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Experimental designs for event-related functional
magnetic resonance imaging can be characterized by
both their detection power, a measure of the ability to
detect an activation, and their estimation efficiency, a
measure of the ability to estimate the shape of the
hemodynamic response. Randomized designs offer
maximum estimation efficiency but poor detection
power, while block designs offer good detection power
at the cost of minimum estimation efficiency. Periodic
single-trial designs are poor by both criteria. We
present here a theoretical model of the relation be-
tween estimation efficiency and detection power and
show that the observed trade-off between efficiency
and power is fundamental. Using the model, we ex-
plore the properties of semirandom designs that offer
intermediate trade-offs between efficiency and power.
These designs can simultaneously achieve the estima-
tion efficiency of randomized designs and the detec-
tion power of block designs at the cost of increasing
the length of an experiment by less than a factor of 2.
Experimental designs can also be characterized by
their predictability, a measure of the ability to circum-
vent confounds such as habituation and anticipation.
We examine the relation between detection power, es-
timation efficiency, and predictability and show that
small increases in predictability can offer significant
gains in detection power with only a minor decrease in
estimation efficiency. © 2001 Academic Press

INTRODUCTION

Event-related experimental designs for functional
magnetic resonance imaging (fMRI) have become in-
creasingly popular because of their flexibility and their
potential for avoiding some of the problems, such as
habituation and anticipation, of more traditional block
designs (Buckner et al., 1996, 1998; Dale and Buckner,
1997; Josephs et al., 1997; Zarahn et al., 1997; Burock
et al., 1998; Friston et al., 1998a, 1999; Rosen et al.,
1998; Dale, 1999; Josephs and Henson, 1999). In the
evaluation of the sensitivity of experimental designs, it
759
is useful to distinguish between the ability of a design
to detect an activation, referred to as detection power,
and the ability of a design to characterize the shape of
the hemodynamic response, referred to as estimation
efficiency (Buxton et al., 2000). Stimulus patterns in
which the interstimulus intervals are properly ran-
domized from trial to trial achieve optimal estimation
efficiency (Dale, 1999) but relatively low detection
power. Block designs, in which individual trials are
tightly clustered into “on” periods of activation alter-
nated with “off” control periods, obtain high detection
power but very poor estimation efficiency. Dynamic
stochastic designs have been proposed as a compromise
between random and block designs (Friston et al.,
1999). These designs regain some of the detection
power of block designs, while retaining some of the
ability of random designs to reduce preparatory or
anticipatory confounds.

In this paper we present a theoretical model that
describes the relation between estimation efficiency
and detection power. With this model we are able to
show that the trade-off between estimation efficiency
and detection power, as exemplified by the difference
between block designs and random designs, is in fact
fundamental. That is, any design that achieves maxi-
mum detection power must necessarily have minimum
estimation efficiency, and any design that achieves
maximum estimation efficiency cannot attain the max-
imum detection power.

We also examine an additional factor that is often
implicit in the decision to adopt random designs. This
is the perceived randomness of a design. Regardless of
considerations of estimation efficiency, randomness
can be critical for minimizing confounds that arise
when the subject in an experiment can too easily pre-
dict the stimulus pattern. For example, studies of rec-
ognition using familiar stimuli and novel stimuli are
hampered if all of the familiar stimuli are presented
together. We introduce predictability as a metric for
the perceived randomness of a design and explore the
relation between detection power, estimation effi-
ciency, and predictability.
1053-8119/01 $35.00
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760 LIU ET AL.
The structure of this paper is as follows. After a brief
review of the general linear model in the context of
fMRI experiments, we present definitions for estima-
tion efficiency and detection power and derive theoret-
ical bounds for both quantities. We then describe a
simple model that relates estimation efficiency and
detection power and explore how the model can be used
to understand the performance of existing experimen-
tal designs and also to generate new types of designs.
We next provide a definition for predictability and de-
scribe methods for measuring it. Simulation results are
used to support the theoretical results and to clarify
the trade-offs between detection power, estimation ef-
ficiency, and predictability.

THEORY

General Linear Model

The general linear model provides a flexible frame-
work for analyzing fMRI signals (Friston et al., 1995b;
Dale, 1999). In matrix notation, we write the model as

y 5 Xh 1 Sb 1 n, (1)

here y is a N 3 1 vector that represents the observed
MRI time series, X is a N 3 k design matrix, h is a k 3

parameter vector, S is a N 3 l matrix consisting of
uisance model functions, b is a l 3 1 vector of nui-
ance parameters, and n is a N 3 1 vector that repre-
ents additive Gaussian noise. We assume that the
ovariance of the noise vector n is given by Cn 5 s2I,

where I is the identity matrix and s2 is an unknown
variance term that needs to be estimated from the
data.

In this paper, we focus on the case in which the
columns of the design matrix X are shifted versions of
a binary stimulus pattern consisting of 1’s and 0’s and
the parameter vector h represents the hemodynamic
response (HDR) that we wish to estimate. In other
words, Xh is the matrix notation for the discrete con-
volution of a stimulus pattern with the hemodynamic
response. For example, in the case in which the stim-
ulus pattern is [1 0 1 1 0 0] and there are three param-
eters in the HDR, we have

y 5 3
1 0 0
0 1 0
1 0 1
1 1 0
0 1 1
0 0 1

4Fh1
h2
h3
G 1 Sb 1 n.

In the following sections, we characterize the estima-
tion efficiency and detection power obtained with dif-
ferent binary stimulus patterns. When there are Q
vent types and HDRs of interest, the design matrix
may be written as X 5 [X1 X2
. . . XQ] and the param-

eter vector as h 5 [h1
T h2

T . . . hQ
T]T, where each matrix

Xi consists of shifted binary stimulus patterns for the
ith event type and hi is the vector for the corresponding
HDR (Dale, 1999). In general, stimulus patterns need
not be binary. The use of graded stimuli has proven to
be useful in characterizing the response of various
neural systems (Boynton et al., 1996). For an event-
elated design a graded pattern might have the form
1 0 2.5 3.0 0 0]. The optimal design of graded stimulus
atterns can be addressed within the theoretical
ramework presented here, but is beyond the scope of
his paper.

The term Sb in the linear model represents nuisance
ffects that are of no interest, e.g., a constant term,
inear trends, or low-frequency drifts. The columns of S
re typically chosen to be low-frequency sine and co-
ine functions (Friston et al., 1995a) or low-order
egendre polynomials. For most fMRI experiments, S
hould at the very least contain a constant term and a
inear trend term, e.g., the zeroth- and first-order
egendre polynomials. Following Scharf and Fried-

ander (1994), we refer to the subspaces spanned by the
olumns of X and S as the signal subspace ^X& and the
nterference subspace ^S&, respectively. These sub-
paces lie within the N-dimensional space spanned by
he data. We require ^X& and ^S& to be linearly inde-
endent subspaces, so that no column in X can be
xpressed as a linear combination of the columns of S
nd vice versa. However, we do not require ^X& and ^S&
o be orthogonal subspaces (i.e., there is no require-
ent that STX 5 0), since this is too severe of a restric-

tion. For example, most block designs are not orthogo-
nal to linear trends. Finally, the space spanned by both
X and S is denoted as ^XS&.

Estimation Efficiency

A useful geometric approach to the problem of esti-
ation in the presence of subspace interference has

een described in Behrens and Scharf (1994) and
erves as the basis of our analysis. The maximum
ikelihood estimate of h is written as

ĥ 5 ~XTPS
'X!21XTPS

'y, (2)

where PS
' 5 I 2 S(STS)21ST is a projection matrix that

removes the part of a vector that lies in the interfer-
ence subspace ^S&. In other words, PS

' removes nui-
sance effects such as linear trends. The estimate of the
signal is Xĥ, which is the oblique projection Exy of the
data onto the signal subspace ^X&, where EX 5
X(XTPS

'X)21XTPS
'. A geometric picture of the oblique

projection is shown in Fig. 1. It is important to note
that, in general, the oblique projection is not the same
as the projection of the data with interference terms



X
l

n
v

s
m
e
t
t
f
r

n

m
p
t

b
1
P

y
r
v
t
a

t
X
g

761DETECTION, ESTIMATION, AND PREDICTABILITY IN fMRI
removed (PS
'y) onto the signal subspace ^X&. That is,

(XTPS
'X)21XTPS

'y does not equal X(XTX)21XTPS
'y, un-

ess ^X& and ^S& are orthogonal subspaces.
Equation (2) can be rewritten in the form

ĥ 5 ~X'
TX'! 21X'

Ty, (3)

where X' 5 PS
'X is simply the design matrix with

uisance effects removed from each column. The co-
ariance of the estimate is Cĥ 5 s2(X'

TX')21, and the
sum of the variances of the components of ĥ is

2trace[(X'
TX')21]. The efficiency of the estimate can

be defined as the inverse of the sum of the variances,

j 5
1

s 2trace@~X'
TX'! 21#

. (4)

Experimental designs that maximize the estimation
efficiency are referred to as A-optimal designs (Se-
ber, 1977). The definition of estimation efficiency
stated in Eq. (4) was introduced into the fMRI liter-
ature by Dale (1999) and serves as the starting point
for our analysis.

Orthogonal Designs Maximize Estimation Efficiency

Estimation efficiency is maximized when
trace[(X'

T X')21] is minimized. It can be shown that
this occurs when the columns of X' are mutually

FIG. 1. Geometric picture of estimation and detection (adapted,
y permission of the publisher, from Scharf and Friedlander, 1994; ©
994 IEEE). The data vector y is decomposed into a component,
XSy, that lies in the combined signal and interference subspace ^XS&

and an orthogonal component (I 2 PXS)y. The oblique projections of
onto the signal and interference subspaces are EXy and ESy,

espectively. The parameter estimate ĥ is the value of the parameter
ector for which Xĥ is equal to the oblique projection EXy. PP S

' X y is
he projection of the data onto the part of X that is orthogonal to S
nd is equal to PXSy 2 PSy, where PSy is the projection of the data

onto S. The F statistic is proportional to the ratio of the squared
lengths of PP S

' X y and (I 2 PXS)y. Note that while the estimation of
he hemodynamic response does not require orthogonality of S and
, the statistical significance, as gauged by the F statistic, is de-
raded when S and X are not orthogonal.
orthogonal (Seber, 1977). When there is only one
event type, each column of X' is obtained by first
applying an appropriate shift to the binary stimulus
pattern and then removing nuisance effects. The
trace expression is therefore minimized with binary
stimulus patterns, which, after detrending, are or-
thogonal to shifted versions of themselves.

In principle, orthogonality can be achieved by
stimulus patterns that are realizations of a Bernoulli
random process, which is the formal description of
the random coin toss experiment. To generate a can-
didate stimulus pattern, we repeatedly flip a coin
that has a probability P of landing “heads” and 1 2
P of landing “tails,” assigning a 1 to the stimulus
pattern when we obtain heads and a 0 otherwise. The
outcome of each toss is independent of the outcome of
the previous toss. The binary stimulus pattern that
we generate has two important properties. First,
after removal of the mean value of the pattern (i.e., a
constant nuisance term), the pattern is on average
orthogonal to all possible shifts of itself. That is, the
expected value of the inner product of the sequence
with any shifted version is zero. Second, the pattern
after removal of the mean is on average orthogonal to
all other nuisance terms. This means that, aside
from a constant nuisance term, the pattern is on
average unaffected by the process of removing nui-
sance terms. As a result of these two properties, the
design matrix X with columns that are shifted ver-
sions of a Bernoulli-type stimulus pattern results in
a matrix X' with columns that are on average or-
thogonal.

Bounds on Estimation Efficiency

Designs based on Bernoulli-type stimulus patterns
are optimal in a statistical sense only, meaning that
while on average they are optimal, some patterns

ay be suboptimal. A standard procedure is to gen-
rate a large number of random patterns and select
he one with the best performance (Dale, 1999; Fris-
on et al., 1999). A theoretical upper bound on per-
ormance is useful in judging how good the “best”
andom pattern is.
To derive a bound on estimation efficiency, we first

ote that trace[(X'
TX')21] 5 ¥ i51

k 1/l i, where l i is the
ith eigenvalue of X'

TX' (Seber, 1977). With any fixed
value for the sum of the eigenvalues, the term ¥ i51

k

1/l i is minimized when all of the eigenvalues are
equal. Since the sum of the eigenvalues is equal to
M 5 trace[X'

TX'], we may write l i 5 M/k, which
yields ¥ i51

k 1/l i 5 k 2/M. If we assume that there are
1’s out of N total time points in the stimulus

attern and the constant term has been removed,
hen the energy of any one column of X' is at most
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762 LIU ET AL.
(1 2 m/N)m, where we define the energy of a vector
s its magnitude squared. This leads directly to

M # ~1 2 m/N!mk. (5)

lacing the above results into Eq. (4), we obtain the
ound

j #
~1 2 m/N!m

k
, (6)

where we have assumed unit variance for the noise.
The bound stated in Eq. (5) does not take into account
the fact that for a random sequence with m 1’s out of N
total time points, the energy of shifted columns will
decrease as more 1’s are shifted out of the sequence.
This effect slightly reduces the trace term M. An ap-

roximate bound on M that takes this effect into ac-
ount is given in the Appendix and is used when com-
aring theoretical results to simulations.
The bound stated in Eq. (6) is maximized for the

hoice m 5 N/2, i.e., the number of 1’s in the stimulus
attern is equal to half the number of total time points.
his is consistent with the previously reported finding

hat, for the case of one event type, estimation effi-
iency is maximized when the probability of obtaining
1 in the stimulus pattern is 0.5 (Friston et al., 1999).
We should emphasize that the bound stated in Eq.

6) is specific to the case in which there is one event
ype. A full treatment of estimation efficiency for ex-
eriments with multiple event types is beyond the
cope of this paper, but it is worth mentioning a few
alient points. We assume that the stimulus patterns
re mutually exclusive, meaning that, at each time
oint, at most one event type may have a 1 in its
timulus pattern. In addition, we assume that the
robability P of obtaining a 1 is the same for all event
ypes. With these assumptions and making use of the
ormalism described in Friston et al. (1999) for calcu-
ation of the expected value of X'

TX', it can be shown
that the maximum efficiency is in fact not obtained
when the columns of X' are orthogonal. Instead, the

aximum efficiency is obtained for a probability of
ccurrence that achieves an optimal balance between
wo competing goals: (1) maximizing the energy in each
f the columns of X' and (2) reducing the correlation

between columns. For two event types, this occurs for a
probability P 5 1 2 =2/2 5 0.29, or equivalently,
m/N 5 0.29. An additional consideration that arises for

ultiple event types is the estimation efficiency for
ifferences between event types. In order to equalize
he efficiencies for both the individual event types and
he differences, the optimal probability is P 5 1/(Q 1
), where Q is the number of event types (Burock et al.,
998; Friston et al., 1999).
Detection

The detection problem is formally stated as a choice
etween two hypotheses:

H0, y 5 Sb 1 n

~null hypothesis, no signal present!, and

H1, y 5 Xh 1 Sb 1 n

~signal present!.

o decide between the two hypotheses, we compute an
statistic of the form

F 5
N 2 k 2 l

k

yTPP S
'Xy

yT~I 2 PXS!y
, (7a)

where PXS is the projection onto the subspace ^XS& and
P S

' X 5 PS
'X(XTPS

'X)21XTPS
' is the projection onto the

part of the signal subspace ^X& that is orthogonal to the
nterference subspace ^S& (Scharf and Friedlander,
994). The F statistic is the ratio between an estimate
TPP S

'Xy/k of the average energy that lies in the part
of the signal subspace ^X& that is orthogonal to ^S&

nd an estimate yT(I 2 PXS)y/(N 2 k 2 l ) of the
oise variance s2 derived from the energy in the data

space that is not accounted for by energy in the
combined signal and interference subspace ^XS&. Fig-
ure 1 provides a geometric interpretation of the
quantities in Eq. (7a). As originally introduced into
the fMRI literature by Friston et al. (1995b), the F
statistic may also be written using the extra sum of
squares principle (Draper and Smith, 1981) as

F 5
N 2 k 2 l

k

yT~PXS 2 PS!y

yT~I 2 PXS!y
. (7b)

quations (7a) and (7b) are equivalent, since PP S
'X 5

PXS 2 PS as can be verified upon inspection of Fig. 1.
When the null hypothesis H0 is true, F follows a central

F distribution with k and N 2 k 2 l degrees of freedom.
hen hypothesis H1 is true, F follows a noncentral F

istribution with k and N 2 k 2 l degrees of freedom and
oncentrality parameter (Scharf and Friedlander, 1994),

h 5
hTXTPS

'Xh

s2
. (8)

The noncentrality parameter has the form of a sig-
nal-to-noise ratio in which the numerator is the ex-
pected energy of the signal after interference terms
have been removed and the denominator is the ex-
pected noise variance.
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763DETECTION, ESTIMATION, AND PREDICTABILITY IN fMRI
To use the F statistic, we compare it to a threshold
value b. If F . b, we choose hypothesis H1 and declare
that a signal is present; otherwise we choose the null
hypothesis H0. In most fMRI applications, the thresh-
old b is chosen to achieve a desired probability of false
larm, i.e., the probability that we choose H1 when H0

is true. This probability can be computed from the
central F distribution. Once the dimensions of X and S
are known, the probability of false alarm is indepen-
dent of X since the shape of the central distribution
depends only on the dimensions k and N 2 k 2 l. As a
result, all binary stimulus patterns of the same length
yield the same probability of false alarm under the null
hypothesis H0, i.e., no activation. In practice, the di-

ension l of the interference subspace S is not known,
lthough for most fMRI experiments l is typically be-
ween 1 and 5. Ignorance of l does not, however, alter
he fact that only the dimension of X, as opposed to its
pecific form, affects the probability of false alarm.
The probability of detection refers to the probability

hat we choose H1 when H1 is true and is also referred
to as the power of a detector. For a given threshold
value b, the detection power using the F statistic in-
creases with the noncentrality parameter h. From Eq.
(8), we can see that the noncentrality parameter de-
pends directly on the design matrix X. Once we have
chosen b to achieve a desired probability of false alarm,
we should select a design matrix that maximizes h. The
noncentrality parameter is analogous to the estimated
measurable power as defined by Josephs and Henson
(1999).

In the degenerate case in which there is only one
unknown parameter (k 5 1), the F statistic is simply
he square of the t statistic (Scharf and Friedlander,
994). This typically corresponds to the situation in
hich we assume a known shape for the hemodynamic

esponse function and are trying to estimate the am-
litude of the activation. The detection power still de-
ends on the noncentrality parameter as defined in Eq.
8), where h is the assumed known shape. To be ex-
licit, if we rewrite the linear model as y 5 mz 1 Sb 1

n, where z 5 Xh is the stimulus pattern convolved with
the known shape (normalized to have unit amplitude)
and m is the unknown amplitude of the response, then
the noncentrality parameter is h 5 m2zTPS

'z/s2 5
m2hTXTPS

'Xh/s2.

Bounds on Detection Power

It is convenient to rewrite the noncentrality param-
eter as

h 5
hTX'

TX'h

s2
, (9)

where X' was defined previously as the design matrix
with nuisance effects removed from its columns. In
determining the dependence of h on X', we can ignore
s2, which is just a normalizing factor over which we
have no control. Furthermore, we normalize h by the
energy hTh of the parameter vector h to obtain the

ayleigh quotient (Strang, 1980),

R 5
hTX'

TX'h

hTh
. (10)

The Rayleigh quotient can be interpreted as the non-
centrality parameter obtained when the energy of the
parameter vector and the variance of the noise are both
equal to unity. It serves as a useful measure of the
detection power of a given design.

The maximum of the Rayleigh quotient is equal to
the maximum eigenvalue l1 of X'

TX' and is attained
when h is parallel to the eigenvector v1 associated with
l1 (Strang, 1980). The maximum eigenvalue must be
less than or equal to the sum of the eigenvalues, which
is just the trace of X'

TX'. Note that X'
TX' is positive

semidefinite, and therefore all the eigenvalues are non-
negative (Strang, 1980). We obtain the bounds

R # l1 # M, (11)

here, as previously defined, M 5 trace(X'
TX'). The

second equality is achieved when there is only one
nonzero eigenvalue, i.e., when X' is a rank 1 matrix.

The implications of Eq. (11) for fMRI experimental
design are as follows. First, detection power is maxi-
mized when the columns of X' are nearly parallel or,
equivalently, shifted binary stimulus patterns are as
similar as possible. This requirement clearly favors
block designs over randomized designs in which the
columns of X' are nearly orthogonal. That is, the po-
tential detection power of the block design is much
greater than that of the randomized design, although
as we discuss below, it is possible with some hemody-
namic responses for the detection power of the block
design to be less than that of a random design. Second,
detection power increases with trace(X'

TX'), which is
approximately equal to the variance of the detrended
binary stimulus pattern multiplied by the number of
columns in X'. From our discussion of estimation effi-
ciency, we know that this variance is maximized when
there are an equal number of 1’s and 0’s in the stimulus
pattern.

Although there can be some variability in the shape
of the hemodynamic response, it is common to adopt an
a priori model of the response, such as a gamma den-
sity function, when attempting to detect activations.
Ideally, we would choose a design matrix for which the
eigenvector v1 is parallel to an a priori response vector

enoted as h0. With the restriction that the design
matrix is constructed from binary stimulus patterns, it
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764 LIU ET AL.
may not be possible in general to achieve this goal. For
each design matrix, we define u as the angle between v1

and h0 (see Fig. 2). The achievable bound on R is then
iven by

R # l1cos2umin # M cos2umin, (12)

where umin is the minimum angle that can be obtained
over the space of all possible binary stimulus patterns.
Note that umin will vary with different choices for the
hemodynamic response h0.

On the other hand, if we have no a priori information
about the shape of the hemodynamic response func-
tion, then a reasonable approach is to maximize the
minimum value of R over the space of all possible
parameter vectors h. It is shown in the Appendix that

max
X'

min
h

R #
M

k
, (13)

with equality when the columns of X' are orthogonal
and have equal energy. Therefore, in the case of no a
priori information, the experimental design that is op-
timal for detection is also optimal for estimation.

Relation between Detection Power and
Estimation Efficiency

We have shown that both detection power and esti-
ation efficiency depend on the distribution of the

igenvalues of X'
TX'. Estimation efficiency is maxi-

mized when the eigenvalues are equally distributed,
while detection power, given a priori assumptions
about h, is maximized when there is only one nonzero
eigenvalue. In this section we explore the relation be-
tween detection power and estimation efficiency when
the distribution of eigenvalues lies between these two
extremes. An exception occurs in the case in which
there is only one unknown parameter, i.e., k 5 1. In

FIG. 2. Description of the angle u between the assumed hemo-
ynamic response h0 and the dominant eigenvector v1 of X'

TX'. The
emaining eigenvector is denoted v2, and the corresponding eigen-
alues are l1 and l2, respectively, where by definition l1 $ l2. For an

assumed h0, detection power is maximized when v1 is parallel to h0

(u 5 0) and minimized when v1 is perpendicular to h0 (u 5 90°).
this case, there is only one eigenvalue, and the stimu-
lus pattern that maximizes detection power is also the
pattern that maximizes estimation.

We use a simple model for the distribution of eigen-
values. We assume that the maximum eigenvalue l1 5
aM and the remaining eigenvalues are li 5 (1 2 a)M/
(k 2 1) where a ranges from 1/k to 1. This model
provides a continuous transition from the case in which
there is only one nonzero eigenvalue (a 5 1) to the case
in which the eigenvalues are equally distributed, a 5
1/k. As the value of the dominant eigenvalue decreases,
the remainder M 2 aM is equally distributed among
the other eigenvalues. This equal distribution of eigen-
values results in the maximum estimation efficiency
achievable for each value of the dominant eigenvalue.
Assuming that the noise has unit variance, the estima-
tion efficiency is

j~a! 5
a~1 2 a!M

1 1 a~k 2 2 2k!
, (14)

hich obtains a maximum value of M/k2 at a 5 1/k. The
Rayleigh quotient is

R~a, u! 5 Sa cos2u 1
1 2 a

k 2 1
sin2uDM, (15)

here u was previously defined. For each value of u a
arametric plot of j(a) versus R(a, u ) traces out a

trajectory that moves from an unequal distribution of
eigenvalues at a 5 1 to an equal distribution at a 5 1/k.
When the eigenvalues are equally spread, we find that
R(1/k, u ) 5 M/k, i.e., the detection power of a random
design is 1/k times the maximum possible detection
power. Note that this is also the equality relation in Eq.
(13) for the detector that maximizes the minimum de-
tection power. When u 5 cos21(=1/k), R(a, u ) 5 M
in2u/(k 2 1) 5 M/k is independent of a, i.e., the plot of
versus R is a vertical line.
Parametric curves of j(a) versus R(a, u ) for a range of

dimensions k and angles u are shown in Fig. 3. The
efficiency j(a) is normalized by j(1/k), while R(a, u ) is
normalized by R(1.0, 0). Each curve begins at a 5 1.0
with estimation efficiency j 5 0 and ends at a 5 1/k
with a normalized efficiency j 5 1.0. Along the way, the
urve maps out the trade-off between estimation effi-
iency and detection power. If u , cos21(=1/k), then the

detection power decreases as a decreases. However, for
u . cos21(=1/k), the detection power increases as a
decreases, so that the random stimulus pattern with
equal eigenvalues is a better detector than the initial
pattern with unequal eigenvalues. It is important to
emphasize here that u depends on the assumed hemo-
dynamic response h0, so that a stimulus that outper-
orms a random pattern for one response may perform
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more poorly for another assumed response. For exam-
ple, as shown under Results, a one-block design per-
forms better than a random design when h0 is assumed
to be a gamma density function (Fig. 5) and u ,
cos21(=1/k). However, the one-block design performs
worse than a random design when h0 is the first dif-
ference of the gamma density function (Fig. 8) and u .
os21(=1/k).

Balancing Detection Power and Estimation Efficiency

The parametric curves defined in Eqs. (14) and (15)
and plotted in Fig. 3 show that there is a fundamental
trade-off between detection power and estimation effi-
ciency. Maximum detection power comes at the price of
minimum estimation efficiency, and conversely maxi-
mum estimation efficiency comes at the price of re-
duced detection power. The appropriate balance be-
tween power and efficiency depends on the specific
goals of the experiment. At one extreme, designs that
maximize detection power are optimal for experiments
that aim to determine which regions of the brain are
active. At the other extreme, designs that maximize
estimation efficiency are optimal for experiments that
aim to characterize the shape of the hemodynamic
response in a prespecified region of interest. As shown
in Fig. 3, there are many possible intermediate designs
that lie between these two extremes. These intermedi-
ate designs may be useful for experiments in which
both detection and estimation are of interest. We refer
to these intermediate designs as semirandom designs.

FIG. 3. Normalized estimation efficiency j(a)/j(1/k) versus nor-
alized Rayleigh quotient R(a, u)/R(1.0, 0), which is a measure of

etection power. Each graph corresponds to a specified dimension k
f the parameter vector h. In the parametric plots of j versus R, the
rrows point in the direction of decreasing a, i.e., moving from a 5 1
o a 5 1/k. Each line is labeled by the angle u between the eigenvector

v1 and the parameter vector h. Vertical lines correspond to u 5
cos21(=1/k).
In this section we present a cost criterion that can be
used to select semirandom designs that achieve desired
levels of estimation efficiency and detection power. The
cost criterion reflects the relative time required for a
design to obtain a desired level of performance. Recall
that designs are parameterized by a, which reflects the
relative spread of the eigenvalues. For a design with
parameter a, we may determine the length of the ex-
periment required to achieve the performance of either
an optimal estimator (a 5 1/k) or an optimal detector
(a 5 1.0). As an example, consider a design with a

ormalized estimation efficiency j 5 0.5 that is half
hat of the optimal estimator. Since efficiency is in-
ersely proportional to variance, we can achieve the
ame variance as the optimal estimator (j 5 1.0) by
oubling the length of our experiment. To formalize
his idea we define a relative estimation time,

test~a! 5 relative time to achieve desired efficiency

5
~maximum possible efficiency! 3 fest

efficiency of this design
,

where fest is the fraction of the maximum possible esti-
mation efficiency that we want to achieve. For example
fest 5 0.75 corresponds to an experiment in which we
want to obtain 75% of the efficiency of an optimal
estimator. If the normalized efficiency of the design is
j 5 0.5, then the relative estimation time is test(a) 5
0.75 3 1.0/0.5 5 1.5. This means that we would need to
increase the length of an experiment with j 5 0.5 by
50% in order to achieve 75% of the maximum possible
efficiency. In a similar fashion we define the relative
detection time as

tdet~a, u! 5 relative time to achieve desired power

5
~maximum possible detection power! 3 fdet

detection power of this design
,

here fdet is the fraction of the maximum possible de-
tection power that we want to achieve. Assuming that
the desired detector has greater detection power than a
random design (i.e., u , cos21(=1/k)), the relative de-
ection power tdet(a, u) decreases monotonically with a,
ince the maximum detection power is obtained when
here is only one nonzero eigenvalue. On the other
and, we find that the relative estimation time test(a)

increases monotonically with a, since estimation effi-
ciency decreases as the eigenvalues become more un-
equally distributed.

For each value of a, the time required to obtain both
he desired efficiency and the desired power is

t~a, u! 5 max@test~a!, tdet~a, u!#,
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i.e., the greater of the relative estimation time and the
detection time. We argue that the best design is the one
that minimizes t(a, u). Because test(a) increases with a
and tdet(a, u) decreases with a, a unique minimum
occurs at test(a) 5 tdet(a, u), the point at which the
relative times intersect. We refer to the value of the
minimum as topt and the optimal value of a as aopt.

nalytical expressions for test(a), tdet(a, u), topt, and aopt

are provided in the Appendix.
As an example of a semirandom design that satisfies

the minimum time criterion, we first examine the case
in which k 5 15, u 5 45°, fdet 5 1.0, and fest 5 1.0. From
he equations in the Appendix, the minimum-time de-
ign occurs for aopt 5 0.52 and topt 5 1.8. This design

simultaneously achieves maximum estimation effi-
ciency and detection power at the cost of an 80% in-
crease in experimental time. It lies roughly halfway
between a random design (orthogonal) and a block
design (highly nonorthogonal).

We next consider an example in which the cost cri-
terion can aid in the generation of a new type of design
that we refer to as a mixed design. This design is the
concatenation of a block design and a semirandom
design. We begin with a one-block design of length N,
which for the purpose of this example we assume to
have a normalized detection power of 1.0 and a nor-
malized estimation efficiency of 0.0. A shorter one-
block design of length rN that has the same fraction of
1’s as in the original design will have a normalized
detection power r. If we concatenate this shorter block
design with a semirandom design, the detection power
of the semirandom design should be (1 2 r) in order for
the mixed design to have a detection power of 1.0. Also,
the efficiency of the semirandom design should be 1.0,
since the block design has an estimation efficiency of 0.
The semirandom design that satisfies these require-
ments can be found from the equations in the Appendix
with fdet 5 1 2 r and fest 5 1.0. The length of the
semirandom design is topt and the design is character-
ized by the parameter aopt.

Figure 4 shows two examples of mixed designs and
ne example of a semirandom design. The uppermost
esign consists of a one-block design with relative
ength r 5 0.8 concatenated with a random design with
elative length topt 5 1.0 and design parameter aopt 5
/k 5 0.07. The second mixed design consists of a
ne-block design with reduced length r 5 0.5 concate-

nated with a semirandom design with length topt 5 1.3
and design parameter aopt 5 0.33. Finally, the lower-

ost design is a semirandom design with topt 5 1.8 and
design parameter aopt 5 0.51. Note that the total rela-
ive length of each of the designs is 1.8. In addition,
lthough the three designs look very different, the es-
imation efficiency and detection power across the
hree designs are identical. In order to achieve this
roperty, the semirandom design becomes increasingly
ore block-like (e.g., increasing values of a) as the
ength of the block design is reduced.

Perceived Randomness of a Pattern

In the previous section, we considered the trade-off
etween estimation efficiency and detection power
nd presented a metric for the relative temporal cost
f each trade-off point. While it is important to un-
erstand this trade-off, there is an additional factor
hat must also be considered in some fMRI experi-
ents. This is the perceived randomness of a se-

uence. Randomness in a design may be critical for
ircumventing experimental confounds such as ha-
ituation and anticipation (Rosen et al., 1998). A
emirandom or mixed design that is optimal from the
oint of view of estimation efficiency and detection
ower may not provide enough randomness for a
iven experiment. While it is beyond the scope of this
aper to address the question of how much random-
ess is sufficient, it is useful to define a metric for
andomness so as to better understand the relation-
hip between randomness, estimation efficiency, and
etection power.
As one possible metric for perceived randomness,
e consider the average “predictability” of a se-
uence, defined as the probability of a subject cor-
ectly guessing the next event in the sequence. A
andom sequence has an average predictability of
.5, while a deterministic sequence such as a block
esign has an average predictability approaching
.0. As described under Methods, the predictability
an be gauged either with a computer program or by

FIG. 4. Mixed and semirandom design examples. The estimation
efficiency and detection power are identical across designs. The up-
permost design consists of a one-block design followed by a random
design. The middle design consists of a shorter one-block design
followed by a semirandom design that has greater detection power
than the random design. The lowermost design is a semirandom
design that simultaneously achieves maximum estimation efficiency
and detection power (i.e., fdet 5 1.0, fest 5 1.0) at the cost of increased
xperimental length.
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767DETECTION, ESTIMATION, AND PREDICTABILITY IN fMRI
measuring how well a population of human subjects
can predict a given sequence.

METHODS

We calculated estimation efficiencies and detection
powers using a linear model with k 5 15 and N 5 128.

he dimension of the interference subspace was varied
rom 1 to 4, with Legendre polynomials of order 0 to 3
orming the columns of the matrix S. Semirandom
timulus patterns with m 5 64 were obtained by per-
uting various block designs (Buxton et al., 2000). We
sed block designs with 1 to 32 equally sized and
paced blocks and at each permutation step exchanged
he positions of two randomly chosen events. The rel-
tive shift of each block design was chosen to make the
attern as orthogonal as possible to the interference
ubspace—this shift is in general dependent on the
imension of the interference subspace. A total of 80
ermutation steps were performed for each block de-
ign, and the estimation efficiency and detection power
ere computed at each step. In addition, 1000 patterns
ith a uniform distribution of 1’s in the pattern were
enerated, and the 30 patterns with the greatest esti-
ation efficiency were used for further analysis. For

alculation of detection power, the parameter vector h
as a gamma density function of the form h[ j] 5 (tn!)21

( jDt/t)ne2jDt/t for j $ 0 and 0 otherwise (Boynton et al.,
1996). We used gamma density functions with t rang-
ing from 0.8 to 1.6 and n taking on values of either 2 or
3. In all cases, we used Dt 5 1. Examples of these
amma density functions are shown in Fig. 7. We also
alculated the detection power with a parameter vector
hat is the first difference of the gamma density func-
ion. As shown in Fig. 8, this vector exhibits an initial
ncrease followed by a prolonged undershoot. The area
f the vector is essentially zero, and the frequency
esponse is bandpass, meaning that it is zero at zero
requency, increases with frequency, attains a maxi-
um at some peak frequency, and then decreases with

requency.
To measure the average predictability of each pat-

ern, we used a binary string prediction program based
n the work of Fudenberg and Levine (1999) to predict
he events in each stimulus pattern (code can be
btained from http://levine.sscnet.ucla.edu//Games/
inlearn.htm). This program uses a lookup table of
ast events to generate conditional probabilities for the
ext event. In preliminary tests, the scores generated
y the program were found to be in good agreement
ith scores generated by three human volunteers.

RESULTS

Figure 5 shows the paths of estimation efficiency
ersus detection power for the random designs and the
arious permuted block designs. The parameters for h
ere t 5 1.2 and n 5 3, corresponding to response II in
ig. 7; these are also the response parameters used in
igs. 6, 8, and 9. The dimension of the interference
ubspace was l 5 1, meaning that only a constant term
as removed from the columns of the design matrix.
he paths taken by the permuted designs are well-
odeled by theoretical curves. This reflects the fact

hat as the block design becomes increasingly random-
zed, the distribution of eigenvalues of X'

TX' becomes
more even. Note that the permutation algorithm does
not explicitly try to equalize the spread of eigenvalues,
so that in some cases the path taken by the permuted
design can deviate significantly from the theoretical
curve, e.g., the path for eight blocks. In addition, it is
important to note that we have shown only one real-
ization of the permuted paths—since the permutation
procedure is random, many paths are possible, and
some will follow the theoretical curves better than oth-
ers. Upon examination of many realizations, we have
found that the theoretical curves capture the overall
behavior of the permuted patterns as they migrate
toward a random design.

The 1-block design has the greatest detection power
for the assumed gamma density function parameter
vector. The angle between the parameter vector h and
the dominant eigenvector of X'

TX' for this design is
about 45°, so that its detection power is half that of a

FIG. 5. Simulation results for estimation efficiency versus detec-
tion power in which the interference subspace is limited to a constant
term and the hemodynamic response parameters are t 5 1.2 and n 5
3. Paths of open symbols are labeled by the number of blocks in the
original block design and show the performance as the block design
is randomly permuted. For all designs m 5 64 and N 5 128. Theo-
retical curves (solid lines) are also shown, with the angles corre-
sponding to 1, 2, 4, 8, 16, and 32 blocks set equal to 45, 47, 50, 63, 78,
and 85°, respectively. Example stimuli and responses based on per-
mutations of the 4-block design are shown on the right-hand side. A
is a random design, B and C are semirandom, and D is the block
design. The performance and stimulus pattern for a periodic single-
trial experiment are shown in the lower left-hand corner.
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design in which the dominant eigenvector is parallel to
h. It is not clear if it is possible to achieve a smaller
angle using binary stimulus patterns. The 32-block
design has the smallest detection power because its
stimulus pattern has the highest fundamental fre-
quency and the magnitude response of the gamma
density function falls off with frequency.

Example stimulus patterns and responses (stimulus
pattern convolved with h) for four points along the

ath for the permuted 4-block design are shown on the
ight-hand side of Fig. 5. Stimulus pattern A corre-
ponds to a random design, B and C are semirandom
esigns, and D is the block design. The semirandom
esigns retain the overall shape of the block design
ith enough randomness added in to obtain significant

ncreases in estimation efficiency.
The performance of a periodic single trial design
ith one trial every 16 s is shown in the lower left-hand

orner of Fig. 5. Both the estimation efficiency and the
etection power are low because the number of events
s only m 5 8, which is much smaller than the number
f events, N/2 5 64, that maximizes both efficiency and
ower. As a consequence the trace of X'

TX' is much
smaller than the bound stated in Eq. (5).

Figure 6 shows the estimation efficiency and detec-
tion power for the permuted paths as the dimension of
the interference subspace is increased from 1 to 4.
When the dimension of the subspace is l 5 4, the

FIG. 6. Estimation power versus detection power with removal o
olynomial that is included in the interference subspace model. Paths
o permutation. Theoretical curves use the angles listed in Fig. 5. O
rojection operator PS
' removes a constant term, a lin-

ear term, a quadratic term, and a cubic term from the
columns of X. The detection power of the 1-block design

FIG. 7. Estimation efficiency and detection power with permuted
versions of the one-block design and three different hemodynamic re-
sponses. The parameters for the hemodynamic responses are I, t 5 0.8, n 5
2; II, t 5 1.2, n 5 3; and III, t 5 1.6, n 5 3. The responses are normalized
to have equal energies. The area, and hence the low-frequency gain, of
response I is smaller than that of response II, which is in turn smaller
than that of response III. Theoretical curves are labeled by the value of u.

isance effects. Each plot is labeled by the highest order of Legendre
open symbols are labeled by the number of blocks in the design prior
r parameters: m 5 64, N 5 128.
f nu
of

the
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is severely reduced after removal of quadratic and cu-
bic terms, while the detection power of the 2-block
design is less affected. Random designs and block de-
signs starting with four or more blocks are relatively
unaffected. The sensitivity of the 1-block design results
from the fact that its low frequency content is greater
than designs with more blocks (Frackowiak et al.,
997). The 4-block design offers robustness to nuisance
erms while maintaining good detection power. The
ngle between the dominant eigenvector and the pa-
ameter vector h for this design is about 50°, and its
etection power is roughly 80% of the maximum detec-
ion power of the 1-block design (i.e., the detection
ower of the 1-block design when the interference con-
ists of a constant term only).
In Figs. 7 and 8, we consider the variability of the

emodynamic response function. From the theory sec-
ion, we know that estimation efficiency does not de-
end on the parameter vector h. As a result, variations
n h affect only the detection power of a design. We may
lso view this as a process in which varying h simply
hanges the angle u between h and the dominant eig-
nvector of a design.
Figure 7 shows the estimation efficiency and detec-

ion power for permuted versions of the 1-block design
or three different hemodynamic response functions,

FIG. 8. Simulation results for estimation efficiency versus detec-
tion power when the hemodynamic response is the first difference of
the hemodynamic response used in Fig. 5. Paths of open symbols are
labeled by the number of blocks in the original block design and show
the performance as the block design is randomly permuted. The
permutations are identical to those used in Fig. 5. Theoretical curves
(solid lines) are also shown, with the angles corresponding to 1, 2, 4,
8, 16, and 32 blocks set equal to 80, 75, 68, 62, 66, and 82°, respec-
tively. Example stimuli and responses based on permutations of the
4-block design are shown on the right-hand side. A is a random
design, B and C are semirandom, and D is the block design. The
performance and stimulus pattern for a periodic single-trial experi-
ment are shown in the lower left-hand corner. Note that the hori-
zontal scale is about half that of Fig. 5.
anging from a narrow response with t 5 0.8 and n 5
to a broad response with t 5 1.6 and n 5 3. As the

emodynamic response broadens, we find that the de-
ection power increases or, equivalently, the angle u
ecreases. This is because the dominant eigenvector of
he 1-block design is rather broad. These changes in
etection power are further examined under Discus-
ion.
Figure 8 shows the estimation efficiency and detec-

ion power assuming a parameter vector h that is the
rst difference of the gamma density function used in
ig. 5. The estimation efficiencies are identical to those
hown in Fig. 5, but the detection powers are signifi-
antly different. Whereas we previously found that
etection power decreased with the number of blocks,
e now find that the detection power increases with

he fundamental frequency of the stimulus pattern
i.e., moving from a 1-block design to an 8-block de-
ign), attains a maximum with the 8-block design,
hose fundamental frequency is closest to the peak

requency of the bandpass response of h, and then
ecreases as the fundamental frequency exceeds the
eak frequency (i.e., moving from an 8-block to a 32-
lock design). These changes in detection power are
ell described by adjusting the angle u in the theoret-

cal model.
Figure 9 shows contours of average predictability, as

omputed using the binary string prediction computer
rogram, superimposed on a grid of normalized esti-
ation efficiency versus detection power. The permu-

ation path for the four-block design is also shown.
rregularities in the contours are due to the fact that
he estimation efficiency and detection power of the
ermuted block designs do not follow smooth trajecto-
ies.

FIG. 9. Estimation efficiency, detection power, and predictabil-
ity. Contours are labeled by predictability index. The connected solid
dots show the permutation path for the four-block design. The pre-
dictabilities of points B and C are 0.55 and 0.63, respectively. The
detection power of point B is approximately twice that of random
designs, which have a predictability of 0.5. The stimulus patterns
and responses for B and C are shown in Fig. 5.
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770 LIU ET AL.
Average predictability decreases as estimation effi-
ciency increases, with random patterns having an av-
erage predictability of about 0.5. The semirandom pat-
tern that meets the minimum-time criterion (with fest 5
fdet 5 1.0) for permuted 4-block designs has a predict-
ability of 0.63 (point C in Fig. 9). To obtain a lower
predictability of 0.55, it is necessary to select a design
(point B) that has 30% higher normalized estimation
efficiency (0.80 vs 0.61) and 40% lower normalized
detection power (0.13 vs 0.22), compared to the mini-
mum-time design. The relative times required to
achieve the detection power of the block design (with
detection power 0.41) are 3.2 and 1.9 for points B and
C, respectively. Although the relative time for point B
is 65% higher than that of the minimum-time point (C),
it is only half the relative time for a random design,
which has a normalized detection power of 0.066 (i.e.,
1/k where k 5 15).

DISCUSSION

Detection power, estimation efficiency, and predict-
ability represent three key features of any experimen-
tal design for fMRI. The choice of design is critical, for
it is possible to select a design that performs poorly in
all three respects, e.g., periodic single-trial designs.
The work in this paper provides a theoretical frame-
work for understanding the bounds on and the rela-
tionship between estimation efficiency and detection
power. We believe that this framework will be useful
for assessing the relative merits of proposed designs
and in determining if better designs are possible. At
this point, we lack a theory that relates predictability
to efficiency and power. However, simulations such as
those shown in Fig. 9 can be used to understand the
relative trade-offs.

A key aspect of our work is the demonstration that
the relation between efficiency and power is character-
ized by two parameters: a and u. The parameter a
describes the relative spread of the eigenvalues asso-
ciated with the design and to first order reflects the
randomness of a design, with a 5 1/k corresponding to

random design and a 5 1.0 corresponding to a non-
andom design such as a block design. The parameter
is the angle between the parameter vector h and the
ominant eigenvector of the design and to first order
eflects how close a nonrandom design (a 5 1.0) is to
chieving the maximum possible detection power, with
he maximum achieved when u 5 0. By varying a and
we can easily map the trade-off between efficiency

nd power without making any assumptions about the
pecifics of the design or the parameter vector h. As a
esult, the theoretical trade-off curves provide bounds
n the performance of all possible designs. In addition
hey serve as a framework for understanding the per-
ormance of specific designs such as those shown in
igs. 5 and 8.
To place this work in context, we note that the im-
ortance of estimation efficiency in the context of fMRI
as introduced by Dale (1999). The use of the F statis-

ic in fMRI is due to Friston and co-workers (Friston et
l., 1995b), as is the use of dynamic stochastic designs
analogous to the semirandom designs in this paper) as
n intermediate trade-off between random and block
esigns (Friston et al., 1999). In Friston et al. (1999),
he emphasis is placed on the k 5 1 case in which
aximizing estimation efficiency is equivalent to max-

mizing detection power. Our work extends that of Dale
1999) and Friston et al. (1999) by considering the
elation between efficiency and power when k is
reater than 1.
There are a number of interesting issues that are

eyond the scope of this paper. We discuss these in the
ollowing paragraphs.

How Much Randomness?

We have proposed the average predictability of a
equence as a measure of perceived randomness, but
urther work is required to determine how unpredict-
ble a sequence needs to be in order to sufficiently
inimize psychological confounds. It is likely that the

orrect answer will depend on the specifics of the ex-
eriment at hand. The results presented in Fig. 9 show
hat a semirandom pattern that is slightly more pre-
ictable (e.g., predictability 5 0.55) than a random
attern yields a 100% increase in detection power and
nly a 20% decrease in estimation efficiency, with re-
pect to a random design. Thus, if slight increases in
redictability are acceptable for a given experimental
aradigm, the advantages from the point of view of
tatistical efficiency can be significant.

Generation of Stimulus Patterns

With the framework developed in this paper, we can
ssess the relative merits of various experimental de-
igns. However, the generation of optimal patterns is
n open problem. Our method of randomly permuting
lock designs is promising, but it is not guaranteed to
nd the optimal pattern. It is possible that numerical
ptimization methods may be more efficient for finding
timulus patterns with a desired distribution of eigen-
alues or a desired ratio of estimation efficiency to
etection power. The framework of dynamic stochastic
esigns proposed by Friston et al. (1999) may also offer
method of reducing the time required to search for

ptimal patterns.

Variability of Hemodynamic Responses

Hemodynamic responses exhibit a wide variability in
hapes, especially across subjects and possibly across
ortical areas (Aguirre et al., 1998). We have shown

that the effect of this variability on detection power can
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be described by the angle between the response vector
and the dominant eigenvector of the design. However,
as we discuss below, there is a subtle point that needs
to be understood with respect to these changes in de-
tection power.

In interpreting Fig. 7, it is important to note that the
plot does not necessarily imply that wider hemody-
namic responses are more detectable than narrower
responses. In the definition of the Rayleigh quotient,
the noncentrality parameter is normalized by the en-
ergy of the hemodynamic response. As shown under
Theory, the energy normalization is convenient for un-
derstanding the dependence of detection power on the
structure of the design matrix. In addition, it provides
a measure of how close a design is to achieving the
absolute maximum detection power for a given hemo-
dynamic response. For example, Fig. 7 shows that a
one-block design is closer to achieving the maximum
possible detection power for a wider response versus a
narrow response.

Energy normalization allows us to compare the detec-
tion power across hemodynamic shapes with the same
energies. However, other normalizations may be more
instructive. For example, using the area under the hemo-
dynamic response as a normalization factor would be
consistent with a picture in which neural activity gives
rise to a fixed increase in blood volume that is then
delivered over a time interval that varies from subject to
subject. With area normalization, we would find that the
detection powers for the various response shapes shown
in Fig. 7 are approximately the same due to the fact that
the spectral amplitudes of the responses at low frequen-
cies are directly proportional to their area. Area normal-
ization would not be as useful, though, in comparing the
detection power of a response that is the first difference of
the gamma density function (Fig. 8) and has zero area to
that of a gamma density function response, which has
nonzero area. A more meaningful normalization in this
case would be the peak spectral magnitude of the re-
sponse.

Finally, the detection power with any choice of nor-
malization can be simply related to the Rayleigh quo-
tient. In the case of area normalization, the detection
power normalized by area is hTh/1Th R, where 1 is a
column vector of 1’s.

Multiple Event Types

There is increasing interest in fMRI experiments in
which the responses to multiple event types are com-
pared and contrasted (Friston et al., 1998a). An exten-
sion of the theoretical framework presented here
should be useful in clarifying the trade-offs between
estimation efficiency and detection power for multiple
event types.
Correlated Noise

In this paper, we have assumed that the additive
noise term n in the general linear model is uncorre-
lated noise with covariance matrix Cn 5 s2I. It is
straightforward to modify the definitions of estimation
efficiency (Dale, 1999) and detection power to accom-
modate the more general case in which the covariance
matrix is not a multiple of identity. However, the vari-
ability in the structure of the covariance matrix across
subjects and experimental conditions complicates the
selection of an optimal design prior to the experiment.
One possibility is to assume a simple form, such as a
first-order autoregressive model, for the covariance
matrix (Dale, 1999). The impact of correlations in the
noise on the relation between estimation efficiency and
detection power is a subject for future work. Methods
for removal of physiological noise (e.g., Glover et al.,
2000) may be helpful for reducing correlations in the
noise to a level at which they may be safely neglected.

Nonlinearities

We have assumed that the neuronal and hemodynamic
pathway from the stimulus to the measured response is
well modeled as a linear time-invariant system, so that
the measured response is the convolution of the stimulus
with a hemodynamic response function. While the linear
time-invariant approximation works reasonably well
(Boynton et al., 1996; Dale and Buckner, 1997), there is
growing evidence that a nonlinear, time-varying model
more accurately describes the pathway (Boynton et al.,
1996; Buxton et al., 1998; Friston et al., 1998b, 1999;
Miller et al., 2000). For example, Bandettini and Cox
(2000) have shown that the measured detection power of
periodic single-trial designs is higher than would be pre-
dicted by a linear time-invariant model. An extension of
the theoretical framework presented in this paper to ad-
dress nonlinear and time-varying effects would be of
great interest.

CONCLUSION

There is a fundamental trade-off between estimation
efficiency and detection power in experimental designs
for fMRI. We have presented a theoretical framework
that describes this trade-off and provides insight into the
performance of random and block designs, as well as
novel designs such as semirandom and mixed designs.
We also introduced predictability as an important third
factor that should be considered along with detection
power and estimation efficiency in the design of an ex-
periment. Small increases in the predictability of a se-
quence can yield significant gains in detection power with
a minimal reduction of estimation efficiency.
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APPENDIX

Approximate Bound on the Trace Term M

Assuming a uniform distribution of m 1’s out of N
oints in the stimulus pattern, the expected number of
’s in the qth column of X is m(1 2 (q 2 1)/N). The
xpected energy in the qth column of X', with the

mean removed, is given by (1 2 (1 2 (q 2 1)/N)m/N)(1
2 (q 2 1)/N)m. The trace term is the sum of the ener-
ies of the columns of X' and is approximately bounded

above as M # ¥q51
k (1 2 (1 2 (q 2 1)/N)m/N)(1 2 (q 2

)/N)m. This bound is used in the plots shown under
esults.

Proof That Orthogonal Designs Maximize
the Minimum Detection Power

We want to show that maxX'
minh R # M/k, with

quality when the columns of X' are orthogonal and
have equal energy. The minimum of the Rayleigh quo-
tient is equal to the minimum eigenvalue of X'

TX'

(Strang, 1980). The minimum eigenvalue is maximized
when all of the eigenvalues are equal. From the eigen-
vector decomposition of X'

TX', we have X'
TX' 5

VLV21 5 M/k I, where V is the matrix of eigenvectors
and L is the diagonal matrix of eigenvalues. Thus, the
olumns of X' are orthogonal and have equal energy.

Expressions for Balancing Estimation Efficiency and
Detection Power

The relative time to achieve the desired efficiency is

test~a! 5 fest

j~a 5 1/k!

j~a!
5

fest

k 2

1 1 a~k 2 2 2k!

a~1 2 a!
.

The relative time to achieve the desired detection
power is

tdet~a, u! 5 fdet

R~a 5 1.0, u!

R~a, u!
5

fdetcos 2u

a cos2u 1
1 2 a

k 2 1
sin2u

.

The point at which test(a) 5 tdet(a, u) is

aopt 5
2b 1 Îb2 2 4ac

2a
,

where

a 5 ~k 2 2 2k!Scos2u 2
sin2u

k 2 1D 1 k 2
fdet

fest
cos2u,

b 5 ~k 2 2 2k 2 1!
sin2u

k 2 1
1 S1 2

fdet

fest
k 2Dcos2u,
c 5
sin2u

k 2 1
.

topt is then obtained by inserting aopt into the expres-
sion for test(a).
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