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Abstract: Studying the human visual system with high temporal resolution is a significant challenge
due to the limitations of the available, noninvasive measurement tools. MEG and EEG provide the
millisecond temporal resolution necessary for answering questions about intracortical communication
involved in visual processing, but source estimation is ill-posed and unreliable when multiple; simulta-
neously active areas are located close together. To address this problem, we have developed a retino-
topy-constrained source estimation method to calculate the time courses of activation in multiple visual
areas. Source estimation was disambiguated by: (1) fixing MEG/EEG generator locations and orienta-
tions based on fMRI retinotopy and surface tessellations constructed from high-resolution MRI images;
and (2) solving for many visual field locations simultaneously in MEG/EEG responses, assuming
source current amplitudes to be constant or varying smoothly across the visual field. Because of these
constraints on the solutions, estimated source waveforms become less sensitive to sensor noise or ran-
dom errors in the specification of the retinotopic dipole models. We demonstrate the feasibility of this
method and discuss future applications such as studying the timing of attentional modulation in indi-
vidual visual areas. Hum Brain Mapp 30:1290–1309, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

The primate visual system is a densely interconnected,
hierarchical network comprising retinal photoreceptors,

subcortical relays, multiple visual cortical areas, and
higher-level areas necessary for functions such as memory,
emotion, and attention [Bullier and Nowak, 1995; Colby
and Goldberg, 1999; Felleman and Van Essen, 1991; Kast-

ner and Ungerleider, 2000]. Invasive studies of non-human
primates have provided much of our understanding about
how the various visual areas are interconnected and func-
tionally different from each other [Felleman and Van
Essen, 1991; Sereno and Allman, 1991]. In humans, fMRI
has proven to be a useful tool for identifying the map
boundaries in human visual cortex [DeYoe et al., 1996;
Engel et al., 1994; Sereno et al., 1995], leading to studies of
the different stimulus preferences of individual visual
areas [Avidan et al., 2002; Gardner et al., 2005; Seiffert
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et al., 2003; Singh et al., 2000; Tootell et al., 1995, 1997,
1998b]. This method has also enabled measurement of
attentional modulation in individual visual areas, demon-
strating increased activation with selective attention in V1
and other visual areas [Brefczynski and DeYoe, 1999; Gan-
dhi et al., 1999; Martinez et al., 1999; Noesselt et al., 2002;
Sasaki et al., 2001; Slotnick et al., 2003; Somers et al., 1999;
Tootell et al., 1998a]. Recently, multiple maps have been
observed in the higher-level areas involved in attentional
control, including posterior parietal cortex (PPC), frontal
eye fields (FEF), and dorsolateral prefrontal cortex
(DLFPC) [Hagler and Sereno, 2006; Hagler et al., 2007;
Kastner et al., 2007; Schluppeck et al., 2005; Sereno et al.,
2001; Silver et al., 2005; Swisher et al., 2007]. FMRI has
provided some insight into how stimulus or task condi-
tions result in differential recruitment of these higher-level
maps, but temporal correlations between these maps
remain unexplored.
Noninvasively studying interactions within this compli-

cated array of brain areas is made difficult by the limited
temporal or spatial resolution of currently available brain
imaging methods. Because of its low temporal resolution,
fMRI is not well suited for studying the time course of
activation in visual areas. Magnetoencephalography (MEG)
and electroencephalography (EEG) measure magnetic
fields and electrical potentials with millisecond temporal
resolution, but methods to localize the sources of those
fields and potentials have limited spatial resolution [Dale
and Halgren, 2001; Hamalainen et al., 1993]. Methods com-
bining these brain imaging techniques have been devel-
oped in the past [Dale and Sereno, 1993; Dale et al., 2000;
Di Russo et al., 2005; Vanni et al., 2004], but their success-
ful application to the study of the early visual areas has
been somewhat limited.
The difficulty in MEG/EEG source estimation (i.e., the

inverse problem) is that, given a large number of dipoles
distributed throughout the brain, the number of possible
combinations of those dipoles that can result in a particu-
lar distribution of sensor amplitudes is infinite. Even a
small number of dipoles, if allowed to rotate freely and
vary in amplitude, can produce a wide variety of sensor
amplitude distributions. Some combinations of dipoles
may be more physiologically likely than others, but addi-
tional information is required to make such determinations
[Dale and Sereno, 1993; Dale and Halgren, 2001; Dale
et al., 2000; Hamalainen et al., 1993]. For example, struc-
tural MRI data can be used to force the dipoles to be
located in the gray matter of the cerebral cortex. Further-
more, because the dendrites of pyramidal neurons, which
are primarily responsible for generating MEG and EEG
signals, run across the cortical layers, the orientation of
each current dipole can be assumed to be perpendicular to
the cortical sheet. In addition, fMRI data can be used to
further bias the source estimates; either as an initial guess
or hard localization constraint in equivalent current dipole
(ECD) modeling [Di Russo et al., 2005; Vanni et al., 2004],
or as a Bayesian prior in distributed source estimation

methods [Dale and Sereno, 1993; Dale et al., 2000; Liu
et al., 1998; Schmidt et al., 1999].
The minimum-norm inverse method estimates distrib-

uted sources and requires no a priori assumptions about
the locations or number of sources, but the solution space
can be limited to the cortical surface and biased with fMRI
data [Dale and Sereno, 1993; Dale et al., 2000; Liu et al.
1998]. Minimum-norm estimates for visual evoked
responses (VERs) have shown a rough correspondence
with the retinotopic organization of primary visual cortex,
but time courses for individual visual areas such as V1
and V2 have not been demonstrated with this method
[Ahlfors et al., 1992; Sharon et al., 2007]. ECD modeling is
a common method for MEG and EEG source estimation
that has been used in several studies to model the genera-
tors of visual evoked fields and potentials (VEFs and
VEPs). The method involves iteratively searching for a
dipole model that results in a least-squares best-fit [Scherg,
1990; Supek and Aine, 1993]. Several studies have localized
dipoles with properties consistent with the retinotopic lay-
out of primary visual cortex [Aine et al., 1996; Clark et al.,
1995; Jeffreys and Axford, 1972; Slotnick et al., 1999]. More
recent studies have extended those results, modeling the
time course of the VEP with a larger number of dipoles
[Di Russo et al., 2001, 2003, 2005; Martinez et al., 2001;
Vanni et al., 2004]. Vanni et al. and Di Russo et al. used
fMRI data to fix dipole locations in multiple visual areas
[Di Russo et al., 2005; Vanni et al., 2004], although for
practical and methodological reasons, single dipoles were
made to model the activity of multiple visual areas (e.g.
V2, V3, and V3A).
These studies have highlighted how difficult it is to

resolve the time courses of activity in individual visual
areas, primarily because of their close proximity. Even if
fitted dipoles are constrained by fMRI data, crosstalk
between the dipoles prevents meaningful separation of the
signals [Liu et al., 1998; Sereno, 1998; Vanni et al., 2004].
The similarity in position and orientation of these dipoles
results in fundamental ambiguity that cannot be resolved
without additional information. Slotnick et al. integrated
data from multiple stimulus locations with an iso-eccen-
tricity temporal constraint [Slotnick et al., 1999], and in the
present study we used a variation of this method to
resolve those ambiguities and determine the time courses
of individual visual areas. We created detailed models of
dipoles in multiple visual areas, with their cortical loca-
tions and orientations varying as functions of stimulus
location in an iso-eccentricity band of the visual field.
Source strengths for a given visual area were constrained
to be equal, or at least smoothly varying, as a function of
stimulus location. Because the VEPs/VEFs were fitted with
dipole paths along distinctively folded patches of cortex
for each visual area, rather than a single dipole in each vis-
ual area, much of the ambiguity, and thus crosstalk
between visual areas, was eliminated.
This retinotopy-constrained inverse method that we

have developed allows the measurement of time courses
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of activation of multiple visual areas. This method resolves
the inherent ambiguity due to the close proximity and si-
multaneous activation of these areas. This in turn will
allow for the measurement of differences in activation—
whether related to stimulus properties, attentional state,
cognitive task requirements, brain disorder, or all of the
above—across time, with millisecond accuracy, in individ-
ual visual areas and the comparison of those differences to
the time courses of activation in higher-level cortical areas
involved in executive control. This provides a promising
new approach for the noninvasive measurement of cor-
tico–cortical interactions and analysis of neurocognitive in-
formation processing.

METHODS

Participants

Two female adults participated in this study (ages 19
and 21). The experimental protocol was approved by the
UCSD institutional review board, and informed consent
was obtained from both participants. Both subjects were
right handed and had normal or corrected to normal
vision. One of the subjects (‘‘Subject 1’’) was used to de-
velop and test the retinotopy-constrained inverse methods
in detail. Data for a second subject (‘‘Subject 2’’) is
included for comparison.

Stimulus Presentation and Behavioral Monitoring

For fMRI sessions, stimuli were presented via a mirror
reflection of a plastic screen placed inside the bore of the
magnet, and a standard video projector with a custom
zoom lens was used to project images onto this screen
from a distance. For MEG/EEG sessions, visual stimuli
were presented with a three mirror DLP projector. An
MRI-compatible fiber-optical button box was used for
fMRI experiments requiring subject responses; for MEG/
EEG sessions, a finger lifting response was used with a
laser and light sensor device. Dental impression bitebars to
immobilize the top row of teeth were used for fMRI ses-
sions. Subjects’ heads were supported and surrounded by
foam padding. To ensure that the eccentricity of stimuli
matched for fMRI and MEG/EEG sessions, the distance
between the subject’s nasion and the screen was measured
and the zoom of the projector lens adjusted to achieve a
maximum visual angle of �208 (top to bottom of display-
able area).

Simultaneous MEG/EEG Measurement

MEG and EEG are in some ways complementary, mak-
ing it useful to acquire data with both modalities [Dale
and Sereno, 1993; Liu et al., 2002; Sharon et al., 2007].
MEG signals were measured with an Elekta/Neuromag
Vectorview 306 channel whole head neuromagnetometer,
which comprises two planar gradiometers and one magne-

tometer at each of 102 locations. EEG signals were simulta-
neously measured with a non-magnetic 60-channel elec-
trode cap. Two additional electrodes were used to monitor
eye blinks and movements. The sampling frequency for
the MEG-EEG recording was 1,000 Hz with an anti-alias-
ing low-pass filter of 333 Hz. Data were band-pass filtered
offline between 0.2 and 50 Hz. The locations of sensors
with respect to landmarks on the head were measured
using a Polhemus FastTrack 3-D digitizer. After rejecting
trials containing artifacts such as eye blinks, data from all
trials were used to calculate average time series as well as
a noise covariance matrix, which represents the contribu-
tion of random noise to the signals measured at each of
the detectors. MEG and EEG data were averaged across
trials time-locked to stimulus onset.
Combined MEG and EEG were used to measure evoked

responses to small visual stimuli consisting of circular
patches (1.58 in diameter) with a two-dimensional, gray-
scale sine grating, forming a type of checkerboard (see Fig.
2). Stimuli were presented on a gray background at maxi-
mum contrast. The sine gratings had a spatial frequency of
four cycles/degree of visual angle. Stimuli were briefly (87
ms) presented at one of 16 polar angles at an eccentricity
of 58 of visual angle. To ensure that subjects maintained a
stable level of alertness and maintained central fixation,
subjects were given a simple task in which they made a
button press upon rare dimming of the central fixation
cross. The interval between successive stimulus onsets was
fixed at 100 ms; randomly, one in four stimulus events
was a ‘‘null’’ event in which no stimulus was presented.
The overlap between successive trials was removed by
subtracting the averaged null event from the other stimu-
lus conditions. Pilot experiments demonstrated that the
null-subtracted responses were practically identical to
responses measured with a longer stimulus onset asyn-
chrony of 400 ms (data not shown) but with a higher sig-
nal-to-noise ratio given the increased number of trials.
Because of the large number of stimulus conditions (16
locations plus 4 null events), the average presentation fre-
quency for a given stimulus location was 0.5 Hz, slow
enough to not cause attenuation [Chen et al., 2005]. In a
single MEG/EEG session with 40–50 min of stimulus pre-
sentation (separated into 3-min blocks to allow subjects
rest periods), �800–1,000 trials were acquired for each
stimulus location.

MRI and fMRI Image Collection

Subjects were scanned with a GE 3T scanner using a GE
8-channel phase array head coil. Two high-resolution T1
images were acquired to generate cortical surface models
(TR 5 10.5 ms, flip angle 5 158, bandwidth 5 20.83 kHz,
256 3 192 matrix, 180 sagittal slices, 1 3 1 3 1 mm3 vox-
els). Proton density weighted images were acquired for
reconstruction of the skull and scalp boundaries (flip angle
5 58). Echo-planar imaging was used to obtain T2*-
weighted functional images every 2 s for 30 slices in the
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axial plane with 3.125 3 3.125 3 3.5 mm3 voxels (TR 5
2,000 ms, TE 5 30 ms, flip angle 5 908, bandwidth 5 62.5
kHz, 64 3 64 matrix, 200 mm FOV). For each functional
imaging session, a coplanar T1-weighted structural scan
was also acquired to align the lower resolution functional
data with the cortical surface.

Correction of Distortion in Structural and

Functional MRI Images

Because structural and functional MRI data were used
to constrain source modeling, it was critically important to
correct for the significant image distortions caused by gra-
dient nonlinearities and B0 magnetic field imhomogene-
ities. In-plane gradient warping was corrected online, and
through-plane gradient warping was corrected offline by
applying a predefined, scanner specific nonlinear transfor-
mation [Jovicich et al., 2006]. B0-inhomogeneity distortions
in fMRI data were corrected using the reversing gradient
method in which a pair of test images with opposite
phase-encode polarity was acquired to estimate a displace-
ment field [Chang and Fitzpatrick, 1992; Morgan et al.,
2004; Reinsberg et al., 2005]. The resulting displacement
field was then applied to full-length EPI fMRI images with
identical slice prescriptions as the test images.

Cortical Surface Modeling

T1-weighted MRI images were used to create a model of
the cortical surface [Dale and Sereno, 1993; Dale et al.,
1999; Fischl et al., 1999]. The cortical reconstruction algo-
rithm is a multistep process that relies on differences in
contrast between the different tissue types. Voxels corre-
sponding to the skull and scalp were first stripped away.
Subcortical structures were filled in and the left and right
hemispheres were separated. The boundary between the
gray and white matter was identified and both the gray-
white interface and the outer cortical surface were mod-
eled as continuous sheets. Careful manual editing of the
white matter segmentation was performed to obtain accu-
rate reconstructions of the cortical surface. After correcting
for holes and smoothing, these surfaces can be ‘‘inflated’’
to unfold the cortex, or completely flattened after making
cuts. fMRI data were sampled onto the cortical surface
using a vector-search method in which the activation at a
given cortical location was assigned to be that of the high-
est SNR voxel (most likely the one containing the largest
fraction of gray matter) a short distance (up to 2 mm)
along the vector normal to the surface [Hagler et al., 2006].

Within-Subject Analysis of Event-Related

or Block-Design fMRI Data

Random-order multi-block design fMRI data were ana-
lyzed using AFNI’s 3dDeconvolve [Cox, 1996; Ward, 2000].
Image time series were first volume-registered to correct
for motion artifacts using AFNI’s 3dvolreg. The motion

estimates from 3dvolreg were supplied to 3dDeconvolve as
additional regressors to further reduce the contribution of
motion to activation patterns, and a quadratic polynomial
was used to fit the baseline. Fit coefficients and F-statistics
were generated using general linear tests for the area under
the curve of the hemodynamic response function, the ampli-
tude of which was allowed to freely vary across a period of
10 s (at each of five post-stimulus TRs). General linear tests
were also constructed for comparisons between task condi-
tions. F-statistics were used to apply a statistical threshold
to the fit coefficients, which were then displayed on the
inflated cortical surface model described above.

Phase-Encoded Retinotopic Mapping

Procedures for the acquisition and analysis of phase-
encoded fMRI data have been described in detail previously
[Hagler and Sereno, 2006; Hagler et al., 2007; Sereno et al.,
1995]. Briefly, retinotopic maps of polar angle were meas-
ured using a wedge revolving around a central fixation
point. Eccentricity was mapped using an expanding or con-
tracting ring. Fourier transforms of the fMRI time series
were computed to estimate the amplitude and phase of per-
iodic signals at the stimulus frequency (eight cycles per 512-
s scan), with phase corresponding to the preferred stimulus
location for a given voxel. Subjects were scanned with equal
numbers of scans with counterclockwise or clockwise stimu-
lus revolutions. Similarly for eccentricity mapping, expan-
sion and contraction scans were counterbalanced. Visual
field sign was calculated from phase-encoded polar angle
and eccentricity mapping data, allowing for the identifica-
tion of the borders of visual areas [Sereno et al., 1994, 1995].

MEG/EEG Forward Solution

Forward solutions were calculated using the boundary
element method (BEM) [de Munck, 1992; Mosher et al.,
1999; Oostendorp and van Oosterom, 1989]. High-resolu-
tion anatomical MRI data were used to identify and create
surface tessellations for the following three layers: inner
skull, outer skull, and outer scalp [Fuchs et al., 1998; Yvert
et al., 1995; Zanow and Peters, 1995]. Proton-density
weighted scans (rather than T1-weighted) were used for
this purpose as these scans display good contrast between
skull and CSF. Note that unlike EEG, MEG signals are less
sensitive to the conductivity profile of the head–largely
due to the low conductivity of the skull that confines
almost all current within it–and thus only the inner skull
boundary is truly required for the MEG forward solution;
in this study however, all three surfaces were used for
both EEG and MEG BEM forward solutions.

Registration Between MRI and MEG/EEG

Reference Frames

To determine the registration matrix defining the rigid
body registration between MRI and MEG/EEG reference

r Source Estimates for MEG/EEG r

r 1293 r



frames, additional points on the scalp surface were
recorded with the Polhemus FastTrack 3-D digitizer and
then manually aligned to a surface representation of the
outer scalp surface using a graphical interface written with
MATLAB.

Construction of a Retinotopic Model of the

Generators of Evoked Visual Responses

Using information derived from structural MRI and
phase-encoded fMRI retinotopic mapping, a model of the
cortical sources of evoked visual responses was generated

for each subject. Field sign reversals were used to man-
ually identify the borders of early visual areas [Sereno
et al., 1995]. Within each visual area, the preferred polar
angle tends to change smoothly as a function of position
along the cortical surface, forming retinotopic maps of vis-
ual space (see Fig. 1). For each subject, these maps were
used to define the expected location of maximal activation
in response to each of the 16 visual field locations used to
elicit VEPs/VEFs. This was done separately for visual
areas V1, V2, and V3. Dipoles were manually picked by
making paths—with roughly equal spacing between indi-
vidual surface vertices—along the appropriate iso-eccen-

Figure 1.

Retinotopic maps acquired with 3T fMRI from Subject 1. (A) Polar

angle maps superimposed on folded cortical surface (boundary

between gray and white-matter) of left hemisphere. (B) Polar angle

maps on inflated cortical surface. (C) Polar angle maps on flattened

representation of the left hemisphere occipital cortical surface, with

relaxation cuts along the calcarine fissure (shown in A and B as yellow

dashed lines). Preferred (contralateral) polar angle is represented by

colors indicated by legend. (D) Eccentricity maps. (E) Activation from

flashing checkerboard annulus at a fixed eccentricity of 58 (60.758)
visual angle. 18–22 s ‘‘on’’ blocks alternated with similar blocks of cen-

tral fixation with no visual stimulation. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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tricity band (58 visual angle) in each visual area. The 58
visual angle iso-eccentricity band was identified on the ba-
sis of phase encoded eccentricity maps and confirmed
with the block design annulus activation maps (Fig. 1D,E).
Unlike the dSPM calculations, which typically use a sub-
sampled cortical surface model, the dipole models
informed by the retinotopy maps used vertices selected
from the full-resolution cortical surface (�0.8 mm interver-
tex distance).
Because the geometry of the cortical surface was mea-

sured for each subject, knowing the locations of peak acti-
vation also provided the expected orientation of the dipo-
lar sources (i.e. perpendicular to the cortical surface).
Thus, as the location of the visual stimulus changes, the
cortical location and orientation of the modeled dipole for
a particular visual area changes in a way determined by
the MRI and fMRI data (Figs. 1 and 3). The estimated ori-
entation of the cortical surface normal vector (perpendicu-
lar to the surface) can be somewhat variable, especially in
highly curved patches of cortex. To model this diversity in
the dipole orientations in single dipoles, the normal orien-
tations were smoothed along the cortical surface with an
8-mm blurring kernel.

Retinotopy-Constrained Source Estimation

The retinotopy-constrained forward solution is described
by the following equation:

yðtÞ ¼ FsðtÞ þ nðtÞ ð1Þ

where y, for each time point t, is a vector of measurements
at each of 366 sensors (306 MEG, 60 EEG) at each of 16
iso-eccentricity stimulus locations—eight in right hemifield
and eight in left hemifield—with a total of 5,856 measure-
ments. F is a matrix of forward solution sensor amplitudes
for each of several visual areas (sources). The size of F is
the number of measurements times the number of sources.
s is a vector of amplitudes for each source. n is a sensor
noise vector. y, s, and n, are each functions of time t,
although F is time invariant. To fill the forward matrix
with values, the forward solution for a particular dipole
(i.e. a visual dipole cluster for one stimulus location) was
obtained from a BEM gain matrix calculated for each ver-
tex included in the model, generating amplitudes for each
sensor. This was repeated for each stimulus location and
each visual area, changing the dipole’s cortical locations
for each of the 16 stimulus locations. For the forward solu-
tion with free orientations and independence between
stimulus locations, the number of ‘‘sources’’—with 3 visual
areas, 16 stimulus locations, and 3 vector components—
was 144. With orientations fixed to the vector perpendicu-
lar to the cortical surface, the number of sources was 48.
An alternative model configuration assumes that a given
source has the same evoked response regardless of stimu-
lus location. In this case, the data from multiple stimulus
locations simultaneously constrain a single source wave-
form for each visual area modeled. With this ‘‘equality

constraint,’’ the number of sources reduced to the number
of visual areas. Given that the number of measurements is
much larger (5,856) than the number of sources (3, 48, or
144 depending on constraints), the retinotopy-constrained
inverse is highly overdetermined, unlike the underdeter-
mined solutions provided by the cortically constrained
minimum norm [Dale et al., 2000].
The following equation was used to define the inverse

operator used to estimate source amplitudes at each time
point

W ¼ ðFTðk2CÞ�1FþR�1Þ�1FTðk2CÞ�1 ð2Þ
where FT is the transpose of the forward matrix F, C is the
noise covariance matrix (square in number of measure-
ments), R is the source covariance matrix (square in the
number of sources), and k2 is a regularization parameter
equal to the mean of the diagonal elements of FRFT di-
vided by the mean of the diagonal elements of C, divided
by the square of the assumed SNR (1 RMS). The assumed
SNR value was roughly estimated from the sensor wave-
forms as the ratio between the evoked response and the
baseline deflections. The inverse operator W, was applied
to the measured data as follows:

ŝðtÞ ¼ WyðtÞ ð3Þ
where ŝ is the estimated source vector and y is the mea-
surement vector, each functions of time t. The size of W is
the number of sources times the number of measurements.
The residual error was calculated as:

eðtÞ ¼ FŝðtÞ � yðtÞ ð4Þ

Normalized residual error was calculated as the ratio
between the variance of the residual error and the total
variance of the data. The normalized residual errors for
each sensor type—EEG, gradiometers, and magneto-
meters—were calculated separately and then averaged to
get a measure of the residual error that was not affected
by differences in units or number of sensors between the
different modalities.
C was a diagonal matrix with variance values for each

sensor calculated from the average baseline periods, aver-
aged across all stimulus locations. Data from the different
sensor types were scaled by predetermined values (1013,
1015, and 106 for gradiometers, magnetometers, and EEG
electrodes respectively) to remove the orders of magnitude
differences in scale between them, in order to ensure nu-
merical stability. For independent stimulus locations, R

was equal to the identity matrix (1’s for diagonal values,
0’s elsewhere). For the smoothness constraint, off-diagonal
elements of R—corresponding to the covariance between
different stimulus locations within one visual area—were
assigned non-zero values; the closer these values were to
1, the tighter the smoothness constraint. These off-diagonal
values were set to 0.999 for nearest neighbor stimulus loca-
tions (within a visual area) and decreased with increasing
distance according to the following equation:
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rðkÞ ¼ f k ð5Þ

where r is the value assigned to the off-diagonal elements
of R, f is the smoothness constraint factor (equal to 0.999),
and k is the number of neighbor steps between two stimu-
lus locations. For the equality constraint, within visual
area off-diagonal elements could all be set to 1, but the
equivalent action taken was to simply model one source
per visual area and construct F such that the gain vectors
for each stimulus location were arranged into a single col-
umn for a given visual area.

Additional Nonretinotopic Dipoles

In some analyses (see Results and Supp. 4), additional
dipoles were included in the forward solution to model
cortical areas other than V1, V2, and V3 that may contrib-
ute to the evoked response. These additional dipoles were
modeled as nonretinotopic, such that their responses did
not vary as a function of stimulus location. Dipole orienta-
tions were allowed to freely rotate over time by modeling
three orthogonal components, but the orientations and
amplitudes for these dipoles were constrained by the data
from all stimulus locations.

EEG Conductivity Calibration

As mentioned above, conductivity values for brain, skull,
and scalp are required for accurate modeling of EEG sour-
ces. If EEG data is analyzed alone, only relative conductiv-
ity values for the three different tissues is required (e.g.
1:0.04:1); but inaccurate conductivity values for the EEG for-
ward solution will result in a mismatch in the amplitude of
modeled source strengths for integrated EEG and MEG
data, degrading the accuracy of localization. Realistic skull
conductivity values can be chosen from published values
[Hoekema et al., 2003], but conductivity values may vary
between subjects, and inaccurate conductivity values could
affect source localization accuracy. We used an iterative
search method to find the scaling factor applied to the EEG
forward solution that resulted in the lowest total residual
error—across all sensors and stimulus locations, within a
time range of 80–100 ms post-stimulus—for the retinotopy-
constrained inverse with equality constraint. The assumed
conductivity values were 0.3, 0.012, and 0.3 S/m for brain,
skull, and scalp, respectively. With those preconditions, the
best fitting scaling factors for subjects 1 and 2 were 0.98 and
0.85, respectively. The minima were relatively broad; for
example, for subject 2, the fractional change in residual
error between scaling factors of 0.85 and 1.0 was �0.001.
For the source estimates shown in Results, a scaling factor
of 1 was used for both subjects.

Dynamic Statistical Parametric

Mapping (dSPM) for MEG and EEG

For purposes of comparison with retinotopy constrained
source estimates, distributed source estimates were also

calculated using the dSPM method [Dale et al., 2000]. The
cortically constrained, fMRI biased, noise-normalized, L2
minimum-norm, linear inverse was calculated for �5,000
cortical surface dipoles (vertices) distributed across the
cortical surface with an intervertex spacing of �7 mm. For
the fMRI bias, activation elicited by a block-design flashing
checkerboard ring was used to set a priori weighting fac-
tors [Dale and Sereno, 1993; Dale et al., 2000; Liu et al.
1998]. In the source covariance matrix, off-diagonal terms
were set to 0, diagonal terms corresponding to suprathres-
hold vertices (subjectively chosen, arbitrary threshold was
applied to block-design annulus data shown in Fig. 1) were
assigned a weighting of 0.9, and diagonal terms for sub-
threshold vertices were assigned a weighting of 0.1. The ori-
entations of dipoles were allowed to vary freely by simulta-
neously fitting for each of three vector components. The
noise covariance matrix was a diagonal matrix with var-
iance values for each sensor calculated from the average
baseline periods, averaged across all stimulus locations.
dSPM source estimates were noise normalized as described
previously [Dale et al., 2000]. The regularization parameter
was calculated as described above for the retinotopy con-
strained inverse, with the same assumed SNR value of 1.

RESULTS

Visual Responses Measured With fMRI,

MEG, and EEG

We used phase-encoded fMRI to measure the polar
angle and eccentricity maps that span the convoluted occi-
pital cortical surface (see Fig. 1). The borders between V1,
V2, and V3/VP were identified based on field sign rever-
sals [Sereno et al., 1995]. A block-design stimulus was also
used to localize the cortex activated by a flashing checker-
board ring at an eccentricity of 58 visual angle (Fig. 1E).
These fMRI data were used to construct retinotopic dipole
models of the generators of the VER (see Methods).
Figure 2 shows the VERs measured with MEG and EEG

for the subject whose fMRI data are shown in Figure 1,
along with the corresponding stimulus locations. VEPs
and VEFs exhibited large variations as a function of stimu-
lus location, the pattern of which changed over time. In
addition, response polarities varied substantially within a
visual quarterfield. At 80-ms post-stimulus, a clear polarity
reversal was observed for VEPs measured in upper and
lower visual field locations (e.g. compare green EEG traces
in Fig. 2A,B to those in Fig. 2C,D).
Average VEPs and VEFs between 80- and 90-ms post-

stimulus are shown as contour plots in Figure 3. Ball and
stick representations show the dipole orientations derived
from MRI and fMRI data for V1, V2, and V3. Overall, the
observed field and potential patterns match well with the
patterns predicted by the MRI-derived dipoles for V1 (Com-
pare Figs. 3 and 4). Contributions from V2 and V3 (Supp.
Figs. 1 and 2), as well as other visual areas, are likely
explanations for why the observed patterns are somewhat
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Figure 2.

MEG/EEG evoked responses to visual stimulation from Subject 1.

Signals from two gradiometers, one magnetometer, and an EEG

electrode at a mid-line occipital location. Vertical lines indicate

time of stimulus onset and 80-ms post-stimulus. Vertical scales are

660 fT/cm for gradiometers, 6 120 fT for magnetometers, and

65 lV for EEG electrode (up 5 positive). Gray squares with col-

ored circles indicate which colored trace corresponds to each

stimulus location (n.b., no colored circles were present in the stim-

uli as presented to the subjects). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 3.

MEG and EEG contour plots arranged at polar angles corre-

sponding to 16 iso-eccentricity stimulus locations. MEG data (av-

erage amplitudes over 80- to 90-ms post-stimulus, gradiometers

only) are interpolated onto the helmet surface (outer ring of

contour plots) with red representing flux out of the head and

blue representing flux into the head. EEG data is interpolated

onto the outer scalp surface, with red representing positive

scalp potentials and blue representing negative scalp potentials.

Dipoles for V1, V2, and V3 (derived from structural and func-

tional MRI data) are represented as ball and stick diagrams with

the direction and length of the line indicating the dipole orienta-

tion components in the coronal plane. Data are from Subject 1.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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more complicated than the simple dipolar patterns pre-
dicted by V1 alone. Large mismatches between the
observed and predicted V1 patterns for particular stimulus
locations (e.g. above right horizontal meridian) could also
reflect errors in the dipole orientations predicted by MRI.

Source Estimates Obtained With dSPM

As a basis for later comparison, a cortically constrained,
fMRI biased, L2 minimum-norm inverse solution (i.e.
dSPM) was used to estimate source time courses from both
MEG and EEG sensor data (see Methods). In Figure 5A,
cortical surface maps of source statistics are shown for
stimuli in each of the four quadrants of the visual field
at 72-ms post-stimulus. Note the crossover of apparent
activation between hemispheres due to the proximity of
the modeled dipoles in the medial aspect of the two
hemispheres. In addition, lower field stimuli are expected
to activate V1 superior to the fundus of the calcarine sulcus
as well as V2d and V3. Upper field stimuli activate inferior
V1 as well as V2v and VP. The dSPMs shown, however, do
not fit that expected pattern, instead displaying a more
generalized spread of activation across visual cortex.
Regions of interest (ROIs) were created for visual areas

V1, V2d, V2v, V3, and VP and used to extract average
time courses for each. These time courses are shown in
Figure 5B, and illustrate the high degree of crosstalk
between neighboring visual areas when this inverse
method is used. They each have essentially the same time
course with varying amplitudes, something that is unreal-
istic given our understanding of the flow of activation
through visual cortical areas. That the cortically con-
strained minimum-norm provides an inadequate solution

in this case is entirely expected from and consistent with a
previous simulation study in which this method was esti-
mated to have an effective resolution of �20 mm [Liu
et al., 2002]. That each of the visual areas is assigned prac-
tically the same source waveform reflects the ambiguity
between the multiple sources resulting from their proxim-
ity and the minimal constraints imposed on the solution.
In order to impose additional constraints however, addi-
tional a priori information is required.

Retinotopy-Constrained Source Estimates

By allowing for dipoles at as many as 5,000 cortical loca-
tions, the cortically constrained minimum-norm is funda-
mentally underdetermined or ill-posed. Retinotopic map-
ping with fMRI provides the opportunity to drastically
reduce the number of unknowns by fixing the dipole loca-
tions to those cortical locations that correspond to a given
stimulus location in individual visual areas. As described
in Methods, dipole locations were chosen for each stimu-
lus location for V1, V2, and V3. Dipole orientations were
fixed to be perpendicular to the cortical surface at each
location. The estimated source waveforms displayed large
variations between stimulus locations (Fig. 6A).
With the retinotopy-constrained inverse just described,

source waveforms were estimated independently for each
stimulus location. It is reasonable to assume, however, that
the source amplitudes smoothly vary as a function of stim-
ulus location. That is, neighboring stimulus locations
should evoke similar source waveforms at neighboring
cortical locations within a given visual area. This smooth-
ness constraint was implemented by setting the appropri-
ate off-diagonal terms of the source covariance matrix to
non-zero values (see Methods). As required by this model,
the individual source waveforms for each stimulus loca-
tion—for a given visual area—were more similar to each
other and exhibited a smooth transition between neighbor-
ing locations (Fig. 6B).
As the off-diagonal covariance terms are increased, the

smoothness constraint becomes stronger. With values of 1,
the smoothness constraint becomes an equality constraint.
Source estimates for all stimulus locations are forced to be
identical across a given visual area, or equivalently, a sin-
gle source waveform is estimated for each visual area
modeled. Thus instead of attempting to assign responses
to individual dipoles, responses to all stimulus locations
are fitted to a collection of dipoles. The dipoles were mod-
eled to move across the cortical surface in a path predicted
by the fMRI retinotopic maps, changing orientation to
match the curvature of the cortical surface modeled from
structural MRI. These dipole paths constitute a signature
for each visual area (Fig. 4, Supp. Figs. 1 and 2) that allow
for the unambiguous assignment of activity to each visual
area over time, resulting in waveforms for each visual area
that show clear differences in response latency (see Fig. 7).
Subject 1’s V1 waveform estimate appears to exhibit a

small, positive deflection peaking at 51 ms. A large nega-

Figure 4.

Predicted MEG and EEG contour plots for V1. Predicted MEG

and EEG data were generated for current dipoles derived from

structural and functional MRI (see Methods). Plotting conven-

tions are same as in Figure 3. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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tive peak follows immediately at 78 ms (Fig. 7A). The po-
larity of the deflections are related to the laminar distribu-
tion of cortical current sinks and sources [Creutzfeldt
et al., 1966; Einevoll et al., 2007]; this will be discussed fur-
ther below. V2 exhibits a similar pair of positive and nega-
tive peaks at 63 and 91 ms. V3 exhibits a larger positive
peak at 68 ms, also followed by a negative peak at 112 ms.
Subject 2 displays a similar pattern of activation across V1,

V2, and V3, although with slightly different latencies (Fig.
7B). Future work with a large cohort of subjects will pro-
vide a better sample of the inter-subject variability, but
this comparison is a preliminary demonstration that the
retinotopy-constrained inverse method yields source esti-
mates that are roughly consistent across subjects. Another
demonstration of the robustness of the method is that
source estimates derived from MEG-only were generally
similar to those derived from EEG-only, although the
EEG-derived estimates appear considerably noisier (Fig.
7C,D).
The initial positive deflection of V3 seems to be in oppo-

sition to the negative deflection of V1, perhaps suggestive
of crosstalk between the two source estimates. Crosstalk
between two sources i and j can be directly calculated [Liu
et al., 1998] as:

c2ij ¼

�
�
�ðWFÞij

�
�
�

2

�
�
�ðWFÞii

�
�
�

2
ð6Þ

with W being the inverse operator and F the forward ma-
trix. Crosstalk between the three visual areas was calcu-
lated with a variety of constraints (Table I). Crosstalk was
highest for forward models with independent sources for
each stimulus location and free orientations. Crosstalk for
fixed orientation sources was much lower; when the equal-
ity constraint was used, even lower. The result is that
crosstalk between the V1 and V3 dipole models cannot
explain the large positive deflection seen in the V3 source
estimates (see Supp. Fig. 3).

Analysis of Residual Error

To prevent over-fitting the data—i.e. where noise domi-
nates the source estimates—all of the source estimates
were made with regularized inverse solutions using an
assumed SNR of 1 RMS. This means that the fitted sensor
waveforms are not necessarily identical to the actual data,
even when the problem is under-determined. The differ-
ence between the fitted sensor waveforms and the actual
data is the residual error, and in fact none of the methods
presented here achieve zero residual error (see Fig. 8). The
dSPM method yields the lowest residual error, as low as
10% during the largest visual evoked response, and as
high as 30–40% during the baseline. That this method fits
the baseline noise as well as it does reflect its underdeter-
mined nature due to the large number of free parameters
(�15,000 per time point). Greatly reducing the number of
dipoles and fixing their locations increases the residual
error during the peak evoked response, as does fixing their
orientations, and greatly increases the residual error dur-
ing the baseline period (Fig. 8A).
Adding the smoothness or equality constraints—i.e.,

assuming that neighboring stimulus locations give rise to
similar or identical source waveforms—increases the resid-
ual error further (Fig. 8B), yet results in more plausible

Figure 5.

Cortically constrained, fMRI-biased, noise-normalized, L2 mini-

mum-norm source estimates of visual evoked responses. (A)

Medial, inflated views of cortical surface overlaid with dSPM sta-

tistics (see Methods) for visual responses evoked by stimuli in

upper and lower, right and left quarterfields (eccentricity 5 58,
polar angles 5 568 1248, 2368, 3048). (B) ROI average time

courses for V1, V2, and V3 derived from dSPM. Source estimate

statistics were averaged within hand-drawn cortical surface-

based regions of interest (based on fMRI retinotopy maps and

calculated field sign; see Methods), and then collapsed across

hemispheres and stimulus locations into averages for contralat-

eral or ipsilateral stimuli. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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Figure 6.

Retinotopy-constrained source estimates with independence

between stimulus locations or smoothness constraint. Dipole

locations were chosen for each stimulus location for V1, V2, and

V3, and orientations were fixed to be perpendicular to the cort-

ical surface at each location. (A) Sources waveforms for each

stimulus location were estimated independently. (B) Source

waveforms were assumed to smoothly vary with stimulus loca-

tion (see Methods). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

r Hagler et al. r

r 1300 r



estimated source waveforms in the sense that similarity
across stimulus locations is enforced. Furthermore, the re-
sidual error during the baseline period is extremely high.
Baseline noise, which presumably varies randomly with
respect to stimulus location, is inconsistent with a model
that predicts systematic changes in dipole orientation and
location as a function of stimulus location. The fact
though, that the equality constraint provides a relatively
poor fit to the data (�58% residual error between 70 and
90 ms post-stimulus) suggests that there may be errors or
oversimplifications in the retinotopic dipole model.
There are a variety of potential sources of error in the

dipole model. We will describe several—and possible
ways to deal with them—in the Discussion. Here we will
consider what may be the most likely source of error; that
is, random errors in the specification of the dipole orienta-
tions. Assuming that the carefully edited cortical surface
reconstruction is largely accurate, the modeled dipole ori-
entations rely upon accurately placed dipole locations
based on the sometimes noisy fMRI retinotopic maps.
Accordingly, if the location chosen is 1 or 2 mm away (i.e.
1 or 2 vertices) from the true center of activation, this may
affect the estimated dipole orientation and hence the
source estimates and residual error from the retinotopy-
constrained inverse method.
We investigated this issue by calculating the differences

in dipole orientations between vertices included in the reti-
notopy-constrained dipole models and their neighboring
vertices. The average differences for 1, 2, 3, 4, and 5 verti-
ces away were 188, 308, 378, 418, and 448, respectively. To
simulate the effect of this type of error, simulated sensor
data was generated by applying the forward solution to
the source waveforms estimated from actual data using
the equality constraint. Gaussian noise with the same
standard deviation as the baseline period of the actual
data was added to the simulated sensor data. Source
waveforms were then estimated from the simulated data
using alternate forward models containing random errors
in each dipole’s orientations, averaging 08, 188, 308, 378,
418, or 448. As the size of the dipole orientation errors was
increased, the residual error of the simulated source esti-
mates also increased (Fig. 9A). Interestingly, shape and
timing of the simulated source estimates were relatively
insensitive to the orientation errors (Fig. 9B,C). Repeating
these simulations with independent estimates for each
stimulus location, we found that the simulated source esti-

mates were highly sensitive to random orientation errors
(see Fig. 10). Thus, using full dipole paths, rather than sin-
gle dipoles, makes the source estimates less sensitive to
potential errors induced by non-systematic mislocalization
of a few dipoles.

Additional Sources

It is an understatement to say that V1, V2, and V3 alone
are not responsible for generating the early visual evoked
response. MT, for example, is known to be activated as
early or earlier than V1 [Raiguel et al., 1989; Schmolesky
et al., 1998]. Retinotopic mapping of MT is possible [Huk
et al., 2002], but its much larger receptive fields may mean
that the optimal dipole locations for the different stimulus
locations would be in a relatively tight cluster near the
center of MT. In addition, the presence of multiple maps
in a small area makes the selection of dipole locations
more arbitrary and error prone. To simplify, MT was rep-
resented as a nonretinotopic dipole, with a fixed response
across stimulus locations. Each hemisphere was given its
own, independent source for MT, at a location chosen
from fMRI retinotopic maps. Because of uncertainty in the
precise location and orientation of dipoles in MT, the ori-
entation was allowed to freely vary across time. The
source time courses estimated for MT have peak latencies
and amplitudes roughly similar to V1, V2, and V3, but the
source estimates for V1–V3 are minimally changed with
the addition of these additional sources (Supp. Fig. 4). The
residual error decreased slightly with the addition of the
MT dipoles across the duration of the evoked response
(Supp. Fig. 4E).
Simulations may prove useful for testing whether the

source estimates from the retinotopy-constrained inverse
are sensitive to additional, unmodeled sources. The source
waveforms estimated for the normal component of the MT
dipoles, along with the source estimates for V1–V3, were
used to simulate sensor waveforms. We then used the reti-
ntopy-constrained inverse to estimate source waveforms
from the simulated data. The simulated source estimates
for V1–V3 were rather insensitive to the additional sources,
regardless of whether MT dipoles were included in the
inverse (Supp. Fig. 5).

DISCUSSION

We have developed a method for estimating visual
evoked MEG and EEG responses in individual visual areas
that attempts to resolve the inherent ambiguity between
closely spaced dipolar sources. This method uses structural
and functional MRI to determine dipole locations and ori-
entations and uses data from multiple stimulus locations
to simultaneously constrain the solutions. Source wave-
forms are assumed to be identical, or smoothly varying,
across stimulus locations, within a given visual area. The
use of multiple stimulus locations is critical to deriving

TABLE I. Crosstalk between visual areas

with varying constraints

Constraint CT(V1,V2) CT(V1,V3) CT(V2,V3)

Independent,
free orientations

min 0.046 0.004 0.041
max 1.904 0.304 0.553

Independent,
fixed orientations

min 2.1 3 1025 9.7 3 1026 1.2 3 1026

max 0.687 0.082 0.374
Equality,
fixed orientations

3.2 3 1028 1.9 3 1027 3.8 3 1029
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Figure 8.

Residual error of visual evoked source estimates. (A) Normalized

residual error for underconstrained but regularized (assumed SNR

5 1 RMS) source models including (1) retinotopy-constrained

dipole locations and orientations, (2) retinotopy-constrained

dipole locations with free orientations, and (3) L2 minimum norm

(dSPM). All three models allow independence between stimulus

locations. (B) Normalized residual error for retinotopy-con-

strained source estimates with (1) smoothness constraint, and (2)

equality constraint. Normalized residual error was calculated as

the ratio between the variance of the residual error and the total

variance of the data. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 7.

Retinotopy-constrained source estimates assuming equality of source amplitudes across 16 stimu-

lus locations. (A) Source estimates for Subject 1 generated for each visual area, constrained by

the MEG and EEG data from the multiple stimulus locations. (B) Source estimates generated

from Subject 2’s MEG and EEG data (with dipoles modeled from Subject 2’s MRI data). (C)

Source estimates for Subject 1 using only MEG data. (D) Using only EEG data. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]



source waveforms that are relatively insensitive to random
errors in the specification of the dipole model.
Some early attempts to model the VEP focused primarily

on V1 and demonstrated that fitted dipole orientations or
locations varied as a function of stimulus location in a way
consistent with the idealized retinotopic topography of V1
[Aine et al., 1996; Clark et al., 1995; Jeffreys, 1968; Slotnick
et al., 1999]. Slotnick et al. used multiple, iso-eccentricity
stimulus locations to simultaneously constrain the source
waveforms, but dipole locations were not constrained and
V1 was the only area modeled. Additional studies mod-
eled the VEP with a larger number of dipoles [Aine et al.,
2000; Di Russo et al., 2001, 2003, 2005; Martinez et al.,
1999, 2001; Vanni et al., 2004] and introduced fMRI data to
fix dipole locations [Di Russo et al., 2005; Vanni et al.,
2004] and orientations [Vanni et al., 2004]. One shortcom-
ing of the models used in those studies is that single
dipoles were made to model multiple visual areas; for
example, V2, V3, and V3A modeled with a single dipole,
or a single dipole for ventral occipital. In the absence of
the simultaneous constraint across multiple stimulus loca-
tions, this type of simplification of the model was neces-
sary due to problems with crosstalk and ambiguity
between closely situated dipoles.
Other studies of VER sources used minimum-norm dis-

tributed source methods [Ahlfors et al., 1992; Sharon et al.,
2007]. The noise-normalized minimum-norm (i.e. dSPM)
source estimates for the earliest VER component were
shown to agree well with fMRI activations, particularly
when MEG and EEG were combined [Sharon et al., 2007].
Our results show that the dSPM method, even when MEG
and EEG are combined, does not provide plausible time
courses for the early visual areas; rather, the estimated
time courses for the different visual areas are remarkably
similar. This is probably due to the high level of crosstalk
between neighboring dipoles and the relatively large point
spread function (�20 mm or more) of the dSPM method
[Liu et al., 2002].
The retinotopy-constrained inverse method described in

the current study has integrated useful features of meth-
ods used in these previous studies including: (1) using sin-
gle-subject fMRI and MRI data to fix the locations and ori-
entations of modeled dipoles, (2) simultaneously fitting for
multiple visual areas, (3) and constraining the solutions
with multiple stimulus locations. A significant improve-
ment comes from constraining the solutions for separate
visual areas with a collection of stimulus locations. This
provides a kind of signature for each visual area that is
more distinct than simply a location and orientation.
Crosstalk between areas is reduced, resulting in improved
separation between source estimates for individual areas.

Temporal Components of Source Waveforms

Previous studies of pattern-onset VEPs in humans have
identified the C1 component, which occurs between 60
and 100 ms post-stimulus and reverses in polarity between

upper and lower field stimuli [Butler et al., 1987; Clark
et al., 1995; Di Russo et al., 2001, 2003; Jeffreys, 1968; Jef-
freys and Axford, 1972; Jeffreys and Smith, 1979; Mangun,
1995; Martinez et al., 1999]. This timing matches that of the
large negative peak we observe in the V1 source waveform
and the polarity is consistent as well. Negative polarity
represents a dipole pointing perpendicular to the cortical
surface, toward the white matter. For an upper field stimu-
lus, the idealized V1 dipole is located on the lower bank of
the calcarine sulcus, so negative polarity results in a nega-
tive potential on the scalp surface. A lower field stimulus
with the negative dipole located on the upper bank of the
calcarine results in a positive scalp potential. The source
waveforms for V2 and V3 exhibited similar negative peaks,
delayed by 13 and 23 ms, respectively. This latency differ-
ence between V1 and V2 is consistent with that observed
in awake, behaving monkeys [Schroeder et al., 1998].
Visual areas V2 and V3, and to a much lesser extent V1,

also exhibited small positive deflections preceding the
large negative peaks. This biphasic response is very similar
to recordings made from the cortical surface of V1 in
awake, behaving monkeys presented with patterned stim-
uli [Schroeder et al., 1991]. The shape of the cortical-sur-
face VEP depends on the laminar pattern of cortical inputs
[Creutzfeldt et al., 1966; Schroeder et al., 1991]. Initial tha-
lamic input to layer 4 cells leads to depolarization of basal
dendrites of layer 2/3 pyramidal neurons, resulting in a
negative extracellular potential [Barth and Di, 1991; Eine-
voll et al., 2007]. Positive current traveling up the apical
dendrites and returning to the extracellular space results
in a positive extracellular potential in the upper layers.
This forms a positive dipole that could explain the early
positive deflections in the source waveforms. The large
negative component is likely due to activation of the apical
dendrites of pyramidal neurons [Barth and Di, 1991; Eine-
voll et al., 2007]. As positive current travels down to the
somas and out into the extracellular space, this sets up a
negative dipole. Later components in the source wave-
forms were likely a complicated combination of depolari-
zation and hyperpolarization due to excitation and inhibi-
tion, as well as responses to the offset of the stimulus after
83 ms. The larger size of the early positive deflection for
V3 compared to V1 and V2 may reflect differences in the
timing of activation in particular cortical layers, but errors
in the source estimates due to inaccuracies in the dipole
models cannot be ruled out at this point.

Factors Limiting the Accuracy

of Source Estimates

Because the modeled dipole locations and orientations
in the retinotopy-constrained model are exactly specified
and not allowed to freely vary, the resulting source esti-
mates are dependent on how accurately the dipole model
is specified. That accuracy is limited by several factors,
including simplifications made in constructing the retino-
topic dipole models and technical considerations about the
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imaging and analysis methods used. Simplifications we
made included limiting the number of visual areas to
three, ignoring potential differences between responses to
upper and lower field stimulus locations, and assuming a
single dipole for each stimulus location for a given visual
area. Technical considerations include potential mis-
matches between fMRI and MEG/EEG data, registration
between MRI, fMRI, and MEG/EEG data, accuracy of
dipole locations and orientations specified by MRI/fMRI
data, and accuracy of the forward model. Each of these
factors could reduce the accuracy of the source estimates
and therefore deserve careful consideration.

Simplifications to Retinotopic Dipole Models

Given that there are more than 20 distinct areas in
human visual cortex [Felleman and Van Essen, 1991], mod-
eling only a few of these areas could result in significant
residual error, even if those areas (i.e. V1, V2, and V3) are
expected to produce the largest amplitude visual evoked
responses. Because a collection of dipoles was used for
each visual area, crosstalk between visual areas is very
low; thus, even if a visual area is not included in the
model, its activity should not be assigned to another visual
area. This is important because it is likely that several vis-
ual areas that we have not modeled also contribute to the
visual evoked response. Including additional retinotopic—
or weakly retinotopic—areas may yield a better fit to the
data, particularly at later time points, provided that accu-
rate retinotopic maps can be obtained for those areas.
Other, nonretinotopic areas that contribute to the evoked
visual response can be modeled as dipoles with the same
time course and orientation regardless of stimulus loca-
tion.
One may question whether it is justifiable to assume

that different stimulus locations will truly evoke identical
source waveforms, as our equality constraint does. Based
on human psychophysical results [Previc, 1990; Skrandies,
1987], one would predict differences in response wave-
forms for upper and lower field stimuli [Lehmann and
Skrandies, 1979; Portin et al., 1999; Skrandies, 1987]. It is

not clear if areas like V3 and VP, which respond to lower
and upper field stimuli respectively, are even similar
enough to be considered parts of the same visual area
[Burkhalter and Van Essen, 1986; Felleman et al., 1997;
Zeki, 2003]. The smoothness constraint we described does
allow for possible differences between stimulus locations,
but an alternative is to estimate waveforms separately for
V3 and VP, or for upper and lower field stimuli for all vis-
ual areas.
Another significant simplification we made was to

model each stimulus location for a given visual area with
a single dipole, instead of, for example, modeling the spa-
tial spread of the electrophysiological response. We pre-
smoothed the normal vectors over the cortical surface, so
this effectively used a Gaussian function to model the spa-
tial spread. A more realistic approach would be to specify
a patch of cortex based on receptive field sizes for each
visual area. Alternatively, the shape of the fall-off could be
estimated from the MEG/EEG data by optimizing weights
of neighboring vertices surrounding the surface vertex
chosen as the center of the receptive cortex. It may also be
possible to estimate separate waveforms for center and
surround, potentially resulting in a more accurate model
and a better fit to the data.

Technical Considerations Affecting Accuracy of

Source Estimates

The first of several technical considerations potentially
affecting the accuracy of source estimates concerns the va-
lidity of using fMRI to determine MEG/EEG source dipole
locations. The most important question is whether signals
localized with fMRI correspond to the generators of MEG/
EEG signals. Simultaneous electrophysiological and hemo-
dynamic measurements in animals have demonstrated that
the differences in location of peak activation by the two
measures is less than 1 mm [Devor et al., 2005; Grinvald
et al., 1986; Thompson et al., 2003]. Possible nonlinearities
between cortical current amplitudes and hemodynamic
responses [Devor et al., 2003; Wager et al., 2005; Wan et al.
2006] are not a concern; because instead of relying on

Figure 10.

Sensitivity of estimated source waveform to typical errors in

modeled dipole orientations with independence between stimulus

locations. (A) Residual error of simulated source estimates with

varying levels of average random dipole orientation errors (0,

188, 308, 378, 418, and 448), corresponding to 0–5 vertex distance

away from ‘‘true’’ dipole location. (B) Simulated V1 source esti-

mates with no dipole errors. (C) Simulated V1 source estimates

with 418 dipole errors, corresponding to �4 vertex displacement

from ‘‘true’’ location. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 9.

Insensitivity of estimated source waveform to typical errors in

modeled dipole orientations with equality constraint. (A) Residual

error of simulated source estimates with varying levels of average

random dipole orientation errors (0, 188, 308, 378, 418, and 448),
corresponding to 0–5 vertex distance away from ‘‘true’’ dipole

location. (B) Simulated source estimates with no dipole errors.

(C) Simulated source estimates with 418 dipole errors, corre-

sponding to �4 vertex displacement from ‘‘true’’ location. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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fMRI signal amplitudes, we used the phase of periodic sig-
nals to select dipole locations. Similarly, the spatial spread
of fMRI signals relative to electrophysiological measures is
not an issue because fMRI was used only to select the cen-
ter of the patch of cortex receptive to a particular stimulus
location.
Assuming that it is valid to use MRI and fMRI data to

create dipole models for MEG/EEG data, accurate registra-
tion between MRI, fMRI, and MEG/EEG data is important
for constructing accurate dipole models. Besides finding
the best fitting registration between fMRI and MRI or
MEG/EEG and MRI, which we did through manual regis-
tration and visual inspection, there are a few other impor-
tant issues that affect the accuracy of these registrations.
First, gradient coil nonlinearities result in scanner-type
specific image distortions in structural MRI images. Sec-
ond, magnetic susceptibility inhomogeneities in the brain
produce distortion in fMRI images. If uncorrected, it will
be impossible to correctly register structural and functional
MRI images and errors in the dipole model will be inevita-
ble. We greatly reduced this source of error by correcting
for these distortions (see Methods). Third, head motion
during MEG acquisition would introduce errors in the
MRI to MEG registration. Such motion could be prevented
by using a subject-specific bite-bar or corrected offline if
real-time head tracking were used.
Even with perfect co-registration of structural and func-

tional MRI images, the accuracy of the dipole models
remains limited by the spatial resolution of the fMRI
images, physiological and scanner noise in the fMRI
images, and the reliability of manually chosen dipole loca-
tions. We used voxels that were slightly larger than 3 mm
isotropic, but smaller voxels (e.g. 2 mm isotropic) have
been used effectively to provide higher resolution retino-
topic maps [Kastner et al., 2007; Schira et al., 2007]. In
addition, the selection of dipole locations could be auto-
mated, and hopefully improved, by fitting a retinotopic
map template to the data using nonlinear optimization
methods [Dougherty et al., 2003; Schira et al., 2007].
Improved spatial resolution of fMRI data and more reli-
able selection of dipole locations should provide more
accurate dipole models; however, we found that even
small displacements result in relatively large changes in
dipole orientations. Thus, it is reassuring that constraining
the solutions with multiple stimulus locations yielded
source estimates less susceptible to random errors in the
modeled dipole orientations than source waveforms esti-
mated independently for each stimulus location. It is likely
that increasing the number of stimulus locations included
in the model, for example by sampling at multiple eccen-
tricities, would further improve the robustness of the esti-
mates.
The accuracy of the overall fit to the data is also limited

by the accuracy of the forward model. We used the BEM,
which uses realistic surfaces reconstructed from high-reso-
lution MR images of the head. Because MEG is relatively
insensitive to the conductivity profile of the head, BEM

models, or even spherical shell models, have been shown
to result in low localization errors [Leahy et al., 1998]. In
contrast, because the spatial spread of EEG signals is quite
sensitive to the low conductivity in the skull, BEM models
are a significant improvement over spherical shell models
[Fuchs et al., 1998; Yvert et al., 1995; Zanow and Peters,
1995]. Source estimates using the finite element method
(FEM) are more accurate, especially for EEG, although this
method is computationally intensive and limited by the re-
solution of the MR images used to create the models
[Gencer and Acar, 2004; Ollikainen et al., 1999; Wen and
Li, 2006; Wolters et al., 2006]. Properties of sublayers of
the skull, which affect the local conductivity, may be diffi-
cult to resolve with standard structural MR images and
actual conductivity values for those sub-layers may be
unknown.

Potential Applications

In this manuscript we have described a new method
that provides the means to noninvasively study the tempo-
ral properties of individual visual areas. This method
offers the possibility of studying how the timing or
magnitude of activation in multiple visual areas varies as a
function of stimulus properties, attentional state, or task
demands. For example, one could measure how the time
courses of individual visual areas are modulated by stimu-
lus contrast. Because visual areas such as V1 and V3 dis-
play differences in sensitivity to changes in stimulus con-
trast that are measurable with fMRI [Avidan et al., 2002;
Buracas et al., 2005; Kastner et al., 2004; Tootell et al.,
1995], this would test the sensitivity of the method to
detect changes in response amplitude. Hemispheric or
upper/lower visual field asymmetries can also be studied,
as can interactions between early visual areas and higher-
level visual and multi-sensory areas.
This method is also well suited to the study of the mod-

ulation of VERs by selective attention. MEG/EEG studies
have demonstrated attentional modulation of the VER due
to selective spatial attention [Di Russo et al., 2003; Marti-
nez et al., 1999, 2001; Noesselt et al., 2002], but because
ECD source analysis is unable to reliably distinguish
between activity in the individual visual areas, a definitive
analysis of the temporal patterns of attentional modulation
requires source analysis methods that are able to confi-
dently separate signals from multiple, simultaneously
active, visual areas.
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