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fMRI retinotopic mapping provides detailed infor-
mation about the correspondence between the visual
field and its cortical representation in the individual
subject. Besides providing for the possibility of unam-
biguously localizing functional imaging data with re-
spect to the functional architecture of the visual sys-
tem, it is a powerful tool for the investigation of
retinotopic properties of visual areas in the healthy
and impaired brain. fMRI retinotopic mapping differs
conceptually from a more traditional volume-based,
block-type, or event-related analysis, in terms of both
the surface-based analysis of the data and the phase-
encoded paradigm. Several methodological works re-
lated to fMRI retinotopic mapping have been pub-
lished. However, a detailed description of all the
methods involved, discussing the steps from stimulus
design to the processing of phase data on the surface,
is still missing. We describe here step by step our
methodology for the complete processing chain. Be-
sides reusing methods proposed by other researchers
in the field, we introduce original ones: improved stim-
uli for the mapping of polar angle retinotopy, a
method of assigning volume-based functional data to
the surface, and a way of weighting phase information
optimally to account for the SNR obtained locally. To
assess the robustness of these methods we present a
study performed on three subjects, demonstrating the
reproducibility of the delineation of low order visual
areas. © 2002 Elsevier Science (USA)
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INTRODUCTION

The human visual cortex is divided into several functional
areas with distinct local neural properties (Zeki and Shipp,
1988). The positions of functionally specialized visual areas
are only loosely linked to cortical anatomy and are subject to
variability between individuals (Amunts et al., 2000). Several
of these areas are retinotopic, that is, their neurons respond
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organized to form a continuous mapping between the cortical
surface and the visual field. The boundaries between most of
the low order visual areas can be determined from their
retinotopic properties: the local representation of the visual
field on the cortical surface changes its orientation—the local
visual field sign (VFS)—between adjacent visual areas (Ser-
eno et al., 1994). Thus, the knowledge of retinotopy, mapped
by fMRI (Engel et al., 1994), allows for a precise delineation
of some low order retinotopic visual areas (Sereno et al.,
1995).

Precise delineation presents multiple interests, such as in
establishing intersubject and interspecies comparisons of the
visual system (Van Essen et al., 2001), in improving our
insight into its organization in humans (Tootell et al., 1997;
Hadjikhani et al., 1998; Tootell and Hadjikhani, 2001; Wade
et al., 2002), in allowing for quantitative investigations of
parameters such as the cortical magnification factor (Sereno
et al., 1995) or receptive field size (Smith et al., 2001), and in
constraining source localization in EEG/MEG imaging (Di
Russo et al., 2002). Furthermore, it greatly enhances inter-
pretation of the visual responses in numerous cognitive ex-
periments (Wandell, 1999; Tootell et al., 1998a), and it opens
clinical perspectives in permitting detailed investigation of
the pathologic visual system (Baseler et al., 1999; Morland et
al., 2001).

fMRI retinotopic mapping differs in at least two respects
from a more “traditional” three-dimensional amplitude-
based functional analysis: the analysis of retinotopy requires
the interpretation of functional data in their local spatial
context of the sheetlike, highly folded cortical gray matter.
This context is not obvious in the three-dimensional Carte-
sian space in which the data are acquired. It is usually
provided by an explicit model of the individual cortical sur-
face used in a surface-based analysis of the functional data.
Second, due to the Fourier-type paradigm commonly used for
fMRI retinotopic mapping, the main parameter of interest for
the functional analysis is the delay (phase) of the observed
response, not its amplitude. The processing of this informa-
tion differs conceptually from an analysis based on the re-
sponse amplitude alone.

The basic principle of fMRI retinotopic mapping using
phase encoding stimuli has been the subject of several pub-
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1995). Some methodological aspects have been addressed in
reports of applications of the method: optimization of the
duty cycle and the pattern of stimuli (Tootell et al., 1997;
Hadjikhani et al., 1998) and the equivalence between cross-
correlation and Fourier transform in the delay analysis (En-
gel et al., 1997). Other aspects have been dealt with in detail,
but independently of their application to retinotopic map-
ping: the construction of the cortical surface model, in par-
ticular the segmentation of structural MRI data (Wells et al.,
1996; Teo et al., 1997; Van Leemput et al., 1999b; Dale et al.,
1999; Zeng et al., 1999; MacDonald et al., 2000; Zhang et al.,
2001; Shattuck et al., 2001), the flattening or unfolding of the
cortical surface model (Van Essen and Maunsell, 1980;
Schwartz et al., 1989; Carman et al., 1995; Drury et al., 1996;
Teo et al., 1997; Fischl et al., 1999; Angenent et al., 1999;
Hermosillo et al., 1999; Wandell et al., 2000; Guérin-Dugué et
al., 2000) and the correction of topological errors in the sur-
face (Shattuck and Leahy, 2001; Fischl et al., 2001; Krieges-
korte and Goebel, 2001; Han et al., 2002), the analysis of
fMRI response delays (Saad et al., 2001), and the smoothing
of functional data along the cortical surface (Andrade et al.,
2001). Despite these efforts, implementing fMRI retinotopic
mapping procedures remains a difficult endeavor, partly be-
cause a detailed description of the complete process, discuss-
ing all the steps from stimulus design to the processing of
phase data on the surface, is still missing.

In this paper, we point out the challenges involved in
retinotopic mapping and give a detailed description of our
methodology for the complete processing chain, leading up to
the delineation of low order visual areas. We combine meth-
ods proposed by other researchers in the domain and original
ones: improved stimuli for the mapping of polar angle reti-
notopy and a method of assigning volume-based functional
phase data to the surface, including an optimal weighting
accounting for the uncertainty of the phase estimation.

BACKGROUND

Figure 1 gives an overview of the procedures involved in
fMRI retinotopic mapping and the corresponding neural and
physiological processes.

Neural and Physiological Processes

The processes that link stimulation of the retina to a phys-
iologic response in terms of local variations of blood oxygen-
ation in the visual cortex comprise a multitude of steps, some
of which are not yet fully understood. In the context of reti-
notopic mapping, it is useful to distinguish three stages in
this processing chain.

Receptive fields. The stimulus is processed through mul-
tiple neural stages to yield an input to a given population of
cortical retinotopic neurons. During this processing, informa-
tion is integrated over a certain region in the visual field.
Using the concept of receptive fields, this integration can be
summarized in a sensitivity profile in the visual field for each
neuron of the population considered. The transformation of
the stimulus by the spatial integration can then be described
as a spatial widening or “blurring” of the stimulus (Fig. 1a).

The resulting “blurred” stimulus is a fictive intermediate
state between the “real” stimulus and its projection on the
cortical surface according to retinotopy (in reality, integra-
tion and projection by retinotopy occur simultaneously,
across several processing stages). Receptive field properties
vary between different populations of neurons, are generally
not precisely known, and may even depend on the stimulus
(Sceniak et al., 1999).

Retinotopy. Retinotopy links the position of each retino-
topic neuron to the point in the visual field corresponding to
the center of its receptive field. In this context, the position of
neurons is best described in terms of two-dimensional coor-
dinates on the cortical surface, an idealized, two-dimensional
representation of the cortical sheet (rather than in three-
dimensional Cartesian coordinates). There are mainly two
reasons. First, for a given point on the cortical surface, re-
ceptive fields of neurons from different cortical layers are
centered on the same point in the visual field. And second,
adjacent points on the cortical surface represent adjacent
points in the visual field. More precisely, the mapping be-
tween the cortical surface and the visual field is locally ho-
meomorphic, that is, it is locally bijective and continuous and
the inverse mapping is also continuous.

In terms of steps involved in the processing of the stimulus,
retinotopy transforms the “blurred” stimulus (a spatiotempo-
ral pattern of stimulation in the visual field) into a corre-
sponding spatiotemporal pattern of neural activation on the
cortical surface. The goal of retinotopic mapping experiments
is to determine this correspondence.

Neurophysiology and anatomy. The neurophysiologic
properties of the cortex, notably its metabolic and hemody-
namic properties, link a given spatiotemporal pattern of neu-
ral activation to spatiotemporal variations of blood oxygen-
ation. These variations are at the origin of the signal
observed in BOLD fMRI. While we can assume the neural
processing described above to be quasi-instantaneous in the
context of fMRI, the variation of blood oxygenation exhibits a
temporal lag and is smoothed, temporally as well as spa-
tially, with respect to the neural activation. The resulting
variation of blood oxygenation will be measured in three-
dimensional Cartesian space. Anatomy defines the way the
surface-based response is embedded in three dimensions.
The relationship between the surface-based and volume-
based representations of the functional response is not ho-
meomorphic. Due to the strong folding of the cortex, gray
matter points that are adjacent in three dimensions (e.g., on
opposite banks of a sulcus) are not necessarily close to each
other when their distance is measured along the cortical
surface.

Retinotopic Mapping Procedures

The challenge of retinotopic mapping by fMRI is to accu-
rately measure the properties of the second of these stages,
while being insensitive to, or correcting for, the others. In the
following, we describe the steps necessary to obtain retino-
topic maps by fMRI and the methodological challenges in-
volved. We distinguish five steps in the retinotopic mapping
procedure.
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FIG. 1. Overview of fMRI retinotopic mapping procedures and the neural and physiological processes involved. Functional retinotopic
mapping data are obtained in response to stimuli encoding the polar angle (d) and eccentricity (e) coordinates of the visual field. Concerning
the neural processing of visual information, we separately consider the spatial integration of visual information, represented by the receptive
field size of cortical neurons, and the point-to-point relationship between the centers of the receptive fields and the cortical surface,
represented by retinotopy. The effect of receptive fields of cortical neurons can be described in this context as a spatial smoothing of the
stimulus in the visual field (a). Retinotopy projects the “blurred” stimulus onto the cortical surface, where it gives rise to corresponding neural
activation (b). Neurophysiological processes transform the neural activation into variations of blood oxygenation. Anatomy defines the way
these variations are embedded in the three-dimensional Cartesian space of the cerebral volume (c) (note the difficulty of illustrating the “true”
neural and physiological responses, and the “true” cortical surface or volume, as opposed to measured responses and reconstructed
representations). A high-resolution structural MR volume is acquired (h) and segmented and the gray matter/white matter interface is
dilated to approach the center of the cortex (g). A model of the cortical surface is reconstructed from the segmentation and is unfolded. The
color coding overlaid here represents the distortion of local area induced in the flattening process, expressed as the ratio of triangle surfaces
in 2D with respect to 3D. A ratio of 1 means no distortion (f ). BOLD-sensitive functional MR volumes are acquired (o) and analyzed in 3D
to obtain for each voxel an estimation of the response phase, encoding the locally represented visual field polar angle (m) and eccentricity (n).
These data are assigned to the surface model obtained previously and smoothed slightly (� � 1.5 mm). The response phase to polar angle and
eccentricity stimuli is displayed on the flattened representation of the cortical surface (k and l, respectively). Together with the information
about the corresponding phase of stimulation (i and j), they form the desired retinotopic maps.
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Acquisition and segmentation of structural data. In order
to obtain a two-dimensional map of retinotopy, an explicit
model of the cortical surface is required. The first step in the
construction of this model is the acquisition of a high-resolu-
tion, high contrast-to-noise structural MR image of the brain.
This volume is subsequently segmented to obtain represen-
tations of the different brain tissues. Accurate and automatic
segmentation of the structural volume to obtain a topologi-
cally correct representation of the cortical surface is a major
challenge. In the context of construction of a model of the
cortical surface, several descriptions of brain segmentation
algorithms exist (Teo et al., 1997; Dale et al., 1999; Joshi et
al., 1999; Zeng et al., 1999; Germond et al., 2000; MacDonald
et al., 2000; Shattuck et al., 2001). Most commonly, voxels are
labeled as one of three tissue types: white matter (WM), gray
matter (GM), or cerebrospinal fluid (CSF).

Construction and unfolding of the surface model. A model
of the cortical surface is extracted from the segmented vol-
ume, based on one or both of the borders between cortical GM
and the adjacent tissues. Ideally, it represents the center of
the cortical GM, where functional activation is expected. The
ensuing surface-based analysis of functional data requires
that the surface model be anatomically and topologically
correct. Topological defects usually need to be corrected man-
ually, although recently efforts have been made to automat-
ically correct some of those errors (Shattuck and Leahy,
2001; Fischl et al., 2001; Kriegeskorte and Goebel, 2001; Han
et al., 2002).

A major advantage of a surface-based analysis—conve-
nient display—can only be reaped by unfolding the surface
model, a procedure presenting a challenge in terms of com-
putational complexity. The unfolding needs to be homeomor-
phic to be useful. This means in particular that partially
folding the surface onto itself in the flattened representation
must be avoided. Homeomorphic flattening of the surface is
only possible if the folded model is free from topological
errors.

Stimuli for retinotopic mapping. Stimuli for retinotopic
mapping are designed to encode the position in the visual
field by a unique pattern of temporal activation. This is
achieved by means of slowly moving periodic stimuli consist-
ing of concentric expanding or contracting rings and clock-
wise or counterclockwise rotating wedges, presented while
the subject is fixating their center or apex (Engel et al., 1994;
DeYoe et al., 1994). These stimuli link each position along a
visual field coordinate (eccentricity/polar angle) to a unique
delay of the periodic stimulation. This delay is usually quan-
tified as a phase in the frequency domain. This encoding is
robust with respect to the (unknown) spatial and temporal
smoothing applied by the visual fields and the hemodynamic
response, provided the temporal and spatial frequency of the
stimuli is low enough. The hemodynamic delay creates a
phase shift of the response that needs to be corrected for. This
is done by comparing the responses to two stimuli moving in
opposite directions for each visual field coordinate (four stim-
uli in total) (Sereno et al., 1995).

Acquisition and volume-based analysis of functional data.
BOLD-sensitive fMRI data are acquired throughout the oc-
cipital lobe. The MR images usually present distortions with

respect to the structural data acquired, due to susceptibility
artifacts and gradient nonlinearities. As discussed below,
misalignment between functional and structural images can
severely degrade the two-dimensional representation of the
functional data. One of the challenges in the acquisition of
fMRI data is to minimize susceptibility artifacts, while main-
taining a high level of sensitivity to BOLD contrast and short
acquisition times. Distortions due to gradient nonlinearities
are independent of the acquisition sequence. Depending on
the gradient hardware, appropriate correction of the data
may be necessary (Wald et al., 2001).

The volume-based analysis in retinotopic mapping experi-
ments involves estimating the response phase for all voxels.
Importantly, the individual uncertainties of these phase es-
timations can be quantified and can be taken into account in
the subsequent analysis. The responses of the stimuli of
opposite directions of movement are combined to correct for
the phase shift induced by the hemodynamic delay.

Assignment of functional data to the surface model. The
task is to obtain a surface-based representation of the cortical
response from the functional data acquired in three-dimen-
sional Cartesian space. Two issues need to be addressed. The
first concerns the problems inherent in the reduction of di-
mensionality, assigning volume-based data to the surface
model. This step is necessarily nonhomeomorphic. In the
presence of misalignment (local and/or global) between func-
tional and structural data, the assignment may induce large
errors in the two-dimensional representation of the data.
These errors are best exemplified by the case of assigning
functional data to the wrong bank of the calcarine sulcus.
The issue of alignment needs to be addressed at the moment
of data acquisition or by appropriate correction of distorsions
prior to assignment of data to the surface model. The second
issue is the potential mismatch between the data at the
individual voxels and the original cortical response, due to
noise and the distance between voxel centers and surface
elements. Sources of this mismatch need to be identified and
their respective contributions estimated and taken into ac-
count in the context of the assignment of phase information.

Processing of the Retinotopic Maps

Retinotopic mapping is usually not a goal in itself. Conse-
quently, the obtained maps are to be processed further to
extract information such as the position of the borders be-
tween retinotopic functional areas. We will use the example
of delineation of visual areas to illustrate and evaluate our
retinotopic mapping procedures.

Between adjacent retinotopic visual areas the visual field
sign (VFS, Sereno et al., 1994) changes, which allows for a
reconstruction of their borders (Sereno et al., 1995). The
visual field sign designates the orientation of the represen-
tation of the visual field on the cortical surface. To determine
the visual field sign, it is convenient to calculate the ratio of
an oriented area measured using the local representation of
the visual field coordinates with respect to the same area
measured using a locally isometric parametrization of the
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surface.1 We refer to this quantity as the visual field ratio
(VFR). The visual field sign is then the sign of the VFR, and
the visual area borders correspond to contour lines of zero
VFR. The size of the zone of small absolute VFR around
visual area borders gives an immediate visual impression of
the uncertainty of the position of the delineated borders,
information that is absent from the VFS. Most of the spatial
features of the VFR are present in the representation of the
polar angle coordinate whose gradient reverses direction at
the borders between visual areas. In contrast, the eccentric-
ity gradient is smooth across visual area borders.

Two-dimensional processing of the retinotopic maps pre-
sents a computational challenge linked to the representation
of the data on an irregular two-dimensional grid embedded in
three dimensions. Standard image processing approaches are
therefore not always easily implemented.

METHODS

Acquisition and Segmentation of Structural Data

Acquisition and data preprocessing. All MRI data were
acquired on a Philips Intera 1.5 T system equipped with a
Powertrack 6000 gradient system (23 mT/m with a slew rate
of 105 T/m � s). Structural data were acquired by means of a
spoiled 3D GRE Flash sequence, TR of 23.7 ms, TE of 6.9 ms,
flip angle of 28°, and an isotropic resolution of 1 mm. The
body coil was used for RF excitation and a volume head coil
for signal detection. Slices were oriented approximately par-
allel to the calcarine sulcus, inclined by about 45° with re-
spect to AC–PC. To optimize the contrast-to-noise ratio, three
volumes of 256 � 256 � 160 voxels were acquired in the same
scanning session for a total acquisition time of 35 min. Head
motion was constrained by means of small sandbags to the
right and left of the subject’s head. Residual motion was
corrected for by realigning the three volumes using the SPM
software (Ashburner and Friston, 1997). In the ensuing anal-

ysis, only the mean of the realigned structural images was
used.

Segmentation. The details of the algorithm employed are
beyond the scope of this paper. Briefly, voxels are labeled
sequentially, starting with CSF and proceeding to GM and
WM. The image intensity distributions of the tissues are
modeled as normal distributions (Wells et al., 1996). Their
parameters are estimated separately for each slice to take
into account inhomogeneities in the z direction. More sophis-
ticated techniques incorporating Expectation-Maximization
and Markov random field models could be introduced to bet-
ter account for the full three-dimensional bias field distortion
(Van Leemput et al., 1999a; Zhang et al., 2001; Shattuck et
al., 2001). The sulci are initially detected as dark and narrow
regions using a morphological operator (Guérin-Dugué et al.,
2000). This allows for an estimation of their intensity distri-
bution and subsequent refinement of their labeling. In a
similar fashion, voxels close to sulci are considered belonging
to GM, providing an initial estimation of their intensity dis-
tribution. This labeling is in turn refined in a region growing
process seeded around the sulci, aggregating voxels based on
their intensity and on the topology of their neighborhood.
Using the same procedure, WM is segmented starting from
voxels close to the GM. After this first segmentation, voxel
labeling is refined over several cycles, iteratively updating
the estimation of the intensity distributions for all tissues
and the voxel labeling. The whole process is controlled by two
parameters, one indicating the maximum intensity to take
into account and the other tuning the attribution of voxels
that have borderline intensities between GM and WM. For a
given acquisition sequence, these parameters usually need
not be readjusted manually.

After the segmentation, the interface between the volumes
labeled GM and WM is extended to represent approximately
the center of the GM by a series of constrained region grow-
ing steps applied to CSF and WM. At each of these steps, only
voxels initially labeled as GM can be reaffected, and a layer
of at least one voxel of GM is imposed between WM and CSF.
Many of the topological defects initially present in the vol-
ume labeled as WM disappear during this postprocessing
step. However, to obtain a topologically correct model of the
occipital lobe, manual editing is still required.

Construction and Unfolding of the Surface Model

The first step in the construction of a model of the cortical
surface is the selection of the brain region to be represented.
This depends on the region studied, but also on the way the
surface should be visualized: by flattening or inflation. Infla-
tion allows for the representation of an entire hemisphere
without cutting, but not all of that surface is visible at once.
Flattening displays all of the model at once, but requires
surface cuts if the intrinsic curvature of the surface is too
strong, thus loosing in that case some of the connectivity
information. In the context of studies pertaining to the reti-
notopic visual areas, we found it useful to model only part of
the cortical surface situated in the occipital lobe. This allows
us to completely flatten this surface without the need for
further cuts. The entire region under investigation can then

1 This is the Jacobian of the visual field representation on the
surface.

FIG. 2. Schematic display of the part of the cortical surface
selected for unfolding.
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be visualized simultaneously, while faithfully representing
connectivity information throughout the surface.

The portion of the surface to be unfolded is defined manu-
ally for each of the two hemispheres from the segmented
volume. It is delimited by two perpendicular planar cuts. One
is made approximately parallel to, and just posteroventral of,
the parietooccipital sulcus, and the other is approximately
parallel to, and about 3 cm anteroventral of, the calcarine
sulcus (Fig. 2). Within the delimited region, a triangulated
model of the interface between voxels labeled WM and GM is
created using the marching cubes algorithm (Lorensen and
Cline, 1987).2 Due to the postprocessing steps applied to the
segmented volume, this model approximately represents the
center of the GM. Its nodes are initially positioned on a
regular grid. The model is subsequently smoothed slightly by
iteratively displacing each node a fraction of the distance to
the mean position of its nearest neighbors. Ten iterations of
smoothing are applied, displacing nodes at each iteration a
tenth of the distance to the center of its neighbors.

The flattening algorithm employed is described elsewhere
(Guérin-Dugué et al., 2000). Further details will be provided
in a forthcoming paper. This algorithm is a modified version
of a multidimensional scaling like algorithm, called Curvilin-
ear Components Analysis (Demartines and Herault, 1997).

Briefly, the approximate geodesic distances from each node to
all its neighbors within a tenth order neighborhood are cal-
culated. These distances provide information about the local
structure of the surface. Information about the global struc-
ture is provided by 10 “representative” nodes that are se-
lected automatically using the K-means technique (Mac-
Queen, 1967). These nodes serve as “anchors.” For each of the
anchors, the distances to all the other nodes of the surface are
determined using the Dijkstra algorithm (Dijkstra, 1959).
This leads to a sparse distance matrix, which contains only
about 2% of all the mutual distances between nodes. The
unfolding is initialized by a projection of all nodes from their
3D positions to the plane formed by the two first principal
components of their spatial distribution. The 2D node posi-
tions are then iteratively updated during 5000 iterations.
Nodes are selected one at a time and all the neighbors of the
node currently chosen are repositioned, according to the mis-
match observed between the distances in the plane and the
geodesic distances. At each iteration, each of the anchors is
selected once, updating the global structure of the unfolded

2 Slight modifications from the original algorithm were made to
avoid holes in the surfaces generated.

FIG. 3. Stimuli used for mapping retinotopy with respect to
eccentricity (a) and polar angle (b). Four stimuli are presented:
expanding and contracting rings and clockwise and counterclockwise
rotating wedges. The subject is asked to fixate the central dot while
maintaining attention to the stimulus and reporting the occurrence
of a pair of bright yellow/dark blue checks that appear at random
moments and positions.

FIG. 4. Average spectral response observed at voxels activated
above a threshold of SNR � 4.5 during one functional run of a
retinotopic mapping experiment.

FIG. 5. Illustration of the response phase �� as a function of
visual field position (polar angle �) for two different stimuli: one
single rotating wedge (n � 1) and two opposing rotating wedges (n �
2). Positions of the visual field meridians (lower vertical, LV, right
horizontal, RH, upper vertical, UV, and left horizontal, LH) are
indicated. The decoding is not unique in the case n � 2. A priori
information is needed about which hemifield is locally represented
(i � 0, right hemifield; i � 1, left hemifield). The uncertainty of the
estimation of visual field position (��) as a function of the uncertainty
of response phase estimation (��) is indicated by the dashed lines.
Uncertainty is reduced by a factor of 2 in the case n � 2.
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model, and a fixed number of “ordinary” nodes are selected
randomly, refining the local structure. The global structure of
the unfolded model settles rapidly. After 500 iterations, the
anchors are dropped from the calculations, and node posi-
tions are only refined locally. The method proposed is com-
putationally efficient mainly due to two aspects: first, the
distance matrix is sparse and therefore only a fraction of the
mutual distances needs to be calculated. And second, for each
node selected during the unfolding process, the positions of
all neighbors are updated. This contributes to a higher mo-
bility of the nodes compared to an approach displacing only
the selected node, like classical stochastic gradient descent
techniques. As a result, the model converges rapidly toward

a low-distortion representation of the unfolded surface, at the
same time avoiding local minima that would lead to the
surface being folded onto itself. The flattening produced is
homeomorphic over the vast majority of the surface area.

The step of unfolding necessarily induces some amount of
distortion of distances and/or angles, because intrinsic cur-
vature is present in the cortical surface. As far as display
purposes are concerned, this distortion is a small price to pay
to be able to view the entire surface under investigation at
once. The functional analysis can be performed entirely
based on the folded model and is therefore not hampered by
this distortion.

Stimuli for Retinotopic Mapping

The stimuli we used are similar in design to those de-
scribed by other groups (Engel et al., 1994; Sereno et al.,
1995; Tootell et al., 1997). Eccentricity is mapped by a slowly
expanding or contracting ring, and polar angle is mapped by
two rotating wedges (Fig. 3). For the stimuli mapping eccen-
tricity, the speed of expansion or contraction varies linearly
with eccentricity (exponentially with time). Due to the ap-
proximately exponential cortical magnification factor (Engel
et al., 1994; Tootell et al., 1998b) this stimulus produces a
wave of activation on the cortical surface traveling at approx-

FIG. 6. Histogram of the functional response power (subject
M.D., reference data set, left hemisphere, polar angle scan) as a
function of distance from the surface model. Only voxels with an SNR
exceeding 2 were included in the analysis.

FIG. 7. SNR of functional information (subject M.D., reference
data set, left hemisphere, polar angle scans) projected to the surface.
Only voxels exceeding a threshold of SNR � 2 have been projected.
Each triangle is colored according to the maximum SNR at any of its
nodes. The maximum SNR observed was above 40, but a ceiling of 25
was imposed for display purposes. The automatically delineated
borders between retinotopic visual areas are superposed for
orientation.

FIG. 8. Final results of the assignment of phase data to the
surface (subject M.D., reference data set, both hemispheres, polar
angle and eccentricity scans). The color legends represent a circular
area of the visual field with an eccentricity of 8.5°. The processing
details were those described in the text. The phase data displayed
are smoothed slightly (� � 1.5 mm, corrsponding to a FWHM of 3.53
mm) at assignment. The mask applied is derived from the corre-
sponding amplitude data (assigned using � � 2.5 mm; FWHM, 5.89
mm) applying a threshold of SNR � 12. Note that the amplitude data
represent the effective SNR after smoothing and not the average
SNR (see Appendix).

1671fMRI RETINOTOPIC MAPPING



imately constant speed. When the ring reaches maximum
eccentricity, it wraps around to be replaced by a new one at
minimum eccentricity, and vice versa.

When optimizing these stimuli, essentially four parame-
ters can be adjusted independently: temporal frequency, the
number of rings and wedges, the duty cycle of the stimula-
tion, and the pattern (color, contrast) of the stimuli.

Temporal frequency. The temporal frequency is limited
by two principal constraints: the presence of strong low-
frequency noise (baseline drift) and the low-pass filtering due
to the hemodynamic response. We chose a temporal period of
32 s for both polar angle and eccentricity stimulation. This
period allows for a full return to baseline between activations
and thus leads to maximal response amplitude (Bandettini et
al., 1993; Friston et al., 1994). At the same time, the fre-
quency is high enough to avoid the strong low-frequency
noise caused, for example, by subject movement and scanner
instability (Fig. 4). Physiologic noise from cardiac pulsation
and respiratory events also needs to be considered. Both
processes occur at frequencies sufficiently high not to inter-
fere directly with the stimulation frequency. But due to the
discrete temporal sampling of functional data, these signals
may be aliased back into the spectrum. In our case of a
repetition time of 1.28 s for functional volumes, typical (fun-
damental) frequencies for respiration are not aliased. The
aliased cardiac noise does not coincide with the stimulation
frequency for cardiac frequencies in a range from 50 to 90
pulsations per minute.

Number of rings/wedges. The number of rings or wedges
the stimulus contains determines the correspondence be-
tween the observed response phase and the position (eccen-
tricity or polar angle, respectively) in the visual field. This
correspondence is one of the factors determining the accuracy
of the final retinotopic map, the other one being the accuracy
of the response phase measurement. We will describe this
correspondence for the case of the polar angle stimulus, the
case of the stimulus mapping eccentricity being similar. A
polar angle stimulus consisting of n equally spaced rotating
wedges can be described by the phase of the periodic stimu-
lation

�̃� � �n�̃� mod2�

corresponding to each polar angle �̃ � [0, 2�) of the visual
field. This stimulus creates a unique phase encoding of polar
angles within each of n regions of the visual field, subtending
2�/n of polar angle each. If n � 1, the encoding of the entire
visual field is not unique since any two visual field positions
that are an integer multiple of 2�/n apart have identical
phases (they are stimulated simultaneously). Let �� � [0, 2�)
be the estimated phase of the response. The corresponding
estimated position of stimulation in the visual field can then
be calculated as

� �
��

n
� i

2�

n
,

where i � (0 . . . n � 1) indicates which of the n uniquely
stimulated regions of the visual field is represented locally

(Fig. 5). The estimation of i needs to be based on a priori
information about retinotopy. Assuming that i can be deter-
mined accurately, the uncertainty �� of the estimated visual
field position due to the uncertainty �� of the phase measure-
ment is then given by

�� �
��

n
.

Thus, the accuracy of the polar angle retinotopic map is
proportional to the number of wedges, provided the accuracy
of phase estimation is constant and provided sufficient
a priori knowledge is available to unwrap the response
phase. More generally, the accuracy is proportional to the
local derivative of the function translating the response
phase observed into a visual field position.

Note that the choice of the number of wedges (rings) links
the temporal frequency of stimulation to an angular (radial)
speed of the rotation (expansion or contraction). An increase
of the number of elements leads to a slower displacement of
the stimulus in the visual field at constant temporal fre-
quency.

Retinotopic stimuli with more than one element have been
used before. Engel et al. (1994) used two rings in their orig-
inal report on the Fourier method for retinotopic mapping.
Later, the same group used three wedges to map polar angle
(and a single ring to map eccentricity) (Engel et al., 1997). In
a recent report, the group uses the standard stimuli compris-
ing a single ring and a single wedge (Press et al., 2001). To
our knowledge, the relationship between the number of
rings/wedges and the accuracy of the retinotopic maps ob-
tained has not been mentioned.

We chose to use two wedges for the polar angle stimulus,
because distinguishing between the two visual hemifields
using a priori information is particularly simple. Only the
contralateral hemifield is represented in the low order visual
areas of each hemisphere, so that positions that are suffi-
ciently far from the vertical meridians can be uniquely iden-
tified. Positions close to the vertical meridians can be cor-
rectly attributed, since retinotopy varies smoothly over the
cortical surface (Sereno et al., 1994), and the representations
of the upper and lower vertical meridians are surrounded by
representations of the upper and lower quadrants, respec-
tively.

Retinotopy with respect to eccentricity is less important for
the delineation. It contains little information about the posi-
tion of the visual area limits. Since distinguishing between
the responses to several rings using a priori information
seems to introduce more difficulties than a higher accuracy
would resolve, we chose to use only a single ring stimulus.

Duty cycle. A case has been made for stimuli with a very
low duty cycle, to improve the responses in visual areas
where neurons have large receptive fields (Tootell et al.,
1997). We found that the amplitude of the response at the
fundamental stimulation frequency decreased for very thin
stimuli and obtained better results with somewhat higher
duty cycles of 25% for the polar angle stimuli (two wedges
subtending 45° each) and 17% for the eccentricity stimuli
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(one ring, two checks wide). This corresponds to a width of
two checks of the radial checkerboard, creating a line of high
local contrast at the center of the stimulus.

Pattern. Rings and wedges consist of a radial checker-
board. The aspect ratio of the checks is kept constant by
scaling their height linearly with eccentricity. In order to
maximize local luminance and color contrast, neighboring
checks are of complementary color. The stimulus had the
same mean luminance as the gray background. Equilumi-
nance values for three color combinations (red/green, blue/
red, and green/blue) are measured for each subject using a
minimum of motion test (Anstis and Cavanagh, 1983) and
are used for individual luminance correction. Colors change
at a frequency of 4 Hz. During all scans, the subject’s task is
to fixate a central dot on the screen, while focusing attention
to the stimulus. To control and maintain attention, the sub-
ject is asked to press a button at each occurrence of a given
pair of yellow and blue checks, which appears at random
positions and times in the stimulus at a mean frequency of
one target every 6 to 8 s.

Stimuli are back-projected on a translucent screen situated
outside the magnet. The subject views this screen at a dis-
tance of about 150 cm via an angled mirror. Our stimuli cover
eccentricities from 0.2° to 8.5°. The movement of the stimuli
occurs in small steps of four images per second and appears
almost smooth. Four retinotopic functional scans are ac-
quired, one for each of the two directions of motion for each of
the two stimulus types. The stimuli start 10 s before the
actual acquisition begins, to be able to detect responses from
the beginning of the acquisition period. The start of the
stimuli is triggered by a signal from the scanner.

Acquisition and Volume-Based Analysis of Functional Data

Acquisition. The goal in the choice of an acquisition se-
quence for functional data based on BOLD contrast is to
provide fast T*2-sensitive imaging, while reducing the distor-
tion often present in single shot EPI sequences due to the
narrow “bandwidth” in the phase encoding direction. A
means of reducing loss of phase coherence during the echo
train is to shorten it, using segmented EPI. However, at fixed
echo time, required for T*2 sensitivity, this leads to an unused
delay between the RF pulse and the start of the echo train.
Thus, measurement time is to a certain extent wasted, at the
expense of the SNR achievable during a fixed measurement
time. The 3D PRESTO sequence shifts the echoes, acquiring
during this lapse the echo train corresponding to the preced-
ing RF pulse (Liu et al., 1993; van Gelderen et al., 1995). The
expected relative distortions between functional and struc-
tural data due to susceptibility artifacts are reduced by a
factor of 4.5 with respect to single shot EPI, while the mini-
mal scan time remains essentially unchanged. This reduction
of distortion comes at the cost of a slightly lower sensitivity
due to the decrease in repetition time and a corresponding
decrease in longitudinal magnetization. At the same time,
the decreased repetition time has the benefit of reducing the
signal contributions from large blood vessels presenting a
long T1 relaxation time, leading to a lower sensitivity to
macrovascular artifacts.

Functional data were acquired in the same scanning ses-

sion as the structural scans; 12 slices oriented approximately
perpendicular to the calcarine sulcus were scanned by means
of a 3D PRESTO sequence, acquiring 21 echoes for each RF
pulse, with a repetition time of 28 ms, an echo time of 40 ms,
a flip angle of 14°, and a resolution of 3 � 3 � 4 mm3. A single
loop surface coil, positioned inside the volume coil used for
the structural scans, was used for signal reception. The body
RF coil was used for excitation. The acquisition time was 7
min 16 s per functional run containing 341 volumes of 64 �
64 � 12 voxels. Thus, 25 functional volumes are acquired
during each period of stimulation.

Data import and preprocessing. Functional volumes are
converted from the proprietary scanner image format to
SPM/Analyze, taking into account relative position at acqui-
sition of the functional volumes with respect to the structural
data. To faithfully represent subvoxel offsets and rotations
between functional and structural images, a linear spatial
transformation matrix is stored for each acquired volume.
This transformation matrix is taken into account in all sub-
sequent processing steps. We consistently observed an over-
all shift of the functional images with respect to the struc-
tural volumes by about one voxel in phase encoding direction
(right–left). This shift is corrected for by simple translation of
the functional volumes.

If gradient nonlinearity is a problem, appropriate correc-
tion might be needed at this stage to allow for accurate
assignment of the functional data to the surface model (Wald
et al., 2001). In our case, gradient nonlinearity did not no-
ticeably affect images. According to the figures provided by
the manufacturer of our gradient system, nonlinearity does not
exceed 1% over a volume of 25 cm diameter (1.4% over 53 cm).

Finally, some of the effects of head movement during func-
tional scans are removed by realigning the functional vol-
umes with respect to the one acquired closest in time to the
structural scan using the SPM package (Friston et al., 1995).
Data are resampled using a windowed sinus cardinal kernel.
Since the acquisition is done with a 3D technique, rather
than with a multiple slice method (as is usually done with
EPI acquisitions), there is no difference in timing of the
acquisition of the slices to be taken into account.

3D analysis of retinotopic mapping data. The estimation
of the response phase and amplitude is done in three dimen-
sions on a voxel-per-voxel basis. With the timing used here,
the response to the periodic stimulus is close to sinusoidal,
with only a small amount of energy present in higher har-
monics (Fig. 4). However, the amplitude of the signal present
at those harmonics varies greatly between individual voxels
and is generally very low. We chose to base our analysis on
the fundamental frequency only.

Both, signal amplitude and phase can be calculated from
the complex valued Fourier transform at the stimulation
frequency (Engel et al., 1997):

F�0
�x� j� � �

k�1

N

f�x� j,tk�exp(�i2��0�tk � tH�) , (1)

where F�0
is the volume of complex Fourier components at

the frequency �0 of the stimulus, x� j are the voxel positions,
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N is the number of volumes acquired during one functional
run, f is the raw functional data (three spatial and one
temporal dimensions), tk are the instances of acquisition of
the functional volumes counted from onset of the acquisi-
tion, and tH is an estimation of the mean hemodynamic
delay. Since the phase of F�0

is to be a measure of the
position of the stimulus in the visual field, the sign in the
exponent depends on the direction of motion of the stimu-
lus. We chose the positive sign for the expanding and
counterclockwise rotating stimuli. Furthermore, we as-
sume that the stimulus position at the beginning of the
scan is to be associated with a response phase of zero;
otherwise an additional phase offset is required in the
exponential function.

For the ensuing analysis the absolute amplitude of the
response is of little interest per se. Rather, we are interested
in the response amplitude because it reflects the uncertainty
of the phase measurement. The standard deviation of the
phase error (when expressed in radians) is the inverse of the
SNR of the response amplitude at the stimulation frequency
(see Appendix). The noise at the stimulation frequency is not
accessible directly. Instead, we base its measurement on the
assumptions that noise above the stimulation frequency is
approximately white and that the response observed at fre-
quencies other than the stimulation frequency contains only
noise. Consequently, the noise is estimated for each voxel
independently as the standard deviation of the real and
imaginary spectra over a range of frequencies. Frequencies
below the stimulation frequency (containing baseline drifts)
and all harmonics of the stimulation frequency are excluded
from the noise calculation.

The relation between the observed response phase and the
position of stimulation in the visual field depends on the
hemodynamic delay. Since the hemodynamic delay may vary
as a function of the position on the cortex (Kastrup et al.,
1999), it needs to be measured and corrected for locally. This
can be achieved by comparing the responses to two stimuli
moving in opposite directions and being otherwise identical.
Once response amplitude and phase are known for each of
the two scans mapping one visual field coordinate, the two
phases are combined on a voxel-per-voxel basis. For any
given voxel, the local difference between estimated (tH) and
actual hemodynamic delay offsets the phase observed in the
two scans by equal amounts. Thus, the receptive field posi-
tions estimated from the delayed responses are biased by the
same amount, but in opposite directions with respect to the
true value, due to the opposite directions of motion. The two
phases obtained at a voxel may exhibit a phase jump with
respect to each other. Phase unwrapping is straightforward,
if the bias introduced by the mismatch between actual and
estimated hemodynamic response is small with respect to the
temporal period of the stimulus. Therefore, the estimation of
the hemodynamic delay tH should be close to the mean he-

modynamic delay observed. We used tH � 5 s. The arithmetic
mean of the unwrapped phases yields an unbiased estima-
tion of the true corresponding spatial position. The uncer-
tainty of the combined phase can be calculated by error
propagation from the known individual uncertainties.

The results of the analysis are stored as two pairs of para-
metric data volumes containing phase and SNR information
for each of the two visual field coordinates. These data are
subsequently assigned to the model of the cortical surface for
further two-dimensional processing.

Assignment of Functional Data to the Surface Model

The task of assigning functional data to the model of the
cortical surface is to estimate the original cortical response to
the stimuli from the available three dimensional data. This
estimate will be represented as functional data for each node
of the surface model. We describe the general estimation of
surface data at each node as a linear combination of the three
dimensional data at all the voxels.3 The contributions of each
voxel to each node need to be chosen based on the expected
match between the data observed at the voxels and the un-
derlying cortical response. We consider three mechanisms
contributing to a mismatch between the cortical response at
a given point of the surface and the data acquired at a (more
or less distant) voxel: 1. Noise at the acquisition: even if the
signal present in a voxel exactly matches the cortical re-
sponse, the addition of noise introduces errors to the estima-
tion of the response characteristics. 2. Distance perpendicu-
lar to the cortical surface: the signal in a voxel that is not
centered on the surface may contain contributions other than
the response at the nearest point of the surface. 3. Distance
along the cortical surface: the cortical response varies along
the surface, and the correlation between responses at two
points of the surface depends on their distance and the spa-
tial properties of the response.

In the following we discuss each of these mechanisms and
derive a scheme for assigning functional data to the cortical
surface, notably integrating an optimal weighting with re-
spect to local SNR.

Noise at acquisition introduces an error in the estimation
of the response phase. Partial volume effects, local physio-
logic noise, and the limited amplitude of the cortical response
all contribute to this error.4 Importantly, the uncertainty of
the phase estimation is known for each voxel. For voxels with

3 Note that this formulation is general, as we allow the contribu-
tions of the individual voxels to be a function of the data.

4 In this context, only those partial volume effects are considered
whose only effect is to reduce the SNR of the voxel. This concerns
voxels containing local gray matter and neighboring tissues not
exhibiting a functional response (WM, CSF). Voxels including partial
volumes of gray matter from opposite banks of a sulcus or gyrus
remain problematic.

FIG. 9. Reproducibility of the retinotopic mapping experiments. For each of the three subjects, two complete functional and structural
data sets were acquired and processed independently by two operators (J.W. and M.D.). The automatically delineated borders between the
retinotopic visual areas from the data sets processed by M.D. are shown superposed on the VFR maps obtained in the exams processed by
J.W. For display purposes, only the parts of the surfaces containing the delineated visual areas are shown.
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moderate to high SNR, phase noise is close to Gaussian, and
the standard deviation of the phase error is equal to the
inverse of the SNR of the response amplitude (see Appendix).
Only for very low SNR does the response amplitude tend to
be overestimated since Gaussian noise is no longer an appro-
priate model (Gudbjartsson and Patz, 1995). Voxels with an
SNR � 2 were therefore excluded from the analysis. For the
remaining voxels, the phase uncertainty can be taken into
account by weighting their respective contribution in the
subsequent analysis. In the Appendix, we show the optimal
relative weighting of phase measurements to be the square of
the respective SNRs. Note that this result relies on statistical
independence of the data.

The second source of error is the distance of voxels perpen-
dicular to the surface. Due to the columnar organization of
retinotopy in the cortex, a small offset of the voxel from the
surface does not introduce additional errors in the phase
estimation. The influence of noise due to partial volumes of
WM or CSF in the voxel has already been taken into account
above. Given the cortical thickness of about 2 mm and voxel
size of 3 mm in some directions, voxels more than 2.5 mm
away from their respective closest node of the surface model,
cannot be expected to contain useful information, and are
discarded. Concerning the relative weighting of the remain-
ing voxels, the need to avoid signal from large draining veins
at the pial surface (macrovascular artifact) might be an issue,
depending on the acquisition sequence used. The PRESTO
sequence used here is intrinsically minimally sensitive to
these artifacts, due to fast repetition times and a correspond-
ing saturation of blood signal. We therefore do not take
additional measures to avoid macrovascular artifacts. A sec-
ond—and more problematic—issue is the assignment of data
from voxels containing partial volumes of gray matter from
either bank of a sulcus or gyrus, notably the calcarine sulcus.
These voxels potentially contain two independent signals.
While the phase estimated from the sum of the two signals is
mostly dominated by the stronger one (which presumably
originates from the closest bank), phase errors of up to �90°
with respect to this stronger signal may occur. Weighting
data as a function of distance from the surface can reduce the
impact of these voxels. However, a lot of information from
voxels that are not problematic is also suppressed, increasing
noise-induced errors in the final maps. We obtained optimal
results including all of the data within the distance threshold
mentioned above (data not shown). We therefore directly
attribute data to the node closest to the center of the respec-
tive voxel.5

Finally, the distance along the surface needs to be taken
into account when combining the projected phase data into a
smooth representation of retinotopy. Ideally, the way this is
done depends on the spatial properties of the functional re-
sponse. We do not model those properties explicitly. Instead,
we assume that the phase image contains essentially low

spatial frequencies and that smoothing with a two-dimen-
sional Gaussian filter along the surface is appropriate.
Gaussian smoothing, a simple operation on a regular grid in
Cartesian space, is less straightforward to implement for
data represented on the irregularly sampled, folded model of
the cortical surface.6 An approach based on the analogy be-
tween Gaussian smoothing and heat diffusion has been pro-
posed (Andrade et al., 2001). However, its iterative nature
makes it difficult to incorporate the optimal weighting pre-
sented above, since data are no longer statistically indepen-
dent after the first iteration. We therefore use an approach
that is simpler, both conceptually and computationally, by
calculating all mutual geodesic distances involved and con-
structing the filter explicitly. Note that this is computation-
ally tractable, because only a fraction of the surface nodes
have been assigned functional information in the preceding
step. More specifically, the weights wij of the Gaussian filter
are calculated individually for each node i and each projected
voxel j as a function of the geodesic distance dij from node i to
the node closest to voxel j:

wij � �exp� �
1

2

dij
2

� 2� , dij 	 rmax

0, dij 
 rmax

, (2)

where � is the standard deviation of the filter and rmax is a
cutoff radius introduced to limit distance calculations. There
is a trade-off in the choice of the cutoff radius between the
time needed to construct this filter and the artifacts intro-
duced due to truncation. We obtained good results with a
cutoff radius of 2.5 times the standard deviation of the filter
applied. Thus, on the rim the filter has dropped to about 4%
of its center height. Distances along the surface are calcu-
lated using the Dijkstra algorithm (Dijkstra, 1959). This
algorithm overestimates geodesic distances, which means
that the parameters of the smoothing filters reported here
overestimate the width of the filter actually applied. The
choice of the standard deviation of the filter depends on the
purpose of the data assignment. For visualization, both ec-
centricity and polar angle data are only slightly smoothed
using a filter of � � 1.5 mm.

In summary, the phase �� i assigned to node i is given by

�� i �
�j�V	 wij SNR j

2 �j

�j�V	wij SNR j
2

, (3)

where SNRj and �j are, respectively, the SNR and phase
observed at voxel j and V	 is the set of voxels whose center is
at most 2.5 mm from the closest node of the surface and
whose response exceeds an amplitude threshold of SNR � 2.

So far we have disregarded the fact that the phases deter-
mined from the voxel responses may present phase wrap-

5 Accuracy could be increased by projecting to the closest point of
the surface (not necessarily a node). However, in our case of a dense
surface mesh with typical internode distances of 0.9 mm the ex-
pected gain is small.

6 Note that conventional isotropic smoothing in three-dimensional
Cartesian space is not an option as averaging across sulci must be
avoided.
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ping. The stimuli are designed such that minimal and max-
imal eccentricities, or the lower and upper vertical meridi-
ans, are stimulated simultaneously, creating an ambiguity
between the lowest and highest response phases. Note that
the ambiguity between right and left visual hemifields is
resolved by the fact that only the contralateral hemifield is
represented in the low order visual areas of each hemisphere.
This reduces the (complex) task of unwrapping phase over
large surface areas to the simpler one of unwrapping noise
induced jumps at relatively isolated points.7 Since retinotopy
varies smoothly along the cortical surface, phase discontinui-
ties can be attributed to phase jumps. Specifically, we com-
pare the phase of each voxel k with the phase assigned from
all other voxels j 
 k to its closest surface node i:

��k � �k �
�j�V	,j
k wij SNR j

2 �j

�j�V	,j
k wij SNR j
2

. (4)

This assignment is performed using a width of � � 4.5 mm
for the Gaussian filter. A mismatch ��k of over 170° is con-
sidered indicative of phase wrapping. This method proved
robust and efficiently corrects most isolated phase wraps.
Only after unwrapping of the voxel phases are their data
assigned to the surface using Eq. 3.

Processing of the Retinotopic Maps—Delineation of the
Retinotopic Visual Areas

The delineation of the retinotopic visual areas is based on
the fact that the orientation of the visual field representation
on the cortical surface changes between adjacent areas. The
term orientation here refers to a mirror image versus non
mirror image representation. The polar visual field coordi-
nates (r, �), expressed as the observed response phases (�r,
��), establish at each point of the cortical surface a two-
dimensional coordinate system. The orientation of this coor-
dinate system with respect to a local parametrization (u, v) of
the surface is most conveniently determined from the Jaco-
bian of the mapping �r � �r (u, v), �� � �� (u, v). The
Jacobian can be interpreted as the ratio of an oriented area
measured in coordinates (�r, ��) with respect to the same
area measured in coordinates (u, v). We refer to this ratio as
the VFR:

VFR �
���r,���

��u,v�
(5)

� �u�r � ���� � ���r � �u�� , (6)

where �u�r � ��r 
 �u . . . are the phase gradients with re-
spect to the local parametrization.

The central step in the calculation of the VFR is the detec-
tion of the phase gradients. Gradient detection tends to be

very sensitive to high-frequency noise in the data. We there-
fore assigned data to the surface using large Gaussian filters
with standard deviations of 3.5 and 7 mm to the polar angle
and eccentricity phases, respectively. To effectively reduce
noise, the largest filter compatible with the spatial frequency
spectrum of the signal should be applied. Retinotopy with
respect to eccentricity is much smoother than its polar angle
counterpart, meaning that the signal in the eccentricity
phase maps contains essentially very low spatial frequency
components. Therefore, stronger smoothing can be applied
without significantly deteriorating the retinotopic eccentric-
ity map.

The calculation of the phase gradients requires a local
two-dimensional coordinate system (a parametrization of the
surface) with respect to which the gradients can be calcu-
lated. The parametrization used for the gradient calculations
should correctly reflect local distances and angles in the
surface. A global parametrization of the surface can be pro-
vided by the two-dimensional Cartesian coordinates of the
nodes in a flattened representation of the cortical surface.
However, depending on the size of the flattened surface and
the accuracy desired, the distortions induced in the flattening
process may make this parametrization unsuitable for gra-
dient calculation. Rather, we chose to locally map each node
together with its first-order neighbors to a plane. The central
node is placed at the origin. Neighbors are placed preserving
their distance to the central node as well as the proportions
of the angles at the central node (Welch and Witkin, 1994;
Andrade et al., 2001). If the Jacobian of the mapping is
constrained to be positive definite, this mapping is unique
except for rotations in the plane. Due to this rotational de-
gree of freedom, gradients calculated with respect to this
mapping are not comparable across nodes. In the case of
calculation of the visual field sign, this is not a limitation,
since the VFR is calculated based on local gradients only
and is invariant under rotation. Therefore, we did not
constrain the angular position of nodes in the plane. Given
this local mapping, the response phase can be fitted locally
with a first-order function of the node coordinates. The
coefficients of the first-order terms in the fit are the phase
gradients.

Given these gradients, the calculation of the VFR accord-
ing to Eq. 6 is straightforward.

From the VFR map, candidates for the visual areas are
detected as contiguous regions exceeding a certain threshold
on the absolute VFR ( VFR � 8 (deg/mm)2) and on the SNR
of the smoothed eccentricity and polar angle phase maps
(SNR � 15). These candidates are ordered by size, based on
the cumulative response power observed during all func-
tional scans within each of the delineated regions. The low
order visual areas are then detected among the candidates,
starting with V1. V1 is selected as the largest candidate with
negative VFR. The two largest candidates with positive VFR
adjacent to V1 are then labeled V2d and V2v. Proceeding in
this manner, areas up to V3A and V4 are labeled automati-
cally. In a last step, the limits between those areas are drawn
automatically as contour lines of zero VFR that border two
adjacent visual areas. The delineation of the visual areas

7 This would not be the case if a higher number of wedges or rings
had been used, complicating the data analysis in those cases.
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from the VFR map is entirely performed in the two-dimen-
sional Cartesian space of the flattened surface representa-
tion. Distortions induced by the unfolding process have little
or no bearing on these processing steps. The procedure is
automatic and for most data sets it produces correct results
with the standard set of parameters given here.

RESULTS

In order to assess the reproducibility of the methods de-
scribed, we independently acquired two complete data sets,
each comprising the high-resolution structural and the func-
tional retinotopic mapping data, for each of three healthy
adult human volunteers (M.D., J.W., C.D.M.). Subjects gave
prior informed consent to participate in the study. Data anal-
ysis was performed according to the procedures detailed
above. In the development of those methods, automation has
been an important goal. Some manual interaction still re-
mains, essentially concerning the correction of the segmen-
tation and the adjustment of some processing parameters. To
include the effect of operator dependence in the assessment
of the reproducibility, data were analyzed independently by
two researchers (J.W. and M.D.). To distinguish between the
two data sets for each subject, we call the three exams pro-
cessed by J.W. “reference” exams and the remaining three
processed by M.D. “control” exams.

Segmentation of Structural Data

The segmentation and postprocessing of the high-resolu-
tion structural images took about 6 min on a SPARC Ultra10
workstation and produced accurate results for most of the
volume. However, some errors requiring manual correction
remained. Editing systematically concerned the WM medi-
ally to the posterior horns of the lateral ventricles. Remain-
ing errors were mostly localized near the calcarine sulcus,
where the contrast-to-noise ratio between GM and WM is
low. Topological defects were rapidly detected by tentatively
constructing and unfolding a model of the GM/WM interface.
Anatomical errors were localized by comparing original and
segmented images side by side. The entire process of localiz-
ing and correcting all errors required about 3 h per hemi-
sphere. Typically, from 1 to 3% of the voxels labeled GM or
WM in the region to be unfolded were edited.

The portions of the 12 hemispheres that were selected for
unfolding had sizes ranging from 89 to 126 cm2, with a
median size of 109 cm2 and an average node density of 157
nodes/cm2. Construction and flattening of the surface models
took an average of 130 s per hemisphere on a SPARC Ultra10
workstation. In order to test if flattening was homeomorphic,
we calculated the Jacobian of the projection to the plane. The
fraction of the surface exhibiting a negative definite Jacobian
ranged from 0.4 to 5.4‰, with a median of 1.1‰.

The two cortical surface models reconstructed for each
hemisphere were very similar, albeit not identical. The two
flat maps of visual area boundaries were therefore not di-
rectly comparable. Instead, the results for both exams were

represented on the flat maps obtained from the reference
exams.8

Stimuli, Acquisition, and 3D Analysis of Functional Data

The results of the three-dimensional analysis for subject
M.D. (reference data set) are depicted in Figs. 1m and 1n for
polar angle and eccentricity data, respectively. The stimuli
evoked robust activation throughout the low order visual
areas. The superposition of functional and structural data
was checked visually and found to be good. The sensitivity of
the acquisition sequence proved to be sufficient, the SNR of
the spectra obtained allowing for a phase estimation with a
mean standard deviation of about 12°. The sensitivity was
higher dorsally than ventrally, presumably due to the sensi-
tivity profile of the single loop surface coil used.

Assignment of Functional Data to the Surface Model

Figure 6 shows an example of the distribution of response
power in one polar angle scan (subject M.D., reference data
set) as a function of the distance from the left hemisphere
surface model. Only voxels exceeding an SNR threshold of 2
were considered. At the distance threshold of 2.5 mm used
here, the voxels that were not projected represented about
25% of the total response power.

The spatial distribution of the surface nodes receiving in-
formation can be appreciated from the flat SNR map imme-
diately after projection of the functional data, prior to
smoothing. A representative example of this distribution is
shown in Fig. 7, depicting the SNR of the combined func-
tional information from both polar angle scans of subject
M.D. (reference data set, left hemisphere) after projection to
the surface. For all of the surfaces processed, the information
projected was sufficiently dense to provide for a good sam-
pling of retinotopy.

We did not find evidence of erroneous assignment of data
between the opposite banks of the calcarine sulcus. The final
results of the assignment of these data are presented in
Fig. 8.

Delineation of the Retinotopic Visual Areas

The default set of parameters allowed for a correct auto-
matic identification of six retinotopic visual areas (V1, V2d/v,
V3, VP, V3A, V4v) from the VFR map in 7 of the 12 hemi-
spheres processed. “Correctness” was assessed visually, com-
paring the delineated areas to the VFR map. In the remain-
ing 5 hemispheres V4v or V3A was not identified correctly
with the standard set of parameters, requiring manual ad-
aptation of the VFR or SNR thresholds. In the 2 left hemi-
spheres of subject J.W., V3A could not be delineated by our
algorithm. The border between V3 and V3A was therefore
drawn manually, based on the VFR map. It was projected in
the same fashion as the other visual area borders.

8 This choice of which one of the surfaces served as reference had
little effect on the results, since the two surfaces were close to each
other (the distance was smaller than 1 mm for over 90% of the total
surface area).

1678 WARNKING ET AL.



Only the borders between the delineated visual areas are
shown. SNR was not sufficient to delineate the anterior lim-
its of V3A and V4v reproducibly. The decreased sensitivity of
the single loop surface coil and the lower retinotopic special-
ization of neurons in these regions presumably account for
the low SNR observed.

Reproducibility

In order to assess the reproducibility of the entire process-
ing chain, the visual area borders obtained in the control
exams were projected to the reference surfaces. First, the
data from the two exams were brought into a common refer-
ence frame by coregistering the two anatomical volumes us-
ing SPM (Ashburner and Friston, 1997). Next, the points
defining the piecewise linear area borders on the control
surfaces were projected in three dimensions from their orig-
inal positions to the closest point on the reference surface.
Finally, local linear transformations between the three-di-
mensional and flattened representations of the reference sur-
faces were calculated for each triangle and applied to the
projected points. The projected visual area borders were
displayed on the VFR map obtained from the reference
exam (Fig. 9). The limits delineated for the reference surfaces
are not shown for clarity of the display, but their position
can be easily inferred from the VFR map. The projected
area borders closely follow the VFR pattern of the reference
surface.

At some places, “jumps” appear in the projected visual area
limits, although displayed on their original surface they are
continuous (see, for example, the limits between V1 and V2v
and between V2v and VP for subject J.W., right hemisphere).
These jumps are artifacts generated by the projection from
the control surface to the reference surface. A more sophis-
ticated procedure that continuously maps the two surfaces to
each other would allow for an uninterrupted (and more ac-
curate) visualization of the projected visual area border.

DISCUSSION AND CONCLUSION

The methods described allow for a delineation of visual
areas with an excellent reproducibility. Note that systematic
errors that might be inherent in the method are not ad-
dressed here. To assess them, an independent “gold stan-
dard” method, to precisely identify the borders between vi-
sual areas, would be necessary. However, the delineation of
visual areas is usually not a goal in itself, but serves to help
interpret other cognitive or sensory functional mapping re-
sults. As long as the positioning of those results relative to
the retinotopic mapping data is accurate, their interpretation
will be accurate too. We therefore hold that the variability of
the maps observed in this study is apt to represent the size of
potential errors in the interpretation of functional data, pro-
vided the latter is acquired using a MRI sequence with little
distortion with respect to the retinotopic mapping.

The manual correction of segmentation errors is by far the
most operator-dependent step in the analysis of retinotopic
mapping data presented here. As such, it potentially adds
variability to the visual area maps beyond the mere variabil-

ity of the raw data. However, given the good agreement
between the models obtained independently by different op-
erators, the influence on the results should be small. We are
currently working to improve our segmentation procedure
(Richard et al., 2002) and hope to further increase the repro-
ducibility of the surface models obtained in the near future.

The PRESTO acquisition sequence reduces the distortions
present in the functional data with respect to an EPI se-
quence, provides for a good alignment of the data with re-
spect to the surface models and is expected not to be sensitive
to macrovascular artifacts. These advantages come at the
cost of a slight loss of SNR in the acquired images, with
respect to a single shot EPI acquisition. The acquisition time
of 1.28 s for each volume is small with respect to the period of
stimulation and the resulting variation of the image contrast
during this time does not introduce significant artifacts or
phase uncertainties.

The stimuli presented provided robust retinotopic activa-
tion and led to high-quality retinotopic maps. There might
still be room for improvement, however. As reasoned under
Methods, the uncertainty of the retinotopic maps decreases
linearly with increasing number of rings or wedges in the
stimulus. This is true until the spatial low-pass characteris-
tics of the finite size receptive fields degrade the observed
response. Polar angle stimuli with more than two wedges
might therefore be desirable. In that case, a priori informa-
tion about retinotopy will likely not suffice to resolve the
ambiguity between the wedges. Rather, stimuli without a
simple periodicity, and consequently analysis at multiple
frequencies, might prove to be a solution.

The assignment of functional data to the surface model
recovered most of the information from the three-dimen-
sional analysis while remaining robust with respect to small
voluntarily induced misalignments of structural and func-
tional data (data not shown). Using a more realistic model of
the cortex, taking its thickness into account, might allow to
identify voxels that are prone to partial volume effects in-
volving signal from opposite banks of sulci or gyri, notably
the calcarine sulcus. These voxels could then be weighted
appropriately, which might further improve the assignment.
Note, however, that discarding data does not address the
issue fundamentally. Rather, the functional response of those
voxels would need to be described as a mix of two reference
functions in a framework modeling the signal on both sides of
the sulcus or gyrus.

In summary, we have given a step-by-step description and
discussion of the methods involved in fMRI retinotopic map-
ping, leading to a map of the borders between retinotopic
visual areas of the examined subject. Several issues that are
specific to the processing of functional retinotopic mapping
data have been discussed in detail. The advantage of using
multiple elements in stimuli for retinotopic mapping has
been presented. The polar angle stimuli described reduce the
noise-induced uncertainty of the retinotopic maps by a factor
of 2 with respect to the stimuli generally used. We proposed
a method of data assignment that optimally takes into ac-
count the influence of limited SNR on the response phase
measured. The methods described lead to a highly reproduc-
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ible delineation of the retinotopic visual areas as assessed by
a reproducibility study performed on three subjects.

APPENDIX

Uncertainty of the Phase Measurement

At each voxel j, a real discrete-time signal f�x�j,tk� is ob-
served at N instances tk. We model the observed signal as
the sum of zero-mean white Gaussian noise and a har-
monic response at the known stimulation frequency �0. The
phase and amplitude of the response are calculated from
the real time courses’ complex Fourier component F�0

:

F�0
�x� j� � �

k�1

N

f�x� j,tk�exp�i2��0 �tk � tH�� , (7)

where tH is the expected hemodynamic delay. Due to the
linearity of the Fourier transform, F�0

� x� j� is the sum of a
complex signal with amplitude Ãj, phase �̃ j, and a zero-
mean Gaussian noise, whose real and imaginary parts are
independent random variables entirely characterized by
their standard deviations of � imag, j � �real, j, noted hereafter
� j. Noise in the raw data is assumed to be white at fre-
quencies above �0. The noise can then be measured at those
frequencies assumed to contain no signal. We define the
local signal-to-noise ratio SNR j as

SNRj �
Ãj

�j
. (8)

The actually measured phase � and amplitude A of the
response at the stimulation frequency �0 are

�j � arg�F�0
�x� j�� (9)

Aj � �F�0
�x� j�� . (10)

The noise of the measured phase and amplitude is Gauss-
ian only in the limit of high SNRs, because Eqs. (9) and (10)
are nonlinear. However, at moderate signal to noise ratios of
SNR � 2 the mean values and variances of measured ampli-
tude and phase can be expressed in reasonably good approx-
imation as (Gudbjartsson and Patz, 1995)9

��� � �̃ (11)

� �
2 �

� 2

Ã 2
� SNR �2 (12)

�A� � �Ã 2 � � 2 (13)

� A
2 � � 2 , (14)

where � � denotes the first moment of the distribution of the
measured values. The measured amplitude is biased by the
noise, and a corrected amplitude A	 � � A 2 � � 2 could be
calculated, which is essentially unbiased in terms of its
mean value (Gudbjartsson and Patz, 1995). However for a
SNR � 2, its mean square error e2

A	 � �(A	 � Ã)2� is higher
than the one of the uncorrected amplitude. We therefore
chose to base our SNR measurement on the uncorrected
amplitude. The measured phase is unbiased, assuming
that phase wrapping due to noise can be corrected per-
fectly.

The response observed is in the following characterized by
the measured phase � and the measured SNR of the re-
sponse, SNR � A/� � ��

�1, representing the inverse of the
phase measurement error.

Averaging Signals with Nonstationary Noise

For N independent measurements (SNRj, �j) of the re-
sponse phase at voxels j pertaining to the same point of the
cortical surface, the average phase can be determined as the
weighted sum of the individual phases. The optimal weights
depend on the individual uncertainties of the phase measure-
ments. Consider the general weighted average phase, with
weights �j:

�avg �
�j�1

N �j�j

� j�1
N �j

. (15)

Since for moderate and high SNRs, the phase noise of the
individual �j is approximately Gaussian, and since the indi-
vidual measures are assumed to be statistically independent,
the uncertainty �avg of this average can be calculated accord-
ing to Gauss’s equation for propagation of random error from
the individual uncertainties �j (Gauss, 1863):

� avg
2 � �

j�1

N ���avg

��j
�j� 2

(16)

�
� j�1

N ��j��j
� 2

�� j�1
N �j�

2
. (17)

This uncertainty depends on the weights chosen. There is
an optimal choice of weights, which is found to be

�j � � j
�2 � SNR j

2 , (18)

leading to an optimal combined phase

�avg �
�j�1

N SNR j
2�j

� j�1
N SNR j

2
(19)

9 The explicit dependence on x� j has been dropped in these and
subsequent equations to increase readability, although all variables
vary over the imaged volume.
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with minimal uncertainty of

�avg � ��
j�1

N

SNR j
2� �1/2 . (20)

Note that adding any information with positive SNR im-
proves the quality of the phase estimation. If SNRs are esti-
mated accurately, and phase noise is Gaussian, no data
should be excluded from the analysis. Conversely, data not
fulfilling these hypotheses might degrade the overall phase
estimation.

The average phase �avg can be regarded as a new phase
measurement with a signal to noise ratio SNRavg of

SNR avg
2 � �

j�1

N

SNR j
2 . (21)

It is useful to represent the response phases and SNRs in
terms of the noise normalized signal power P � SNR2 and
weighted phase � � P�. Averaging independent phase mea-
surements with optimal weights then reduces to summing up
the individual signal powers and weighted phases:

�avg � �
j�1

N

�j (22)

Pavg � �
j�1

N

Pj . (23)

Two caveats are in place here: First, individual measure-
ments with very low SNR (SNR � 2) should be excluded from
the data processing. Due to noise, the amplitude, and there-
fore SNR, is systematically overestimated, especially at low
SNR. Noisy measurements therefore contribute more
strongly to the weighted phase than they should, bearing the
risk of degrading the SNR of the averaged value, rather than
adding information. Second, in this calculation we assume
the (Pj, �j) to be measurements of the same observable. In
the context of retinotopic mapping this is true if they pertain
to points on the cortical surface whose mutual distance is
small with respect to the local smoothness of retinotopy.

Smoothing Phase Data

The reasoning exposed above for averaging phase informa-
tion can be extended to the convolution of phase information
along the surface with a smoothing kernel. We determine a
set of voxels V	 to be included in the analysis depending on
their SNR and distance from the surface. A general smooth-
ing kernel can then be defined by a set of mutual weights wij

as a function of the geodesic distance from each node i to the
node closest to the voxels j � V	. Smoothing the response
phase �, taking into account the signal power at each point,
can then be written as

�� i �
�j�V	 wijPj�j

�j�V	 wijPj

. (24)

�� i represents the smoothed phase of voxel i. Contrary to the
previous deduction, we do not claim here that this filter is
optimal (we believe it is close to optimal if the wij match the
spatial properties of the phase signal). But its choice can be
motivated by a number of observations: in the case of the
constant filter (w � 1) we find the previous result of the
optimal average of the phases; in the case of constant re-
sponse power (P � p) we apply the classical smoothing filter
defined solely by the weights wij; it can be shown that the
noise propagated by the filter (24) is never stronger than that
propagated by the classical filter alone; points containing no
data (Pj � 0) do not influence the smoothed phase. The result
of the filtering procedure is undefined if no data are present
at all (P � 0).

Again, the uncertainty of the smoothed phase �� can be
calculated using Gauss’s equation for propagation of random
error. Care must be taken, however, in the interpretation of
the errors assigned to the individual terms contributing to
the overall error. Smoothing combines data from mutually
distant points of the surface. The individual phase measures
involved do not pertain to the same observable. The error
attributed to the phase measurement �j must then be inter-
preted as the error �ij made when representing the phase at
point i by the measurement at voxel j:

�� i
2 � �

j�V	
���� i

��j
�ij� 2

(25)

�
�j�V	 �wijPj�ij�

2

��j�V	wijPj�
2

. (26)

Rigorous analytic calculation of this error would require an
explicit model of the data in a Bayesian framework, since the
�ij it depends on the (classically unknown) spatial properties
of the actual signal present. Instead we assume that the wij

reflect the spatial properties of the signal such that the error
we make representing the phase at point i by the measure-
ment at voxel j is �ij � �wijPj�

�1/ 2.10 In that case we can write
this filter in analogy to (22) and (23) as

�� i � �
j�V	

wij�j (27)

P� i � �
j�V	

wijPj (28)

�� i �
�� i

P� i

. (29)

10 Note that this implies a normalization of the smoothing weights
such that wii � 1.
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The kernel used in our implementation is normalized to
unity at its center. The value of the filtered phase (29) is
independent of this scaling, but the filtered power of the
response (28) is not. The normalization of the smoothing
kernel dictates the interpretation of the obtained power
maps. The power map smoothed with the present kernel is
the inverse of the actual local phase variance after smoothing
(provided the kernel is adapted to the spatial properties of
the phase signal). Smoothing with a kernel whose integral is
normalized to unity would produce a map interpolating the
phase errors present locally in the raw data.
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