverse matrix was
calculated from the forward matrix using a regularized
pseudo-inverse with an identity matrix as the sensor noise
covariance matrix. Separate source estimates were calcu-
lated for each contrast level using the same, time invariant
inverse matrix. Normalized residual error was calculated as
the ratio between the across-sensor variance of the residual
error and the maximum variance of the data over time. To
exclude potential interactions with the other nonlinear
dipole optimization methods used in this study, IRLS was
not used for individual subject RCSE solutions.

Group-Constrained RCSE

RCSE waveforms were calculated using MEG data and
retinotopy constrained forward solutions from multiple
subjects to simultaneously constrain the solution. To con-
struct a group retinotopy constrained forward matrix, the
retinotopy constrained forward solutions for multiple
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subjects were concatenated into a single matrix with a col-
umn for each of the three visual areas and �58,000 rows
for �204 gradiometers (excluding bad channels), 36 stimu-
lus locations, and 8 subjects. An inverse matrix was then
calculated and applied to the event-related MEG data con-
catenated across sensors, stimulus locations, and subjects.

IRLS was used to reduce the contribution of individual
subject responses to particular stimulus locations with
large residual error relative to other locations and subjects
[Hagler and Dale, 2013; Holland and Welsch, 1977; Huber,
1981]. The absolute value of residual error was summed
across all time points, contrast levels, and sensors, to pro-
vide absolute residual error (ARE) values for each subject
and stimulus location combination. The minimum ARE
value across all subjects and stimulus locations was sub-
tracted from each ARE value, and these offset values were
then normalized by their median absolute deviation
(MAD), a robust estimator of the standard deviation [Ham-
pel, 1974]. Weighting factors were calculated from the nor-
malized residual using Tukey’s bisquare function [Tukey,
1960]. These weights were used to scale both the sensor
data and retinotopy constrained forward matrix before cal-
culating the inverse operator and source estimates. Pre-
dicted sensor waveforms were calculated using the revised
source estimates and the unweighted forward matrix. This
process was repeated for at most 100 iterations or until the
solution converged (i.e., source estimates change less than
10�7), which typically occurred within 10 iterations.

Optimization of Cortical Patch Locations

Constrained by Prior

An iterative, random search procedure was used to find
optimal cortical patch locations. At each of 1,000 iterations,
cortical patches were slightly displaced across the cortical
surface using a 2-dimensional grid defined to encompass
the occipital ROI used for the retinotopy map fit. In units
relative to the width of the grid, the step size for each
optimization step was 0.002 and the maximum displace-
ment was 0.02. This corresponded to a maximum displace-
ment of �5 mm across the cortical surface and a mean
displacement of 2.4 � 0.2 mm (see Supporting Information
Table 1). With patches in four visual field quadrants of
three visual areas and either 4 or 36 stimulus locations,
there were a total of 96 or 864 parameters, respectively. The
optimization procedure required 10–20 min to complete
with 4 stimulus locations and 1–2 h with 36 locations.

The optimized solution was constrained to be similar to
a group-constrained RCSE solution, which served as an a
priori estimate of the shapes of V1, V2, and V3 waveforms.
The cost function to be minimized is described by Eq. (1):

c ¼ k � eprior þ ð1� kÞ � edata (1)

where c is the cost function, k is a weighting factor between
0 and 1, eprior is the normalized difference between the
source estimates and the prior waveform, and edata is the

normalized residual error, or the difference between the
data and fit. A weighting factor of 0.5 would represent
equal weighting between correspondence to the atlas prior
and goodness of fit to the data, whereas a value of 1.0
would rely solely on the atlas prior. In this study, the prior
weighting factor was chosen to be 0.8, a value that was
large enough to prevent clearly wrong source estimates,
such as can happen with no atlas prior, particularly with
few stimulus locations (Figs. 2B and 5B), but less than 1 so
that the individual’s data still contributed to the solution.

To use only the shape of the prior to constrain the solu-
tion and allow the optimized waveform amplitudes to
vary between subjects, for each iteration of the optimiza-
tion procedure, the amplitude of the prior was linearly
scaled to optimally match the source estimate amplitude.
To avoid making any assumptions about the relative
amplitudes of V1, V2, or V3, the prior was scaled inde-
pendently for each visual area. To avoid circularity issues
related to self-bias, the prior estimate for each subject was
the group-constrained RCSE solution calculated from the
other seven subjects. Similarly, to avoid the possibility of
biasing the contrast response functions, only the responses
to high contrast stimuli and the group-constrained RCSE
solutions computed from them were used to determine
the optimal dipole locations; these locations were then
used to estimate waveforms for each contrast level.

Exhaustive Neighborhood Search

A related nonlinear optimization method, previously
introduced by Ales and colleagues [Ales et al., 2010a], was
also implemented for comparison. That method, herein
referred to as a neighborhood search, performs an exhaus-
tive search for the single cortical surface mesh vertex within
a defined cortical neighborhood for each stimulus location
and visual area that minimizes residual error. In this study,
the cortical neighborhood was defined based on the
weighted cortical patches determined by the fMRI retino-
topic map fit used for the non-optimized RCSE solution. To
make the problem tractable, the search is performed in se-
rial for each cortical neighborhood, during which the
dipoles for all other stimulus locations are held constant
[Ales et al., 2010a]. Only the primary cortical patch was
used, excluding the additional patches for ipsilateral and
opposing upper/lower hemifields. To reduce the size of the
neighborhood to be similar to the allowed range for the
patch displacement search described above (see Supporting
Information Table 1), vertices with weights less than 70% of
the maximum weight for a given patch were excluded. The
neighborhood search optimization required 2–3 h to com-
plete with 36 stimulus locations.

Waveform Analysis

Peak latency and amplitude were derived from group
average RCSE waveforms. This approach, rather than
finding peaks in individual subject waveforms, was
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chosen because some subjects exhibited responses with
double peaks, particularly at lower contrast, resulting in
elevated variance of peak latency. Peaks were detected
using Eli Billauer’s peakdet (http://www.billauer.co.il/
peakdet. html), which finds minima and maxima that are
a minimum difference from surrounding extrema (0.5
nA�m). The peak with the largest amplitude between 50
and 150 ms post-stimulus was chosen for analysis. Boot-
strap resampling was used to calculate 95% confidence
intervals for average waveforms and peak latencies and
amplitudes [Efron, 1979, 1987]. For each of 2,000 itera-
tions, a sample of eight subjects was selected with
replacement, average waveforms were calculated, and
peak latencies and amplitudes were determined. Confi-
dence intervals and p-value upper bounds were then
derived from the distribution of observed values, using
the bias correction and acceleration method to correct for
bias due to finite sampling [Efron, 1987]. To control for
multiple comparisons involved in the latency and ampli-
tude comparisons between V1, V2, and V3 at low, me-
dium and high contrast, a p-value threshold of 0.0175 or
less was determined to result in a 0.05 false discovery
rate [Benjamini and Hochberg, 1995].

RESULTS

Between Subject Variability of RCSE Waveforms

In previous descriptions of RCSE, the V1, V2, and V3
waveforms have shown similarities across studies and
between subjects, although only two subjects were
included in each [Ales et al., 2010a; Hagler and Dale, 2013;
Hagler et al., 2009]. The typical V1 response to high con-
trast pattern stimuli was dominated by a large negative
peak at �80 ms post-stimulus, which reflects a current
dipole pointing from gray matter toward the underlying
white matter [Hagler et al., 2009]. For V2 and V3, the ini-
tial negative peaks were delayed by several milliseconds
(Fig. 1D). In this study, with a larger sample of eight sub-
jects, there were again similarities common to all subjects,
but substantial variation was observed as well. Examples
of this were differences in the relative peak amplitudes of
each area, inverted or biphasic initial responses for one or
more areas in some subjects, and simultaneous responses
in V1 and V2 or V3 in some subjects (Fig. 2).

The source of this variation is presumably at least partly
artifactual, due to slight errors in the specification of
dipole locations and orientations [Hagler and Dale, 2013;

Figure 2.

Group-constrained RCSE. RCSE time courses calculated from

responses to high contrast (95%) stimuli for eight subjects are

shown in blue (V1), green (V2), or red (V3), with group-RCSE

solutions superimposed in black. A: RCSE solutions with 36

stimulus locations. B: RCSE with 4 stimulus locations. Locations

of the 4 stimuli were at 5.3� visual angle and 45� from the hori-

zontal and vertical meridians, as indicated by the inset image of

stimulus locations. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Hagler et al., 2009]; these unusual waveform features
occurred more often when fewer stimulus locations were
used to constrain the solutions (Fig. 2B). That waveforms
estimated with a small number of stimulus locations ex-
hibit greater sensitivity to dipole specification errors was
confirmed through additional simulations (Supporting In-
formation Fig. 1). If dipole locations were shifted across
the cortical surface, a variety of waveform shapes resulted
(Fig. 3). For individual subjects, the use of many stimulus
locations reduces the sensitivity to errors specific to one or
a few stimulus locations [Hagler and Dale, 2013; Hagler
et al., 2009], and robust estimation with IRLS can further
reduce the contribution of outliers [Hagler and Dale, 2013;
Holland and Welsch, 1977; Huber, 1981]. Similarly, the
larger group of subjects in the current study provided the
opportunity to obtain multi-subject consensus estimates of
the V1, V2, and V3 VER time courses, using IRLS to
reduce the contribution of outliers (Fig. 2; see Group-con-
strained RCSE in Methods).

Optimization of RCSE Constrained by Prior

To improve the reliability of RCSE for individual subjects,
particularly when using a smaller number of stimulus loca-
tions, an optimization method was developed to correct for

inaccurately specified dipole locations and orientations
(Supporting Information Fig. 2). This method works by
nonlinearly searching for displacements along the cortical
surface of the cortical patches for each stimulus location, in
order to provide a better fit to the sensor data (Fig. 3A–C).
An exhaustive neighborhood search was also tested for
comparison [Ales et al., 2010a]. Because of the introduction
of many free parameters, it is possible to obtain solutions
with reduced residual error (Supporting Information Fig. 3)
that are nonetheless quite implausible (Fig. 4A,B), particu-
larly with a small number of stimulus locations (Fig. 5A,B).
To prevent this, the group-constrained RCSE solution was
used as a priori information about the timing and shape of
the response of each area—essentially a probabilistic atlas
of visual area time courses—in order to constrain the indi-
vidual subject solution (Fig. 3D). To avoid circularity issues,
a leave-one-out approach was used for computing the
group-constrained RCSE solutions, so that an individual’s
own initial RCSE waveforms did not contribute to the prior
used to constrain the optimization. Using this method, the
types of waveform abnormalities described above were gen-
erally avoided, and the variance of RCSE waveforms across
subjects was substantially reduced (Figs. 4C and 5C). These
different optimization methods were constrained such that
they resulted in dipole displacements no greater than 6 mm

Figure 3.

RCSE dipole optimization constrained by group-RCSE prior. A:

Schematic depiction of the relationship between cortical folding,

dipole location, and predicted dipole orientation. B: Dipole

patches were displaced across the cortical surface in search of

better fitting locations. C: For an individual subject, cortical dis-

placement of dipole patches can result in a variety of V1, V2,

and V3 RCSE waveforms, some of which provide a better fit to

the measured MEG data. D: To constrain dipole optimization,

waveform estimates (blue, green, or red traces) are compared

with the prior estimate derived from group-constrained RCSE

(black traces) that have been scaled in amplitude (gray traces) to

best match the estimate at each iteration. RCSE waveforms

shown were derived from responses to high contrast (95%)

stimuli. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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that were less than 2.5 mm on average (Fig. 6, Supporting
Information Table 1).

Differences between V1, V2, and V3 Responses

and the Effects of Luminance Contrast

RCSE with prior-constrained dipole optimization was
used to measure V1, V2, and V3 responses as a function of
luminance contrast (Fig. 7). Stimuli at 36 locations were
presented one at a time, using three different luminance
contrast values (15%, 71%, 95%; Fig. 7D). RCSE waveforms
averaged across the eight subjects show that both the am-
plitude and latency of the responses vary with luminance

contrast in expected ways (Fig. 7A–C). At low contrast, the
responses were both smaller and later (Fig. 7E,F). The con-
trast latency functions were similarly shaped for V1, V2,
and V3, but with significantly earlier peak responses in V1
for each contrast level, ranging from �10 to �20 ms (Fig.
7E, Tables I and II). Peak latencies of V2 and V3 were
quite similar, although a small difference of �4 ms was
found to be significant for 71% and 95% contrast stimuli
(Fig. 7E, Tables I and II). Peak amplitudes for V1 were
larger than those of V2 by 37%—though significant only
for 71% and 95% contrast—and larger than those of V3 by
74% (Fig. 7F; Tables I and II). Peak amplitudes for V2
were 27% larger than for V3, but these differences were
not significant. Normalized contrast response functions

Figure 4.

Group-constrained RCSE after nonlinear optimization. RSCE

time courses calculated from responses to high contrast (95%)

stimuli at 36 locations for eight subjects after three methods of

nonlinear optimization shown in blue (V1), green (V2), or red

(V3), with recalculated group-RCSE solutions superimposed in

black. A: Neighborhood search. B: Displacement search without

prior. C: Displacement search constrained by group-RCSE prior.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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were nearly indistinguishable for the three visual areas
(Fig. 7G). The overall shape of the estimated response was
similar for the three areas, but V1 displayed a second neg-
ative peak at �190 ms—about the time expected for a
response to the stimulus offset. A similarly prominent
peak was not observed in the V2 or V3 waveforms.

These results, obtained using the prior-constrained dipole
optimization described above, were qualitatively compared
to results without optimization, with neighborhood search,
and with displacement search unconstrained by a prior,
using either 36 or 4 stimulus locations (Figs. 8 and 9, Sup-
porting Information Fig. 3). The average response ampli-
tudes were generally larger when using four stimulus
locations instead of 36, as was the proportion of explained

variance. Response amplitudes increased after optimizing
dipole location via displacement search. Explained variance
was increased when the search was not constrained by a
prior, but roughly unchanged when a prior was used. Curi-
ously, response amplitudes were relatively small with
neighborhood search, despite increases in the explained
variance. This may be due to reduced cancellation when
using single vertices to model dipoles rather than distrib-
uted cortical patches [Ahlfors et al., 2010]. Aside from these
differences, the functions of peak latency and amplitude rel-
ative to luminance contrast were similar for the different
sets of results. There was, however, greater inter-subject
variability for the non-optimized estimates and the esti-
mates using neighborhood search or displacement search

Figure 5.

Group-constrained RCSE after nonlinear optimization. RSCE

time courses calculated from responses to high contrast (95%)

stimuli at four locations for eight subjects after three methods

of nonlinear optimization shown in blue (V1), green (V2), or red

(V3), with recalculated group-RCSE solutions superimposed in

black. A: Neighborhood search. B: Displacement search without

prior. C: Displacement search constrained by group-RCSE prior.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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unconstrained by a prior. This resulted in larger 95% confi-
dence intervals, particularly with only four stimulus loca-
tions (Fig. 9), thereby reducing power to detect differences
between conditions or visual areas.

A potential explanation for the lack of substantial differ-
ences between V2 and V3 is that their sensor topographies
are too similar to properly distinguish between them [Ales
et al., 2010b]. The patterns of MEG sensor topography pre-
dicted by the retinotopy constrained forward solutions as
functions of stimulus location were reviewed for each vis-
ual area [Supporting Information Figs. 4–6]. Although to-
pography for several stimulus locations may in fact be
similar for V2 and V3, such that the angular difference
between their dipoles was consistently less than for V1
and V2 or V1 and V3 (Supporting Information Table 2),
the collection of multiple stimulus locations appeared to
allow for adequate separation between visual areas. This
was quantified using the crosstalk measure [Hagler et al.,
2009; Liu et al., 1998], which was quite low between V2

and V3, both before and after prior-constrained dipole
optimization, even for only four stimulus locations (Sup-
porting Information Table 3).

DISCUSSION

Estimation of visual evoked responses in individual vis-
ual areas based on noninvasive recordings is a challenge
for a number of reasons; chief among them, the close prox-
imity of early visual areas and the convoluted cortical sur-
face upon which retinotopic maps lie. RCSE accounts for
the mapping of the visual field to the folded cortical sur-
face, and through the use of multiple stimulus locations to
constrain the solutions, resolves the proximity issue [Ales
et al., 2010a; Hagler and Dale, 2013; Hagler et al., 2009].
The primary limitation of RCSE is related to the inherent
imprecision of mapping between the visual field and vis-
ual cortex. To compensate for small errors in the

Figure 6.

Cortical patch dipoles before and after optimization constrained

by prior for three representative subjects (A–C). Colors for

each cortical patch (excluding those with weights < 0.2 relative

to maximum) correspond to the central polar angle of the

matching stimulus, using the same color scheme as in Figure 1C.

The small holes in the patches after optimization are related to

how patches were displaced across the cortical surface. For

each vertex in the original patch, a single vertex was chosen

closest to the original location plus the 2-dimensional displace-

ment. Dashed, yellow lines represent approximate, manually

drawn borders between V1, V2, and V3. Solid white lines repre-

sent approximate, manually drawn borders after optimization.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

r Optimization of Retinotopy Constrained Source Estimation r

r 1825 r



specification of dipole locations and improve the reliability
of RCSE, a dipole optimization procedure was developed,
constrained by prior information about the time courses of
activity in V1, V2, and V3. This is the first study using
RCSE to include results from more than two subjects, and
while the sample size of eight subjects was not large, it
was sufficient to answer some basic questions about differ-
ences between the responses of V1, V2, and V3. The V1
peak response was �10–20 ms earlier than that of V2 and
V3, as well as �30–70% larger in amplitude. Normalized
contrast response functions were, however, nearly identi-
cal for the three visual areas.

General Limitations of RCSE

One of the key, simplifying assumptions of RCSE is that
time courses within a visual area are identical for stimuli at
different visual field locations. This is likely a reasonable
approximation, and there is some evidence to suggest that
estimated responses are quite similar within eccentricity
bands [Slotnick et al., 1999] and across left and right hemi-
fields [Ales et al., 2010a]. There is, however, evidence that
visual evoked potential peak latencies decrease with
increasing eccentricity [Baseler and Sutter, 1997]. Further-
more, differences between responses to stimuli in the upper
and lower visual fields may be predicted based on previous
demonstrations of a behavioral advantage for lower field
stimuli [Levine and McAnany, 2005; McAnany and Levine,
2007; Previc, 1990; Skrandies, 1987], as well as much larger
visual evoked fields [Portin et al., 1999]. The potential for
variation of the responses across the visual field is, there-
fore, a real concern, as discrepancies between visual field
locations will contribute to greater residual error. Despite
this, it seems appropriate to view the RCSE estimates as
consensus solutions that, in the event of latency variations
across the visual field, will have intermediate timing. In any
case, future work should include a detailed analysis of the
variation across the visual field by comparing the responses
estimated from subsets of stimulus locations.

The ability of RCSE to correctly distinguish between one
visual area and another depends on the accuracy of the
forward model. For example, because of cortical curvature,
small displacements along the cortical surface can result in
large changes in the predicted dipole orientation [Hagler
et al., 2009]. If multiple stimulus locations are used, and
the displacements are small and randomly distributed, the
estimated waveforms may not be substantially altered,

Figure 7.

Group averages of V1, V2, and V3 responses to stimuli with varying

luminance contrast. A: V1, V2, and V3 RCSE waveforms after

dipole optimization for low luminance contrast (15%) stimuli. B:

Medium contrast (71%). C: High contrast (95%). D: Images of stim-

uli with three levels of luminance contrast. E: Peak latency as a func-

tion of luminance contrast for V1, V2, and V3. F: Peak amplitude

relative to the pre-stimulus baseline. G: Normalized peak ampli-

tude, relative to mean amplitude at high contrast. 95% confidence

intervals derived from bootstrap resampling are shown as shaded

regions (A–C) or error bars (E–G). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Peak latencies and amplitudes obtained from

group mean RCSE waveforms after dipole optimization

constrained by prior for V1, V2, and V3, and three levels

of luminance contrast

Visual area
Contrast

(%)

Peak latency Peak amplitude

Mean
(msec)

95%
confidence

Mean
(nAm)

95%
confidence

15 99.9 94.8–105.6 7.1 5.5–9.4
V1 71 80.7 76.8–84.6 13.8 11.3–17.1

95 77.6 73.9–79.4 15.9 13.4–19.9

15 110.8 106.4–113.7 5.7 3.6–7.6
V2 71 98.1 95.8–99.2 9.6 6.7–12.4

95 91.8 90.6–94.4 11.3 7.9–14.6

15 109.4 106.8–118.9 4.4 2.7–6.0
V3 71 102.1 96.5–104.6 7.7 5.2–10.3

95 95.6 92.0–99.2 9.0 6.2–12.0

95% confidence intervals were derived from bootstrap resampling.
Peak amplitudes correspond to negative (inward) currents, but for
simplicity are shown without negative signs.
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although residual error will be increased [Hagler et al.,
2009]. Larger or systematic discrepancies in the mapping
between MEG stimulus locations and fMRI retinotopic

maps could result in highly inaccurate source estimates,
particularly when fewer stimulus locations are used (Fig.
3, Supporting Information Fig. 1).

TABLE II. Differences in peak latencies and amplitudes obtained from group mean RCSE waveforms after dipole

optimization constrained by prior for V1, V2, and V3, and three levels of luminance contrast

Visual areas Contrast (%)

Peak latency difference Peak amplitude difference

Mean (msec) 95% confidence P-value Mean (nAm) 95% confidence P-value

15 10.9 6.9–17.8 0.0005 1.4 �0.2–4.6 0.1050
V2 vs. V1 71 17.4 14.7–21.9 0.0005 4.2 1.8–8.7 0.0005

95 14.1 10.6–16.4 0.0005 4.6 1.8–9.8 0.0005

15 9.5 3.6–26.5 0.0005 2.8 1.4–4.2 0.0005

V3 vs. V1 71 21.4 17.1–26.9 0.0005 6.1 3.5–7.8 0.0005

95 18.0 15.7–24.6 0.0005 6.9 3.6–9.1 0.0005

15 �1.4 �6.5–6.1 0.4835 1.4 �0.7–4.0 0.2145
V3 vs. V2 71 4.0 0.9–6.1 0.0175 1.9 �1.1–4.7 0.1975

95 3.9 2.1–12.6 0.0040 2.3 �0.4–5.4 0.0960

95% confidence intervals were derived from bootstrap resampling. p-values less than or equal to 0.0175, providing a false discovery rate
of 0.05, are in bold.

Figure 8.

Group average responses for 36 stimulus locations, with and

without dipole optimization. A: Group average RCSE waveforms

for high contrast (95%) stimuli (top), peak latency versus con-

trast (middle), and peak amplitude versus contrast (bottom) for

initial RCSE estimates without optimization. B: Neighborhood

search. C: Displacement search without prior. D: Displacement

search constrained by group-RCSE prior. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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There appears to be an inverse relationship between the
estimated response amplitude and residual error, such that
estimated waveforms with small amplitudes are accompa-
nied by high residual error. Consistent with this, increased
response amplitudes were observed for estimates using
only four stimulus locations (Figs. 8 and 9) as well as a cor-
responding increase in the proportion of variance explained
by the RCSE fit (Supporting Information Fig. 3). The use of
many stimulus locations tends to reduce the amount of var-
iance that can be explained, since noise that is independent
for the different stimulus locations is excluded from the fit-
ted solution [Hagler and Dale, 2013]. For example, RCSE fit
variance during the pre-stimulus baseline period was nearly
zero, compared with substantial, non-zero variance of the
data during this period (Supporting Information Fig. 3).
Also, the cumulative effect of inaccurately specified cortical
patch locations increases residual error more when using
many stimulus locations (Supporting Information Fig. 7). In
contrast, source estimation methods using a single stimulus
location can account for a greater fraction of variance—even
in baseline periods without actual neural activity—although
this does not imply a more accurate solution [Hagler and
Dale, 2013; Hagler et al., 2009].

Another limitation of current and previous implementa-
tions of RCSE is that only the early visual areas V1, V2, and
V3 were modeled. Using multiple stimulus locations does
impose a strong constraint on the RCSE solution and
reduces the likelihood of contamination between visual
areas [Hagler et al., 2009], but to the extent that other visual
areas are activated by these stimuli, the omission of such
areas contributes to elevated residual error, presumably
more so at later time points. If only to gain more compre-
hensive information about the properties of the visual sys-
tem, it would be desirable to include additional visual
areas. Creating retinotopy constrained dipole models for
areas such as V3A, V4, or V5 would be relatively straightfor-
ward, but the results would require careful validation, par-
ticularly given the small size of these areas, their large
receptive fields, and their close proximity to other, related
visual areas.

Between Subject Variability of RCSE Waveforms

Some degree of heterogeneity among human subjects in
the latency of visual evoked responses is expected, for
example, due to differences in axonal conduction speed

Figure 9.

Group average responses for four stimulus locations, with and

without dipole optimization. A: Group average RCSE waveforms

for high contrast (95%) stimuli (top), peak latency versus contrast

(middle), and peak amplitude versus contrast (bottom) for initial

RCSE estimates without optimization. B: Neighborhood search.

C: Displacement search without prior. D: Displacement search

constrained by group-RCSE prior. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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[Berman et al., 2009]. Other large variations in RCSE wave-
forms across subjects, such as polarity inversions, are more
likely artifactual in origin. The quality of fMRI retinotopy
data and map fits, cortical surface reconstructions, and the
signal-to-noise-ratio (SNR) of MEG/EEG data each contrib-
ute to the variability of RCSE waveforms [Hagler and Dale,
2013]. Also, variation in the complexity of cortical folding,
which has been previously observed [Palaniyappan et al.,
2011; Penttila et al., 2009; Rogers et al., 2010; Toro et al.,
2008], may contribute to greater discrepancies in particular
subjects. In the current sample, there were positive, but non-
significant correlations between the variability of orienta-
tions within cortical patches and RCSE residual error
(Supporting Information Table 4). Additional variability
could arise from the mapping between the visual fields
used for separate MEG and fMRI measurements. In this
work, the maximum visual angle was held constant for
MEG sessions and precisely measured for fMRI sessions so
that they could be taken into account in retinotopic map fit-
ting and RCSE dipole modeling, thus fully accounting for
variation in the size of the stimulated visual field for fMRI
sessions across subjects.

Another potential source of variability between subjects,
particularly for a small number of stimulus locations, is
the extent to which the collection of dipoles chosen for V1,
V2, and V3 are orthogonal to each other. Also, because of
dipole cancellation and the insensitivity of MEG to radial
dipoles, some source locations for particular subjects may
result in smaller MEG signals, potentially making esti-
mated responses noisier. Given knowledge of the pre-
dicted dipole locations and orientations for multiple visual
areas and visual field locations, it should be possible to
choose a small set of stimulus locations that provide supe-
rior separation between V1, V2, and V3, tailored to each
subject. For example, one could choose locations where the
differences in dipole orientation for V1 and V2 (or V1 and
V3, or V2 and V3) are closest to 90 degrees (see Support-
ing Information Table. 2). Similarly, one could choose the
combination of locations that collectively result in the low-
est cross-talk between V1, V2, and V3. In addition, loca-
tions with relatively weak, predicted sensor amplitudes
could be avoided. A caveat is that if the retinotopic maps
used to calculate the forward models are slightly wrong,
the stimulus locations chosen for a particular subject may
not be truly optimal. Given that, it would be advisable to
prefer stimulus locations corresponding to relatively
smooth cortical locations, so that small inaccuracies in the
modeled location would be less problematic. Even so, reti-
notopic map fitting errors would likely necessitate dipole
optimization. Another concern is that if VERs vary as a
function of visual field location, for example, reduced la-
tency in the periphery [Baseler and Sutter, 1997], choosing
different stimulus locations for each subject could intro-
duce unnecessary variation.

The simultaneous constraint of many stimulus locations
helps to reduce the influence of modeling imperfections
[Hagler and Dale, 2013; Hagler et al., 2009]. Similarly, RCSE

constrained by multiple subjects yields a consensus solu-
tion, with IRLS to minimize the contribution of outliers. For
hypothesis testing and describing the between-subject vari-
ability of source estimates, non-parametric resampling
methods were used because they do not require the
assumption of normal distributions, which could, in princi-
ple, be violated for RCSE waveforms and derived measures,
particularly with a relatively small sample. Also, peak laten-
cies and amplitudes were more reliably derived from group
average waveforms rather than those of individual subjects,
and bootstrap resampling allowed the estimation of confi-
dence intervals for those measures.

Nonlinear Optimization of Dipole Locations

Nonlinear optimization of dipole locations for RCSE is a
way to relax the strong constraints provided by fMRI reti-
notopy, with the knowledge that those constraints could
be slightly inaccurate. This general approach was used
previously by Ales et al., who performed a neighborhood
search for the best fitting vertex, iterating through each
stimulus location and visual area in turn, holding dipoles
for all other stimulus locations constant [Ales et al., 2010a].
A conceptually similar method would be to first linearly
estimate source waveforms and then use those estimates
to linearly estimate better fitting dipole orientations.

A limitation of both approaches is strong dependence
on the initial waveform estimates. Also, the sequential na-
ture of the neighborhood search reduces the likelihood of
obtaining an optimal solution. Furthermore, using a single
vertex, rather than weighted cortical patches, to model the
source of visual evoked responses for a particular visual
area and stimulus location fails to account for the extent of
cortex activated or the fact that stimuli near the vertical
and horizontal meridians evoke responses in each of the
four sub-areas of V1, V2, and V3 [Hagler and Dale, 2013].
In the current study, the vertical and horizontal meridians
themselves were not stimulated, primarily to minimize
cross-over contributions and avoid parts of V1 that are
more sharply curved than others. It is likely, however, that
the methods described here would be applicable to stimuli
presented at the meridians because these cross-over contri-
butions may be modeled explicitly with weighted cortical
patches and dipole optimization can compensate for prob-
lems related to curvature.

A more general concern about nonlinear optimization,
which also affects the cortical patch displacement search
described in this paper, is that the introduction of many
free parameters erodes the highly over-determined nature
of the RCSE method. Although the goal is to obtain more
accurate source estimates, reductions in residual error pro-
vided by multi-parameter nonlinear optimization do not
guarantee this. While dipole optimization without the
group-RCSE prior generally reduced residual error (Sup-
porting Information Fig. 3), the resulting waveforms were
sometimes implausible (Figs. 4 and 5). A potential expla-
nation is that if some of the poorer fitting dipoles of V1,
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V2, or V3 were reoriented to align with other, un-modeled
visual areas, estimated time courses would be more inac-
curate, even though residual error would be reduced. The
use of prior estimates of visual area time courses to guide
the optimization is a way to correct for incorrectly speci-
fied cortical patch locations while imposing constraints on
the solution that may prevent contamination between vis-
ual areas that would otherwise result from dipole optimi-
zation. With the group-RCSE prior, results tended to be
more sensible, but residual error was reduced to a lesser
degree [Supporting Information Fig. 3]. This might suggest
that there were substantial differences between individual
subjects and the group-RCSE solution, such that forcing
the waveforms to be similar to the group-RCSE did not
improve the goodness of fit for individuals. Alternatively,
it may be that there is a limit to the proportion of variance
that can be explained with the multi-location V1, V2, and
V3 cortical patch models, and that unconstrained optimi-
zation methods reduce the residual error artifactually; for
example, by capturing the variance of additional, un-mod-
eled visual areas.

The greatest potential benefit of prior-constrained dipole
optimization is to improve the reliability of RCSE when
using a small number of stimulus locations, such as one in
each quadrant. With few locations, small inaccuracies in
retinotopic mapping and fMRI to MEG registration
become particularly influential (Supporting Information
Fig. 1) [Hagler and Dale, 2013]. Using a small number of
locations, however, would make the use of RCSE more
practical for a wider range of applications by allowing for
parametric manipulation of stimulus or task conditions
while maintaining a sufficiently large number of trials per
condition within a feasible recording duration. Regardless
of the number of stimulus locations, about 200 or more tri-
als per condition are required for RCSE source waveforms
with acceptable SNR.

Because the timing and waveform shape of VERs depend
on stimulus properties, it is necessary to select an appropri-
ately similar prior, considering luminance contrast, spatial
frequency, and other factors. Assuming that the locations of
the cortical dipole patches are invariant with respect to
stimulus properties other than visual field location, opti-
mized dipole locations obtained for a single stimulus condi-
tion—i.e., the one most similar to the prior—may be applied
to other conditions with identical visual field locations but
varied stimulus or task properties. The prior may be
derived from group-constrained RCSE, as in the current
study, or from a previous recording session for the same
subject using a large number of stimulus locations. Using a
subject-specific prior would allow for the possibility of
greater, true variation between subjects in waveform shape
or timing, although this approach would also be more vul-
nerable to inaccuracies in the original estimates. In the cur-
rent study, a leave-one-out approach was used to avoid
circularity issues, but in general it is likely preferable to use
as a prior group-constrained RCSE waveforms derived from
as many subjects as possible.

A characteristic of the optimization approach used for
the current study was that the cortical patches correspond-
ing to each stimulus location were simply displaced across
the cortical surface, limiting the number of free parameters
to two per patch. At the expense of greater computation
time, additional parameters could possibly be used to
increase the goodness of fit. For example, the patches
could be rotated, or the diameter varied. A more complex
nonlinear estimation procedure could even allow for
changes to the shape of the cortical patches, although it
would require further study to establish the feasibility of
such an approach. It is difficult to know whether addi-
tional parameters would make a substantial improvement,
given that MEG or EEG sensors detect dipolar sources at a
distance, such that subtle changes to the shape of the
patches could be insignificant. On the other hand, if a
patch is the wrong size or incorrectly oriented, this could
increase residual error by under- or over-estimating the
degree of cancellation. Also, the inclusion or omission of
particular vertices from a patch could, because of cortical
folding, dramatically change the equivalent dipole orienta-
tion. Not including additional parameters could, therefore,
have precluded some dipole displacements that would
otherwise have produced better fits to the data.

A finite search radius was used for both displacement
search and neighborhood search (Supporting Information
Table 1). For neighborhood search, this was implemented
by only including vertices with high weighting factors
(�70% of the maximum for each patch). The size of the
range allowed is a somewhat arbitrary choice, balancing
the ability to correct for retinotopic mapping errors with
the need to avoid artifactually large displacements. Dipole
search with larger ranges produced similar results, but
sometimes resulted in implausible patterns of patch dis-
placements (not shown). For neighborhood search, includ-
ing more vertices in the search neighborhoods—which
increased computation time by as much as 10 times if
using the full set of vertices in a patch—reduced residual
error, but did not improve overall performance in terms to
preventing implausible waveform abnormalities such as
polarity inversions (not shown).

Differences Between Visual Areas

Invasive recordings in monkeys have shown that the
early visual areas first become active nearly simultane-
ously [Schmolesky et al., 1998; Schroeder et al., 1998], and
whether there is a substantial difference in timing between
V1, V2, and V3 in humans has been recently debated [Ales
et al., 2010b; Kelly et al., 2012]. In previous studies using
the RCSE method [Ales et al., 2010a; Hagler and Dale,
2013; Hagler et al., 2009], the number of subjects tested has
been too small to draw firm conclusions on this issue. In
the current study, the peak responses of both V2 and V3
were found to be significantly delayed relative to V1, by
�10–20 ms. Interestingly, the peak V3 response was nearly
coincident with that of V2. This suggests that direct input
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from V1 plays an important role in the V3 response,
bypassing V2. At the least, the short delay indicates that
local processing in V2 is not required before signals are
passed to V3 for further processing.

Peak amplitudes were significantly larger for V1 than for
V2 and V3. These amplitude differences may reflect higher
levels of activity within individual neurons or a greater
number of active neurons, but other explanations are possi-
ble as well. For example, the strength of a current dipole
depends on the geometry of neuronal populations in differ-
ent layers of cortex [Einevoll et al., 2007; Gratiy et al., 2011].
Also, systematic differences in the accuracy of the forward
models for each visual area, which could contribute to
under- or over-estimation of response amplitudes, cannot be
ruled out. No apparent differences between V1, V2, and V3
were found in the relative peak amplitudes as a function of
luminance contrast. This finding is similar to the results of
previous fMRI studies [Avidan et al., 2002; Buracas et al.,
2005; Kastner et al., 2004], although it conflicts with one early
fMRI study that found a large difference between the con-
trast response functions of V1 and V3 [Tootell et al., 1995].
The discrepancy may reflect imprecise labeling of V3 or dif-
ferences in stimulus properties such as spatial frequency.

In previous studies using RCSE, large, positive deflec-
tions were observed in the estimated V2 and V3 wave-
forms [Ales et al., 2010a; Hagler and Dale, 2013; Hagler
et al., 2009], roughly coincident with the onset of the V1
response. Although this type of biphasic pattern is consist-
ent with the shape of cortical surface electrode recordings
in monkeys [Schroeder et al., 1991], and the positive peak
can be potentially explained by depolarization of layer 2/3
pyramidal neurons [Barth and Di, 1991; Einevoll et al.,
2007; Hagler et al., 2009], such polarity inversions are also
potentially explained by incorrectly specified dipole loca-
tions (Fig. 3, Supporting Information Fig. 1). In the current
study, these peaks were sufficiently small and variably
timed across subjects—they were not observed at all in
some subjects—that they were barely noticeable in the
group-constrained RCSE solutions (Figs. 2, 4, and 5). In
group average V2 and V3 waveforms, they were quite
small, particularly after prior-constrained dipole optimiza-
tion (Figs. 7, 8, and 9). If, for some reason, a large, positive
peak were actually present in an individual but not the
group-constrained solution, the use of the group-RCSE
prior could be expected to slightly reduce the amplitude
of this peak but not eliminate it after optimization (Sup-
porting Information Fig. 8). Thus, without ruling out early,
small amplitude, positive currents, it seems that the large,
positive peaks observed previously in V2 and V3 wave-
forms were likely artifacts of displaced dipole locations.

CONCLUSIONS

RCSE allows for the separation of activity in individual
visual areas despite their close proximity, but it is limited
by the accuracy of the retinotopy-defined dipole locations.

Group-constrained RCSE was developed to obtain consen-
sus response waveforms for V1, V2, and V3. Using such
group-constrained RCSE solutions as prior estimates for
nonlinear optimization of dipole locations improved the
robustness of RCSE for individual subjects, avoiding arti-
facts such as polarity inversions that were sometimes
observed without optimization or with optimization meth-
ods unconstrained by a prior. This was particularly the
case when using a small number of stimulus locations,
which is desirable for applications involving the parametric
manipulation of stimulus or task conditions. Using these
methods and RCSE solutions obtained from a group of
subjects, the V1 peak response was, not surprisingly, found
to be significantly larger and earlier than V2 and V3, which
were relatively similar in amplitude and latency. The rela-
tionship between luminance contrast and normalized peak
amplitudes was nearly identical for the three areas.
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