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Automatic computer processing of large multidi-
mensional images such as those produced by magnetic
resonance imaging (MRI) is greatly aided by deform-
able models, which are used to extract, identify, and
quantify specific neuroanatomic structures. A general
method of deforming polyhedra is presented here,
with two novel features. First, explicit prevention of
self-intersecting surface geometries is provided, un-
like conventional deformable models, which use regu-
larization constraints to discourage but not necessar-
ily prevent such behavior. Second, deformation of
multiple surfaces with intersurface proximity con-
straints allows each surface to help guide other sur-
faces into place using model-based constraints such as
expected thickness of an anatomic surface. These two
features are used advantageously to identify automat-
ically the total surface of the outer and inner bound-
aries of cerebral cortical gray matter from normal hu-
man MR images, accurately locating the depths of the
sulci, even where noise and partial volume artifacts in
the image obscure the visibility of sulci. The extracted
surfaces are enforced to be simple two-dimensional
manifolds (having the topology of a sphere), even
though the data may have topological holes. This au-
tomatic 3-D cortex segmentation technique has been
applied to 150 normal subjects, simultaneously ex-
tracting both the gray/white and gray/cerebrospinal
fluid interface from each individual. The collection of
surfaces has been used to create a spatial map of the
mean and standard deviation for the location and the
thickness of cortical gray matter. Three alternative
criteria for defining cortical thickness at each cortical
location were developed and compared. These results
are shown to corroborate published postmortem and
in vivo measurements of cortical thickness. © 2000

Academic Press

1. INTRODUCTION

In recent years, there has been a rapid proliferation
of algorithms for segmentation of MRI data into iden-
tifiable anatomical objects that can be visualized, ma-
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nipulated, and measured. For brain imaging, segmen-
tation has found widespread application in basic
neuroscience, neurological research, clinical neurology,
and neurosurgery planning. However, the inherent
limitations of image under-sampling, lack of contrast,
intensity bias, and noise have made the segmentation
of fine anatomic details a difficult task. This problem is
nowhere more evident than in the highly convoluted
human neocortex. Until recently, the accurate extrac-
tion of the cortical surface has been an exceedingly
difficult task. Partial volume effects blur the distinc-
tion between closely adjacent surfaces in deep sulci,
leading to a well-known segmentation error in which
the deeper reaches of sulci are not penetrated by the
putative surface model. As a result, any attempt to
extract morphometric information (e.g., cortical area,
percentage of buried cortex, or cortical thickness) is
meaningless. Similarly, any attempt to relate struc-
tural anatomy and functional data from positron emis-
sion tomography (PET) or functional magnetic reso-
nance imaging (fMRI) activation studies with cortical
morphology in 3-D or 2-D (as flattened surfaces) is a
hazardous undertaking. We present here a method for
overcoming these problems, using a multiple-surface
deformation algorithm, called ASP, which stands for
anatomic segmentation using proximities. Topology
constraints ensure that the cortical mantle, defined by
its exterior and interior boundaries, is properly identi-
fied in areas susceptible to partial volume errors. This
results in a more accurate sulcal penetration and a
measure for gray matter thickness at every point over
the whole cortical mantle. The method for extracting a
3-D geometric model of human cortical surface is pre-
sented, as well as results from validation experiments
and techniques for combining information from large
population datasets. Finally, measures of cortical gray
matter thickness are presented and compared to re-
lated imaging and postmortem studies.

The underlying method of cortex identification pre-
sented here is a deformable surface technique. Deform-
able models provide solutions for registration, seg-
mentation, and matching tasks in computational
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neuroanatomy, by combining the bottom-up approach
of edge detection with the top-down approach of model-
based constraints. Purely bottom-up approaches such
as the “Marching Cubes” method (Lorensen and Cline,
1987) provide high resolution representations of data
but suffer from their inability to consider information
that is not present in the data. One consequence is that
bottom-up methods have limited means to compensate
for noise. Another deficiency is that the topology of the
reconstructed surface cannot be controlled, even
though the correct topology is often known. Further-
more, it is difficult to incorporate domain-specific con-
straints on the reconstruction process, information
that could help resolve ambiguous regions. The active
contour method of Kass et al. (1988), commonly re-
ferred to as “SNAKES,” attempts to address these is-
sues and has been the foundation upon which many
deformation methods have been based. Essentially, a
2-D or 3-D spline function is assigned an energy func-
tion that consists of a constraint on stretching and
bending based on first and second derivatives and an
image term that decreases in energy as the spline
moves closer to image boundaries defined by a change
in intensity. Numerical integration techniques deform
the spline from a starting position to a minimum en-
ergy configuration, which represents a compromise be-
tween the shape constraints of the model and the edge
features of the image. Shape constraints have been
used to reduce sensitivity to noise, impose an expected
class of shapes on data, and to help formulate map-
pings among models and individual datasets. As well,
other complex constraints based on a priori models are
readily incorporated into the deformation process. For
these reasons, deformable models have been chosen as
the framework upon which to build the novel segmen-
tation algorithm described in this paper.

Many adaptations of deformable models in medical
imaging have since been presented (Collins, 1992; Da-
vatzikos and Bryan, 1995; Sandor and Leahy, 1997;
Cohen and Cohen, 1993; Staib and Duncan, 1992; Xu et
al., 1998; Zeng et al., 1998) and a survey of these
methods is presented in (McInerney and Terzopoulos,
1996). Some of these methods specifically address the
problem of locating the cortical gray matter of human
brains in three-dimensional images. This is a particu-
larly difficult task due to the high degree of geometric
complexity of the cortex, combined with the noise, un-
der-sampling, inhomogeneities, and other sampling ar-
tifacts, which are often present in the images. Several
approaches have used information about related ana-
tomical structures, notably white matter, to improve
the segmentation of the cortical gray surface. The so-
lution of Dale and Sereno (1993) performs morpholog-
ical operations to improve the topology of a binary
white matter volume and then expands a deformable
surface from the white matter boundary toward the
outer gray matter boundary. The use of the white mat-
ter information is an important advance, but the sur-
faces produced have two drawbacks. First, the algo-
rithm as described does not prevent self-intersecting
topologies, which occur as opposite banks of a sulcus
are expanded toward each other, and, second, it is
difficult to guarantee that the resulting surface has the
topology of a sphere by using morphological operators.

Davatzikos and Bryan (1995) present an active con-
tour method that models the cortical gray matter as a
finite thickness sheet. The sheet has a two-dimensional
parameterization, making it suitable for subsequent
morphometric analysis. Rather than parameterizing
the complete folded cortical surface, the method pa-
rameterizes the outer boundary of the cortex, only en-
tering the upper portion of each sulcus. Location of the
depths of the sulcus is performed as a second step,
where a curve is initialized at the top of each sulcus
and pushed down into the depths by a method similar
to the Snakes algorithm. While this method is novel in
its attempts to locate the depths of the sulci, the total
surface of the cortex is not contained in a single model.
Coordinating the two models used, the outer surface
model and the set of deep curves, into a single model
that faithfully represents the true folded cortex is a
nontrivial task. The curves represent the center of the
sulcus, providing no information about the width of the
sulcus, which would be necessary to reconstruct the
folded surface.

A more recent method by Zeng et al. (1998) uses a
level set method to represent the deformable surface as
the zero set of an implicit function. Two concentric
surfaces are deformed with intersurface distance con-
straints to impose a predicted range of thickness on the
gray matter, resulting in a more robust identification of
the cortical gray surface. Again, the limitation of this
algorithm is that the resulting surface may not be a
two-dimensional manifold. The correspondence be-
tween points on the gray and white matter surfaces is
computed as the nearest point, which is one of the
three measures of cortical thickness that will be eval-
uated here. The deficiencies of this measure of thick-
ness relative to the other two will be shown.

In order to address the deficiencies in the above
segmentation methods, we present a novel deformable
surface method (ASP—anatomic segmentation using
proximities), which creates simple (non-self-intersect-
ing) cortical gray matter surfaces with topologies iso-
morphic to the sphere (two-dimensional manifolds).
Most deformable surfaces typically use stretching and
bending constraints for a regularization effect, which
penalizes but does not fully prevent nonsimple (self-
intersecting) surface geometries. The deformable
method presented here explicitly prevents self-inter-
secting configurations. This allows the deforming sur-
face to be less stiff and thus better able to capture fine
detail, while guaranteeing that the topology of the sur-
face will not be changed by arbitrary self-intersections.
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This will be shown in a simple validation experiment
where conventional methods produce a nonsimple sur-
face, whereas the ASP algorithm does not. The idea of
using other anatomical structures to guide the identi-
fication of the outer gray matter surface is extended
here to model two concentric surfaces with explicit
proximity links between a dense field of corresponding
points on both surfaces. A large number of sample
points is used on each surface to produce a faithful
approximation to the complex in-folded neuroanatomi-
cal surfaces.

The following section describes the deformable
method as a minimization problem, consisting of an
objective function and a procedure for numerical min-
imization. Some simple validation experiments are
presented and then the application of ASP to identify-
ing cortical surfaces from normal human MR images is
outlined. The results of applying this to 150 subjects
are presented in a variety of forms, including a mean
surface, a mean thickness map, and a mean curvature
map. Discussion of measures of cortical thickness ob-
tained with ASP and the relevance of these results to
conventional neuroanatomic knowledge of the cortex is
presented.

2. METHOD

The essence of the ASP algorithm is the formulation
of an objective function that when minimized deforms
a set of surfaces to fit some models and data. The
domain of the function is the set of vertex coordinates
describing one or more polyhedra to be deformed, and
the range is a scalar value representing a goodness of
fit of the polyhedra to the target data.

2.1. Objective Function

The objective function to be minimized, O(S), may be
defined generally as a weighted sum of Nt terms, each
of which may be thought of as a data or model term,
depending on whether it constrains the deforming
polyhedra to match image data or some model-based a
priori information:

O~S! 5 O
k51

Nt

Tk~S!,

where each term Tk(S) measures some aspect of S, a set
of Ns deforming polyhedral surfaces,

S 5 $Si: Siis a polyhedral surface, 1 # i # Ns%.

ach term, Tk(S), is formulated as:

T ~S! 5 W~D ~S!!,
k k
where Dk(S) is a signed scalar measure of deviation
from some ideal, and W(x) is a general weighting func-
tion. Usually this is just a squaring function, W(x) 5
ax2, where a is a constant indicating the weight of this
term relative to the other terms. However, by making a
a function of x, one can introduce constraints into the
system by use of functions that increase rapidly when
x passes a certain threshold value. For the sake of
simplicity, the objective terms are presented here as
equations that are in the form of a simple squaring of
a deviation from ideal, with the weight a equal to 1.
Where appropriate it will be indicated how an appro-
priate a(x) weighting function can be used to enforce
hard constraints in the system.

2.1.1. Definitions. We have previously defined the
set of deforming surface, S. For the model terms, we
also define a set of companion surfaces, Ŝ, which is a
et of Ns model polyhedral surfaces where each Ŝi has

the same topology as Si, i.e., the number of nodes and
indices of connected nodes are equivalent. These are
used to define shape-based ideals. We now present
some definitions that are used in the objective func-
tions that follow: xv 5 (xv, yv, zv), 3-D position of vertex
v in a deforming polyhedral mesh, Si; xv 5 (x̂v, ŷv, ẑv),
3-D position of vertex v in a static model polyhedral
mesh, Ŝi; nv, the number of vertices in a polyhedral
mesh; ne, the number of edges in a polyhedral mesh; np,
he number of polygons in a polyhedral mesh; mv, the

number of neighbors of vertex v; d(x, y), the 3-D Eu-
clidean distance between two points; nv,j, the jth neigh-
bor of vertex v; Nv, the surface normal at vertex v,
defined as the unit normal to the polygon consisting
of the counterclockwise ordered neighbors of the
vertex, v.

2.1.2. Image term. Many conventional methods use
an image term based on the image value at a point on
the deforming surface, implicitly using the local gradi-
ent of the image to “push” the surface toward the
correct edge. However, if the deforming surface is far
from an edge, or the gradient direction is misleading,
there may be difficulties locating the “correct” edge.
For this reason, the image term presented here is
based on the distance from a vertex on the deforming
surface to the nearest image boundary in the direction
of the local surface normal (see Fig. 1) and is expressed
as

Tboundary-dist 5 O
v51

nv

dB~xv, Nv, t! 2,

where dB (xv, Nv, t) is the distance to the nearest image
contour of the threshold, t, from the vertex, v, along the
ine defined by the surface normal, Nv (see Fig. 2). The

explicit search in both directions along the surface
normal increases the power of locating image bound-
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aries that are relatively far from the current surface
position, because it is less sensitive to local variations
in gradient. However, the search is truncated after a
certain distance in order to prevent very distant bound-
aries from dominating the objective function. This term
may be modified to search for other image features,
such as the maximum gradient magnitude or zero
crossings of the Laplacian. In addition, the image term
may be oversampled between vertices to match the
sampling of the data.

2.1.3. Stretch term. The stretch term increases as
lengths between vertices are stretched or compressed
relative to a user-defined model surface representing
the ideal lengths,

Tstretch 5 O
v51

nv O
j51

mv Sd~xv, xnv,j
! 2 Lv, j

Lv, j
D 2

,

FIG. 1. Searching along the surface normal provides improved
edge finding as compared to searches based on local gradient.

FIG. 2. Shapes of terms: (A) T , (
boundary-dist
where Lv, j, the ideal length of an edge, is defined as the
corresponding length in the model polyhedron:

Lv, j 5 d~x̂v, x̂nv, j
!.

The intended effect of this term is to make distances
between corresponding pairs of vertices on the model
and deformed surface roughly equivalent and is anal-
ogous to the term involving the magnitude of the first
derivative of the spline in the original Snakes formu-
lation (Kass et al., 1988). One can consider this term
a regularization force, maintaining equivalence of cor-
responding edge lengths between the model and the
deforming surface.

2.1.4. Bending term. The bending term provides a
measure of deviation from a model shape based on an
estimate of local curvature and is analogous to the
second derivative term in the Snakes formulation
(Kass et al., 1988),

Tbend 5 O
e51

ne

~a~S, e! 2 a~Ŝ, e!! 2,

here a(S, e) is the signed angle between the two poly-
gons adjacent to the edge, e. This term can be consid-
ered a regularization force like the stretching term, but
is also intended to be used for shape-based matching
and segmentation. By keeping the deforming surface
similar to a preferred model shape, points on the de-

T , (C) T , (D) T , (E) T .
B)
 stretch bend self-proximity vertex-vertex
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forming surface will be encouraged to move toward
places in the image that have the same shape as the
model, thus automatically improving the match be-
tween the model and the data.

2.1.5. Self-proximity term and intersurface proximity
term. The previous three terms are found in some
form in most conventional deformable models. Here we
introduce the novel self-proximity term, which mea-
sures the proximity of pairs of nonadjacent polygons in
a surface,

Tself-proximity

O
i51

np21 O
j5i11

np H (dmin(Pi, Pj) 2 di, j) 2, if dmin(Pi, Pj) , di, j

0, otherwise,

where dmin(Pi, Pj) is the smallest Euclidean distance be-
ween the ith polygon, Pi, and the jth polygon, Pj, and di, j

is a distance threshold. Pairs of adjacent polygons are not
included in the above equation, as the distance dmin(Pi, Pj)
is a constant zero value for any deformation of the poly-
hedra. The self-proximity term is used to explicitly pre-
vent nonsimple topologies by assigning a prohibitively
high cost to self-intersecting topologies. As shown in Fig.
2d, the weighting function shown above must be modified
to increase asymptotically toward infinity as the inter-
polygon distance approaches zero, which will be de-
scribed later under 2.3. The intersurface proximity term,
Tsurface-surface, is formulated in a similar fashion, and is used
to prevent two surfaces from coming within a certain
distance of each other.

2.1.6. Vertex–vertex proximity constraints. A re-
lated proximity term is used to designate that corre-
sponding points on two surfaces prefer to be a certain
distance apart. Assuming two polyhedra have the same
topology, the term constraining the distance between
two corresponding vertices is:

Tvertex-vertex 5 (d(xv, xw) 2 dB) 2,

where dB is the preferred distance between vertex v on
ne surface and vertex w on a second surface and can
e a constant for all pairs of vertices, as shown here, or
an vary across the surface. This term keeps specific
oints of two surfaces a preferred distance apart, but
oes not explicitly prevent intersurface intersection,
hich is achieved by the intersurface proximity term
efined previously. Typically this term can be over-
ampled uniformly over the polyhedra to match the
ampling of the data.

.2. Minimization of Objective Function

Having formulated an objective function for fitting
urfaces to data, we now have to minimize it. For all
ut the most trivial examples, the size of the domain of
parameter space that must be searched prohibits any
form of exhaustive search. For example, conventional
polygonal representations of human cortical surface
have ranged from a few hundred to half a million
vertices, which is intractable for a grid search even
with only two samples per dimension. The conven-
tional approach of directed searching from an initial
guess is employed here. From an initial configuration
of polyhedra, deformation proceeds by minimization of
the objective function using a conjugate gradient ap-
proach (Press et al., 1988). This method involves iter-
atively computing line minimizations along directions
computed from successive derivatives. In order to in-
crease the chances of finding the global minimum, a
multiscale approach is employed. Deformation begins
with a low-resolution initial guess for each of the poly-
hedral surfaces being deformed, which may be a hand-
crafted model or statistically generated approximation
to the surfaces being identified. Low-resolution sur-
faces are deformed to fit the image data, resampled to
contain more triangles, and the process is repeated
several times. At the final resolution, triangles with
sides of about 1 mm are sufficient to capture the sur-
faces in the 1-mm isotropic voxel MR data being seg-
mented. This makes the algorithm less sensitive to
noise at the earlier levels, where the low resolution
nature of the surfaces does not admit noisy represen-
tations. Conventional multiscale algorithms also apply
a decreasing blur to the image data during the iterative
fitting, using the original image only at the final scale.
However, we have chosen to use oversampling of the
surface objective function to achieve the same noise
reducing effect without blurring the data. One advan-
tage is that the apparent topology of the data does not
change during the fitting, a situation that can occur
during blurring and cause the deforming model to have
to readjust itself. This is particularly important when
segmenting the cortex because large sulcal areas that
could be represented early on in multiscale space
might not be reached until later because blurring
closes the thin opening providing access to the region.
By using super-sampling of the objective function in-
stead of data blurring, the surfaces represent the best
fit to the original data at each scale space iteration and
avoid having to take many steps later when it is more
costly. Thus, the multiscale approach can also increase
the speed of the algorithm significantly by taking large
steps when the surfaces are at lower resolutions and
are therefore less expensive to deform.

The multiscale deformation is implemented as a se-
quence of deformations where the weights and other pa-
rameters may have different values for each step. For
instance, the stretching constraints are relaxed some-
what as the surface gets closer to a solution in order to
better interpolate the data. There remains some investi-
gation into the relative benefits of changing some of the
other parameters as the surfaces converge.
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2.3. Choice of Weights

One of the drawbacks of using a deformable surface
method is the requirement for user-defined weights to
control the tradeoffs among the various terms. In ad-
dition, it is desirable to choose weights that reduce
curvature in the objective function, to allow speedy
convergence to the solution, and reduce the number
local minima. Therefore the choice of weighting func-
tions is a critical issue. For the self-intersection and
intersurface proximity constraints, the weighting func-
tions are constructed so that the user can specify dis-
tances instead of weights. For instance, to prevent
self-intersection, a small threshold distance is speci-
fied. If two triangles are greater than this distance

FIG. 3. (A) Three-dimensional view of fit without self-intersec
hree-dimensional view of fit with self-intersection constraints. (D)

FIG. 4. (A) Cross-section of image representing a sulcus in which
by partial volume. (B) Cross-section of apparent gray/CSF boundary
apparent gray/white boundary. (D) Cross-section of dual-model defo

s

apart, the weight is zero, ignoring the pair. Below this
distance, the weight increases exponentially from a
small number (10210) to a large number (1010) as the
distance approaches zero, in an attempt to keep the
objective function as smooth as possible. For example
the self-proximity term of section 2.1.5 would now be
written as:

Tself-proximity 5 O
i51

np21 O
j5i11

np

e log10 2101(10 10210 210)
di, j2dmin(Pi,Pj)

di, j x 2, if dmin(Pi, Pj) , di, j

0, otherwise.

constraints. (B) Cross-section of image and surface from (A). (C)
ss-section of image and surface from (C).

distinction between opposing banks of the sulcus has been obscured
tracted by conventional single surface method. (C) Cross-section of
ation. (E) Dual-model gray/CSF surface. (F) Dual-model gray/white
tion
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3. VALIDATION

The following sections present several experiments
which examine various aspects of the ASP algorithm
independently.

3.1. Representing Surfaces with Enforced Topology

In order to verify that the surface deformation method
correctly imposes a simple spherical topology on a data
set with topological holes, a simple test was performed. A
torus image was produced, and a sphere fit to this image,
with and without self-intersection constraints. In both

FIG. 5. Response of ASP to gray thickness outside normal range.
ere the phantom’s cortical thickness varied from 1 to 15 mm, i.e.,

ar beyond normal values. The algorithm constrained the thickness
o between 2 and 6 mm.

FIG. 6. Histogram of distance between true surface and approxi
istogram covers a grid of points on both surfaces and shows the mini
he actual histogram x axis continues to a maximum of 11.5 mm, b
cases an approximation to the torus was produced that
spanned the hole of the torus (Fig. 3). Without self-inter-
section constraints, the resulting surface started to wrap
itself around the torus a second time (Fig. 3B), stopped
only by limits on stretching. With self-intersection con-
straints, a simple surface resulted (Fig. 3D). The use of
explicit self-intersection avoidance is necessary when at-
tempting to extract simple surfaces from images which
may have topological holes, as is the case with the cortical
mantle.

3.2. Solving Partial Volume Effects with a Double
Surface Model

Figure 4A illustrates a cross-section through a three-
dimensional simulated sulcus phantom. Conventional
single surface deformable methods find the sulcus in
the white matter (Fig. 4C), but fail to find a sulcus in
the gray matter (Fig. 4B) due to partial volume effects
in the image. The ASP method successfully locates a
reasonable approximation to the gray matter sulcus
(shown in three dimensions in Fig. 4E), using a double
surface formulation. The gray/CSF (Fig. 4E) and the
gray/white (Fig. 4F) surfaces are simultaneously de-
formed to fit the image under an intersurface distance
of 4 6 2 mm. The gray/CSF surface follows the gray/
white surface deep into the sulci, and it is important to
note that without self-proximity constraints, the oppo-
site banks of the sulcus would cross over each other as
they are moved away from the white matter. In this
example the model cortex was of uniform thickness.
Figure 5 shows how ASP applies the thickness con-
straints on a pathological phantom dataset, where the
cortical thickness ranges from below to far above the a

ting surface, normalized so that area under curve equals unity. The
m distance of each point to the closest point on the opposite surface.
nly the part that is sufficiently greater than zero is shown.
ma
mu
ut o
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priori thickness. There are areas where the thickness
constraints have prevented the surface from matching
the edges in the data because doing so would violate
the model. Expanding the range of allowable thick-
nesses would provide better faithfulness to the data,
but reduce the ability of the algorithm to pull the outer
surface into deep, narrow sulci, as in Fig. 4.

3.3. Ability to Approximate Complicated Structures

Since the ultimate goal is the application of ASP to
MR images of human brains, an experiment was per-
formed to determine how accurately the method can
approximate a set of image boundaries with the com-
plexity of the human brain. A dataset where the an-
swer is known is required for this experiment. For the
purpose of testing the ability of the ASP algorithm to
deform surfaces into the highly convoluted shape of the
human cortex, it is more important the data set have a
known answer than that it be perfectly anatomically
correct. Therefore, a reasonable data set to define as
the “ground truth” for this experiment is the white

FIG. 7. (A) Deformation of sphere to fit white matter image mod
than half a voxel. (B) sagittal section, (C) coronal section, and (D) tra
of white matter (black).
matter model previously devised for an MR simulator
(Kwan et al., 1996). The simulator models the proper-
ties of the various tissue types and creates a simulated
MR image with user-specified amounts of noise, RF
inhomogeneities, and other imaging artifacts, based on
some models of human brain tissue. In this tissue
model dataset, every voxel has been automatically la-
beled by tissue type (gray, white, CSF), using a neural
network-based classification algorithm (Zijdenbos et
al., 1993) applied to an actual high resolution MR
image. There is no explicit information that any given
voxel is part of a particular anatomical object such as
cortex. Given this volume of tissue types, we can define
the “ground truth” or “true” surface as the set of all
points on the boundary between a white pixel and a
nonwhite pixel. A surface was extracted automatically
by fitting a sphere to the voxelated data, using ASP.

The resulting surface was compared to the true surface
by finding the mean of the distances between a grid of
points on one surface and the nearest points on the other
surface, and vice versa, interchanging the roles of the two

he mean error between the surface and the “ground truth” was less
erse section of deformed surface (red) superimposed on a voxel map
el. T
nsv
FIG. 8. Gray-CSF boundary automatically extracted with the dual-surface model.
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surfaces. The combined mean difference of this bidirec-
tional distance measure was 0.34 mm (about a third of a
voxel) with a standard deviation of 0.46. Figure 6 shows
a histogram of this error, indicating that most points on
either surface are within 1 mm of the other surface, with
the maximum error being 11.5 mm. The larger errors
occur predominantly on the under-surface of the cortex,
where the deformation algorithm finds it difficult to
stretch the surface sufficiently to represent this region.
As well as being a sufficiently close approximation, the
deformed surface has the advantage of an enforced sim-
ple topology and continuity constraints. The deformed
surface and cross-sections of the surface and image model
are shown in Fig. 7. The largest areas of discrepancy are
in the inferior aspect, where the surface has reached up

FIG. 9. Gray-CSF boundary automat
into the ventricles. However, subsequent analysis is gen-
erally not concerned with these areas and this region can
be masked off and ignored. Alternatively, the shape pa-
rameters of the model may be tuned in this area to force
the deforming surface to simply make a smooth cut
across the brain stem. This additional constraint was not
imposed in these experiments in order to evaluate the
results of the basic algorithm without extra model con-
straints.

4. APPLICATION TO CORTICAL SURFACE
SEGMENTATION

ASP was applied to a large number of normal human
MR images to automatically identify the total surface

ly extracted with the dual-surface model.
ical
FIG. 10. Gray-white boundary automatically extracted with the dual-surface model.
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of the cerebral cortical gray matter. Subjects were se-
lected from a data base of 150 young normal subjects
that were acquired as part of the ICBM project (Maz-
ziotta et al., 1995). These data were scanned on a

hilips Gyroscan ACS 1.5 Tesla super-conducting mag-
et system at the Montreal Neurological Institute us-

ng a T1-weighted 3-D spoiled gradient-echo acquisi-
ion with sagittal volume excitation (TR 5 18,
E 5 10, flip angle 5 30°, 1 mm isotropic voxels, 140–

180 sagittal slices). T2-weighted and proton density-
weighted images were acquired at a resolution of 1 mm
in plane and 2 mm out of plane. The images were
corrected for RF inhomogeneity artifacts (Sled et al.,
1997), linearly transformed into a stereotaxic coordi-
nate system (Collins et al., 1994), and classified into
gray matter, white matter, and CSF (Zijdenbos et al.,
1993). It is important to note that these steps provide
an advantageous frame of reference for subsequent
analysis by reducing intensity biases and gross spatial

FIG. 11. Gray-white boundary autom

FIG. 12. Loose consistency of vertex placement is illustrate
differences in all images. The identification of the cor-
tical surface was accomplished in two steps. The first
step uses high stretching and bending weights to rig-
idly deform a coarse cortex mask to fit the classified
volume, thereby removing noncerebral white matter
from the volume. Then the dual-surface deformation
described previously was performed on the masked
volume, in a multiscale fashion. The initial surfaces
each contain 320 triangles, and after several iterations
of deformation and subsampling the surfaces, the re-
sulting surfaces contain 81,920 triangles each. At this
surface sampling, the average intervertex distance was
about 1 mm, equivalent to the sampling of the image.
The segmentation for a single subject took about 30 h
of time on a Silicon Graphics Origin 200 R10000 pro-
cessor running at 180 megahertz. Much of this expense
is attributable to the computation of the self-intersec-
tion constraints, but the reward is the guarantee of a
simple surface. Figures 8 and 10 show the top, bottom,

ically extracted with dual-surface model.

y labeling the 1668th vertex on four different cortical surfaces.
at
d b
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and right views of the outer and inner surfaces of a
cerebral cortex, respectively, and Figs. 9 and 11 show
cross-sections of the surface superimposed on the clas-
sified volume.

4.1. Averaging and Mapping to Two Dimensions

The surfaces deformed have a topology based on a
triangulation of a sphere, and there exists a one-to-one
mapping between points on any two deformed surfaces

FIG. 13. Six views of the average of 150 normal cortical surface
entral sulcus, the superior temporal sulcus, and the superior front

FIG. 14. Curvature of cortex (blue 5 sulci, red 5 gyri) from Fig.
a, mapped onto (A) the average surface and (B) a sphere.
or between a deformed surface and a sphere. The map-
ping is simply that the ith vertex on one surface corre-
sponds to the ith vertex on another surface, be it a
cortex or the triangulated sphere, since all cortical
surfaces were created from the same initial ellipsoid (a
scaled sphere). It is important to note that the exis-
tence of such a mapping does not necessarily imply

Note the prominence of major gyral and sulcal features such as the
yrus. (A) top, (B) left, (C) back, (D) bottom, (E) right, (F) front.

TABLE 1

Studies of Anterior Versus Posterior Thickness
of Central Sulcus Banks

Author Year Method

Anterior
border
(mm)

Posterior
border
(mm) Significance

Brodmann 1908 Autopsy 3.94 1.86
Von Economo 1925 Autopsy 3.75 1.82
Glezer 1959 Autopsy 3.01 1.59
Meyer 1996 MRI 2.70 1.76
ASP-Tlink 1999 MRI 3.22 2.73 P , 0.0013
ASP-Tnearest 1999 MRI 2.03 1.80 P , 0.0099
ASP-Tnormal 1999 MRI 2.75 2.34 P , 0.0084

Note. For the present study, the significances of the differences are
hown.
s.
al g
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that there is any anatomical basis to the correspon-
dence. In a worst case scenario, a point in the frontal
lobe on one surface may correspond to a point on the
occipital lobe of another surface. Having acknowledged
that the deformation algorithm does not explicitly en-
force homology among corresponding vertices of differ-
ent brains, it is interesting to see if there is any con-
sistency at all in the placement of vertices. Figure 12
shows the same vertex labeled on four different sur-
faces. While it is evident that these four points do not
correspond exactly to each other, their consistent loca-
tion near the superior aspect of the left precentral
gyrus indicates somewhat of a trend. Another way to
examine this is to perform a vertex by vertex average of
the 150 deformed surfaces identified by ASP to create a
mean surface; i.e., the four labeled points in Fig. 12 and
their 146 counterparts would be averaged to give one
vertex on the average surface. If there is no homology
between points, one would expect a featureless cloud of
points for the mean surface. However, the actual re-
sult, as shown in Fig. 13, is surprisingly full of ana-
tomic detail, with the central sulcus and superior tem-
poral sulcus clearly visible. It appears that performing
the deformation in the standardized stereotaxic coor-
dinate system mentioned earlier (Collins et al., 1994),
combined with stretch constraints that limit the move-
ment of vertices, effectively enforces a relatively con-
sistent placement of points on the cortical surface. By
no means could one use this to locate an exact point on
an individual cortex, for instance, on the fundus of a
particular sulcus. However, this loose homology may
be useful when dealing with averages of a large num-
ber of data sets or as the starting point for a postpro-
cessing step that attempts to find a more accurate
homology among multiple brains. Further investiga-
tion is required to evaluate the errors in this homology
based on some technique that explicitly maps corre-

FIG. 15. The three different measures of thickness.

TABLE 2

Mean and Standard Deviations of Three Thickness
Measures over 150 Normal Cortical Surfaces

Tlink Mean (SD) Tnear Mean (SD) Tnormal Mean (SD)

4.20 (0.52) 2.60 (0.50) 4.43 (0.88)
sponding points; at a minimum, by using human ob-
servers to define homology of a subset of points across
the 150 brains.

Figure 14 shows the average curvature of the 150
surfaces mapped onto both the average surface and a
unit sphere, where blue areas correspond to sulci, and
red areas to gyri. Due to the discrete nature of the
polyhedral surfaces, curvature is approximated by the
distance from a vertex to the centroid of its neighbors,
relative to the diameter of the set of neighbours. Aside
from the visual simplification aspect, morphometric
analysis may be more easily performed in the two-
dimensional parameter space of the sphere or on the
average surface. Depending on the specific analysis
requirements, it may be necessary to perform a further
step of warping within the two-dimensional space, for
instance, in order to make the mapping preserve dis-
tances, angles, or areas. Although approximating both
hemispheres with a single closed surface is an over-
simplification, the regions where this topology is inap-
propriate may be masked off. Alternatively, a surface
model that matches the anatomical topology more
closely may be chosen for the deformation process, but
the self-intersection constraints remain important for
preserving the desired topology. In the case of the
cortical gray mantle, a more correct topology might
include a pair of bilateral holes in the surface associ-
ated with the ventricles.

4.2. Cortical Thickness Measurements

Cerebral cortex is not of uniform thickness and the
change in thickness is a reflection of change in cytoar-

FIG. 16. The trend for postcentral regions (top of image) to be
thicker than inferior temporal regions (bottom) is clearly visible on
this coronal slice, which cuts through these two regions at approxi-
mately a right angle.
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chitecture. Cortical thickness in human isocortex has
been reported to be 1.5 to 5.0 mm (Zilles, 1990), this
thickness being lowest at the sulcal fundus and highest
on the gyral ridge. The absolute values of cortical thick-
ness may be influenced by the shrinkage of the tissue
during fixation and embedding procedures, and it has
been found that the shrinkage is greater in immature

FIG. 17. Top, left, and bottom views of normalized mean cortic
overall trend ranges from thin cortex in the postcentral regions to t
brains that have a higher water content than mature
ones (Blinkov and Glezer, 1968; Kretschmann et al.,
1979).

The most prominent evidence of change in cortical
thickness comes from the studies done on the central
sulcus. Several researchers have found that there is a
difference in the cortical thickness in the two banks of

hickness, measured three ways: (A) Tlink, (B) Tnearest, (C) Tnormal. The
er in the inferior temporal regions.
al t
hick
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the central sulcus. This is attributed to the difference
in cytoarchitecture of the two banks. The anterior bank
is agranular cortex and forms the primary motor area
4 (Brodmann’s division). This contains giant pyramidal
cells of Betz in cortical layer V and relatively few
granule cells. In contrast, the posterior bank forms the
primary sensory cortex (areas 3, 1, and 2), which con-
tains densely packed granule cells and is much thin-
ner.

FIG. 18. Top, right, and bottom views of areas of statistical diff
reater than, green shows less than): (A) between Tlink and Tnearest, (B
In 1996, Meyer et al. reported the mean ratio of
cortical thickness in the MR images of pre- and post-
central gyri in the two hemispheres of 10 brains. Using
cortical thickness measurements across the central
sulcus, this group provided a method for locating the
primary motor and sensory cortices that correspond to
the cytoarchitecture in these regions. Table 1 compares
cortical thickness information from four previous stud-

nce (P , 0.05) between the three measures of thickness (red shows
etween Tlink and Tnormal, and (C) between Tnormal and Tnearest.
ere
) b
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354 MACDONALD ET AL.
ies with three measures based on the ASP method,
which will be presented shortly.

Since the cytoarchitecture is not visible on the im-
ages acquired by MR scanning, the development of
accurate methods for the estimation of cortical thick-
ness is important for understanding the ontogeny of
various cortical regions and for providing an indication
of the hidden cytoarchitectural boundaries.

The cortical surface models described here lend
themselves readily to measurements of cortical thick-
ness. However, a definition of the thickness measure
must be chosen. We present three such definitions and
show the effectiveness of each for the task of comparing
and relating thicknesses in various regions and across
brains. Given a surface representing the gray/CSF
boundary and another representing the gray/white
boundary, the following three measures of thickness
are defined:

Tlink: The distance from a vertex on the outer surface
to the corresponding vertex on the inner surface, as
defined by the linkages used in the two-surface defor-
mation of the ASP algorithm.

Tnear: The distance from a vertex on the outer surface
to the nearest point on the inner surface.

Tnormal: The distance from a vertex on the outer sur-
face to the nearest point on the inner surface in the
direction of the surface normal. The normal at a vertex
is an average of the normals of the adjacent faces,
smoothed.

A schematic of these three measures is presented in
Fig. 15. For each measure of thickness, the mean and
standard deviation over the entire surfaces of the 150
cortices was generated and shown in Table 2. In abso-
lute terms, the three measures differ significantly but
they nonetheless exhibit similar patterns of variabil-
ity. To focus on this latter aspect, all three measures
were normalized to a value that indicates number of
standard deviations from the mean of the measure, i.e.,
the z score, and the resulting surfaces are shown in
Fig. 17, color coded on a scale of 24 to 4. The three

easures all indicate similar trends in thickness
cross the cortex, with the thinnest region being the
ost-central regions and the thickest being the inferior
emporal regions, a trend that can be seen on most
ndividual MR images (Fig. 16). Figure 18 shows the
reas of the cortex where there is significant (P , 0.05)
ifference among the three measures of thickness. If
he measures provided the same information, there
ould be no areas of difference between any pair. How-
ver, the Tnear measure is considerably dissimilar to the
ther two measures (Tlink and Tnormal), which seem to be

much more closely related to each other.
It is interesting to note that the Tnormal has almost

double the standard deviation of the other two. This
can be attributed to the fact that a slight deviation in
normal direction due to noise or imprecise surface fit-
ting can cause the distance to the other surface to
change significantly. The mean value of Tnear was much
smaller than the other two. This can be attributed to
the fact that with deep narrow sulci which have some
degree of asymmetry, the nearest distance from the
outer surface can miss the fundus of the sulcus, as
suggested by Fig. 15. In contrast to these two mea-
sures, the Tlink measure attempts to use the correspon-
dence between points on the surface, which provides a
measure of thickness that is less sensitive to fluctua-
tions in surface normal and areas of high curvature.
However, this measure is therefore dependent on the
validity of the correspondence created by the deforma-
tion algorithm. For instance, if the points on one sur-
face slide with respect to the other surface, such as
seen on the right portion of Fig. 15, the thickness could
be overestimated. Although the inner surface’s ten-
dency to pull the outer surface toward the fundus of
each sulci helps provide the correct correspondence at
each of the fundus points, it remains to investigate
methods to improve the correspondence over the entire
cortical surface.

The cortical surface thickness maps thus produced
can be used readily to address issues of variability
across the cortex. For example, the distribution of cen-
tral sulcus thickness can be examined by comparing a
point on the anterior bank with one on the posterior
bank (Fig. 19). For all three methods of measuring
cortical thickness, the anterior bank is significantly
thicker than the posterior bank (P , 0.01), which
matches the previously published postmortem and im-
aging results (Table 1).

A more sophisticated analysis of this central sulcus
wall thickness involves the use of a probabilistic atlas
of neuroanatomic structure (Evans et al., 1996; Mazzi-
otta et al., 1995). This atlas provides the probability of
each of 90 structures at each voxel within a normalized
stereotaxic space (Evans et al., 1992; Collins et al.,
1994). Using the probabilistic precentral and postcen-

FIG. 19. Two sample points shown as red spheres, one each on
the posterior bank and the anterior bank of the central sulcus.
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tral gyrus, the statistical test of two points is replaced
with a similar test of about 180,000 points on these two
regions. The result is that for all three thickness mea-
sures, the precentral cortex is thicker than postcentral
cortex (P , 0.000001). The mean and standard devia-
tions of the thicknesses of these two regions are pre-
sented in Table 3. It is interesting to note that the
absolute difference in thickness is much less than with
the previous two-point test. This may indicate that
while the mean thicknesses of the two entire gyri differ
slightly but significantly, there may be smaller subre-
gions of more substantial differences. The image pre-
processing mentioned earlier removes some of the
sources of bias in these thickness measurements
through linear registration, RF inhomogeneity correc-
tion, intensity normalization, and tissue classification,
but it needs to be examined what potential errors and
bias in the cortical thickness measurements remain.

5. SUMMARY AND DISCUSSION

We have described ASP, a novel method of multiple
surface deformation for cortical segmentation with the
following features:

● a boundary search along the local surface normal
is used to increase the range of attraction of edges;

● the use of proximity constraints with appropriate
weights excludes self-intersecting surface configura-
tions;

● some arbitrary weights are replaced by more intu-
itive geometric constraints;

● multiple surfaces, models, and datasets may be
combined into a single objective function;

● automatic identification of the total cerebral corti-
cal surface from MR images is achieved in a robust way
with respect to partial volume effects;

● a preliminary map of cortical gray matter thick-
ness has been produced and related to previous stud-
ies;

● and a higher resolution average brain surface has
been created using the deeper sulcal penetration of
ASP compared to earlier versions of this algorithm
(MacDonald et al., 1994).

The ability to automatically generate surface repre-
sentations from images provides opportunities for so-

TABLE 3

Thickness of Probabilistic Anterior and Posterior Bank
of Central Sulcus

Structure
Tlink

mm (SD)
Tnearest

mm (SD)
Tnormal

mm (SD)

Anterior bank (N 5 106998) 3.8 (1.3) 2.5 (1.0) 3.7 (3.2)
Posterior bank (N 5 75684) 3.5 (1.3) 2.3 (0.96) 3.4 (3.2)
phisticated analysis of large populations of neuroana-
tomical data. Average surface models that incorporate
improved descriptions of mean position, shape, and
thickness have been generated and the results have
been consistent with previous studies involving both
postmortem and imaging data. Future directions in-
clude improving the mapping of cortical surface be-
tween subjects, as well as sulcal recognition and appli-
cation to automated identification of cerebellum, brain
stem, and other neuroanatomic structures.

A question arising from the use of digital models is to
what extent does the imposed a priori model (i.e.,
thickness constraints) bias the resulting thickness
maps. In order to minimize this bias, the current esti-
mate of local cortical thickness should be used to define
a second-generation model for subsequent surface de-
formation processes. Such refinement of the cortical
thickness map may be repeated to investigate whether
the process converges. More investigation is required
to determine to what extent the various parameters of
the ASP algorithm affect the perceived thickness of the
cortex.

The advantage of the ASP algorithm in segmenting
the human cortex arises from its attempt to use simple
geometric constraints based on neuroanatomical
knowledge. The resulting models provide valuable data
in a form suitable for a variety of morphological exper-
iments. While an important step, there remains signif-
icant opportunity to refine and extend these ideas to
provide more detailed and accurate tools for under-
standing neuroanatomical relationships. For instance,
modeling the forces that cause the smooth brain of the
embryo to develop into a deeply folded adult brain
could improve the thickness computations with a more
accurate correspondence between surfaces. The most
important feature of a technique such as ASP is its
ability to refine and extend its underlying model as the
questions asked by neuroanatomists become more so-
phisticated and more precise.
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