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Distortion in EPI Images
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Abstract—Magnetic resonance imaging using the echo planar
imaging (EPI) technique is particularly sensitive to main( 0) field
inhomogeneities. The primary effect is geometrical distortion in
the phase encoding direction. In this paper, we present a method
based on the conjugate gradient algorithm to correct for this geo-
metrical distortion, by solving the EPI imaging equation. Two ver-
sions are presented: one that attempts to solve the full four-dimen-
sional (4-D) imaging equation, and one that independently solves
for each profile along the blip encoding direction. Results are pre-
sented for both phantom andin vivo brain EPI images and com-
pared with other proposed correction methods.

Index Terms—Conjugate gradient method, distortion,
echo-planar imaging (EPI), image processing, magnetic res-
onance imaging (MRI), reconstruction.

I. INTRODUCTION

A N IMPORTANT source of degradation of echo planar
images (EPI) is the phase error introduced by the main
field inhomogeneity along the EPI trajectory. Although

this phase error is predictable for a point-object (it increases
linearly along the trajectory), it is nonlinear when the signal
comes from different points of the object with different local

-values (Fig. 1). The most adverse effect of these phase errors
is geometrical distortion. These distortions can be troublesome
in various applications, including surgical guidance and corre-
lation of functional magnetic resonance imaging (fMRI) data
with anatomical information from different sources.

Several methods have been suggested to address the distor-
tion problem in EPI images. Some of these correct distortion
directly in image space using a -field map [1] or two acqui-
sitions having different polarity of the phase encoding gradient
[2]. Other methods apply a phase correction to the-space data
before performing normal two-dimensional (2-D) fast Fourier
transform (FFT) reconstruction [3], [4]. All of these methods
approach the EPI distortion problem on a column-by-column
basis, by independent one-dimensional (1-D) corrections of the
EPI image along the phase encoding direction. This 1-D pro-
cessing approach is based on the assumption, which is valid in
a wide range of conditions, that the EPI point spread function
(PSF) is 1-D.
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The approach proposed in this paper consists of using the the-
oretical relationship between the distorted EPI image obtained
from 2-D FFT reconstruction and the “true” undistorted image
to set up a system of linear equations that can be solved [5]. This
method can be applied either on a column-by-column basis, as
proposed in [6], or in a full 2-D solution. Furthermore, the gen-
erality of the inverse problem approach allows us to apply it to
non-EPI restoration problems as well, as shown by Manet al.
for projection reconstructed MR data [7].

II. THEORY

A. EPI Image Formation

The single-shot EPI sequence [8] acquires the entire-space
data matrix in one excitation. In the blipped EPI method [9], an
oscillating readout gradient is applied, together with the short
blipped phase encoding gradient [Fig. 2(a)]. If data are sampled
only during the constant portion of the readout gradient, the re-
sulting -space sampling is uniform. When data are acquired
during the ramp-up or ramp-down period of the readout gra-
dient, the -space data resulting from a uniform temporal sam-
pling rate are nonuniform. In order to obtain uniformly spaced
points in -space, one can use a nonuniform sampling rate [10]
or perform interpolation [11] of the nonuniform data before re-
construction by inverse FFT. The EPI sequence discussed in this
paper uses the first method (nonuniform sampling rate) so that
no interpolation is required. The-space trajectory is as shown
in Fig. 2(b).

B. EPI Imaging Equation

In the presence of -field inhomogeneity, the discrete data
collected during a 2-D MRI acquisition can be expressed as a
linear transformation between the ideal image
and the measured signal [12]

(1)

with

(2)

where
and vertical and horizontal spatial variables;
and vertical and horizontal image matrix size;

spatially variant -field inhomogeneity;
time between the sampling of the-space point

and the RF excitation.
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Fig. 1. The EPI image process.

(a)

(b)

Fig. 2. (a) Blipped EPI sequence and (b)K-space trajectory.

This last parameter depends on the-space trajectory that we
assume to be perfect (i.e, the gradient timing and spatial linearity
are assumed to be ideal).

Equation (1) can be transformed into a relation between the
FT reconstructed image and the ideal image by
taking the 2-D FFT of with respect to and on both
sides of (1) for each value of and . Mathematically

(3)

where 2-D IFFT ; i.e.,

(4)

(5)

We note that is the 2-D PSF associated with
voxel . Depending on the particular form of the PSF,
some simplifications to this equation may be possible. Using
integral equation terminology, we refer to as the
kernelof the EPI imaging equation.

The main rationale for expressing the equation in the form
(3) is that the kernel of this equation has a sparse structure, as
opposed to the kernel of (1). We will show how this four-di-
mensional (4-D) equation can be solved directly using sparse
matrices and the conjugate gradient method, leading to a gen-
eral 2-D correction approach. Also, the particular form of the
EPI kernel will lead to an important simplification of this equa-
tion, allowing the 2-D problem to be decomposed into a series
of 1-D problems.
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(a) (b) (c) (d)

Fig. 3. EPI PSF corresponding toB -fields offsets of (a) 0 Hz, (b) 50 Hz, (c)
100 Hz, and (d) 200 Hz. The EPI parameters are matrix size= 128 � 128,
TE = 65 ms, andT = 123 ms.

C. EPI Point Spread Function (PSF)

It is interesting to look at the effect on a point-object of the
phase errors in the EPI imaging process. Consider a point-object

. From (3)

PSF (6)

(7)

(8)

Fig. 3 illustrates the EPI PSF for several different frequency
offset values. Note that the PSF extends in both dimensions and
four distinct effects can be observed, as follows

• geometrical distortion, a consequence of the shift of the
main peak in the phase encoding direction, which is pro-
portional to the frequency offset;

• blurring in the phase encoding direction, demonstrated by
the spread of the main peak;

• ghosting in the phase encoding direction, indicated by the
presence of secondary peaks, which is especially impor-
tant for larger frequency offsets;

• blurring of the ghosts, mainly in the frequency encoding
direction.

We note that ghosting in EPI may have other causes that
can be more important than the shape of the PSF. One of these
factors is the misalignment of the analog-to-digital conversion
(ADC) window with the time-varying gradients [13]. A mis-
alignment of even a fraction of the intersample spacing can
cause significant ghosting in the image.

Although the PSF is 2-D, it can be approximated by a one-
dimensional function for small field offsets. This fact will be
exploited to justify 1-D processing.

D. Matrix Formulation

The 4-D tensor equation (3) can be reformulated in terms of
a matrix equation for both the case of 2-D and 1-D reconstruc-
tions.

1) 2-D Correction: If and are the vectors
formed by rescanning and columnwise, i.e,

(9)

(10)

and is the matrix defined by

(11)

Fig. 4. Four-dimensional tensor equation in matrix form.

(3) takes the form of the linear system

(12)

This is illustrated in Fig. 4.
In the absence of field inhomogeneity, the matrixis the

identity matrix. It is easy to see that with a small amount of in-
homogeneity, will be close to the identity matrix and conse-
quently sparse. This can be better appreciated by noting that the

th column of is the column rescanning [14] of the
2-D EPI PSF corresponding to the pixel , which contains
only a few significant pixels when the field offset is small.

We also note that the geometrical distortion is reflected by a
vertical shift of the diagonal elements of thematrix (Fig. 5).

2) 1-D Correction: The particular form of the EPI PSF sug-
gests that in the case in which field offsets are relatively small,
1-D processing can be performed on each column of an image.
This approximation has many advantages. First, the solution of
the large 4-D linear system is replaced by a set of smaller and
more manageable 2-D linear systems.

The 4-D tensor equation (1) can be simplified by making the
approximation that depends only on . Equation (1) then
becomes

(13)
Performing an inverse FFT with respect to, we obtain

(14)
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Fig. 5. Sparsity structure of a subregion of the kernel for small- (left) and large-field (right) inhomogeneity.

which can be expressed in matrix form as

(15)

where and are the th column of and , respec-
tively, and is the matrix defined by

(16)

This approximation effectively decouples the linear
system into linear systems of size .

As in the 4-D case, (15) may be expressed in terms of the
distorted image by performing a 1-D inverse FFT with respect
to on both sides of the equation, leading to

(17)

where , and is the discrete Fourier transform
matrix . The represents the Hermitian
transposition (complex conjugation plus transposition).

III. M ETHODS

A. Conjugate Phase Reconstruction

The conjugate phase reconstruction method attempts to cor-
rect the EPI image by undoing the phase errors for each point of
the image using the information provided by the-field map.
Using the formalism of the previous section, this is equivalent
in 2-D to

(18)

and in 1-D to

(19)

B. Weisskoff Method

This method [3] creates synthetic-space data from the dis-
torted image as follows:

(20)

with

(21)

which is Fourier transformed to form the corrected image,

(22)

Although this method may seem similar to the conjugate phase
method, they differ as shown by writing (19) as

(23)

The difference appears in the fact that the conjugate phase
method associates the undistorted-map to the undistorted
image, whereas Weisskoff’s method associates the undistorted

-map to the distorted EPI image.

C. Conjugate Gradient Method

The conjugate gradient (CG) method is an iterative technique
based on finding the minimum of the quadratic form

(24)

where and are arbitrary vectors [15]. When the matrixis
symmetric and positive-definite, the quadratic form is a mul-
tidimensional parabola with a minimum at .
Thus, minimizing is equivalent to solving the linear system

.
The main strength of the CG method is its efficiency in

dealing with large sparse systems of linear equations. This is
because the matrix is only used through its multiplication
with vectors, and this is a fast operation for sparse matrices.
This is a particularly important consideration for solving the
4-D tensor form of the imaging equation. In the case in which

, the matrix has 4096 4096 elements, which
would require 256 Mb of memory to allow such a matrix to be
stored in double precision. For , the storage
requirement would be 16 times larger, or 4 Gb. Another concern
is the fact that the inverse (or pseudoinverse) ofmay not be
sparse at all, even when is sparse, and this rules out direct
methods of solution.

When the linear system is not symmetric, a solution can still
be found with the CG method by solving the associatednormal
equations[16]

(25)
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(a) (b)

Fig. 6. (a) Analytic phantom and (b)B -field map used for simulations.
This map was scaled in the simulations to provide various degrees of field
inhomogeneity.

In the case in which the system is singular, CG can give a
least-squares solution. Hestenes [17] derives a relation between
the CG and the pseudoinverse of a matrix.

Attempting to solve the normal equations is not in general the
best way to proceed because the condition number of the system
equation ( ) is the square of that of . However, other it-
erative methods for solving nonsymmetric systems of equations
(e.g., the biconjugate gradient method) generally fail with com-
plex systems. Although it is possible to express the normal equa-
tions in terms of real numbers (by splitting the real and imagi-
nary parts), this involves a factor of 4 overhead in storage space
and an additional factor of 2 penalty in computational effort
[16]. This is hardly acceptable for such large linear systems of
equation.

IV. RESULTS

We have performed simulations to evaluate the relative
performance of the various distortion correction algorithm. We
refer to these methods as CP1D (conjugate phase in 1-D), CP2D
(conjugate phase in 2-D), CG1D (conjugate gradient in 1-D),
CG2D (conjugate gradient in 2-D), and WEISS (Weisskoff
method). The elements studied are the effect of the amplitude
of the -field offset, the effect of noise in EPI images, and
the effect of noise in the -map. For CG2D, the number of
elements retained in the sparse kernel was200 000, which
corresponds to 1.2% of the total number of elements (64) in
the full kernel. For CG1D and CP1D, the full 1-D kernel was
used. For both CG1D and CG2D, the number of conjugate
gradient iterations performed was three.

For these simulations, a 64 64 analytic phantom was cre-
ated by sampling the exact Fourier components of an analytic
object. A random, low spatial frequency field map was also cre-
ated (Fig. 6) with a field offset range between1 and 1 Hz.
Scaling of this basic field map was used to provide different
levels of field inhomogeneity.

Simulated EPI images were computed from the analytic
phantom from (1) using a 64 64 -space trajectory (TE
35 ms, T ms). The effective bandwidth in the phase
encoding direction is 16 Hz (1/T ), which means that a

-field offset of 16 Hz would result in a spatial shift of one
pixel in the phase encoding direction.

A. Effect of the Magnitude of the -Field Inhomogeneity

EPI images were simulated with five different levels of field
inhomogeneity: 16, 32, 48, 64, and 80 Hz. Recon-

Fig. 7. Simulations on the effect of the amplitude of theB -field offset on the
distortion correction.

TABLE I
RMS DIFFERENCESBETWEEN THE SIMULATED EPI FOR DIFFERENT

AMPLITUDES OFB -FIELD OFFSET IN THEFIELD MAP, AND THE CORRECTED

EPI FOR THEVARIOUS METHODS

struction of these simulated EPI images was performed with
the five methods. Results are shown in Fig. 7. Rms differences
between the reconstructions and the analytic phantom are dis-
played in Table I.

Weisskoff’s method works better than does conjugate phase
reconstruction for small field offsets (16 and 32 Hz), mainly be-
cause of a better intensity inhomogeneity correction. However,
geometrical distortion is not fully corrected for large field off-
sets (48–80 Hz).

Both the conjugate phase and CG methods correct geomet-
rical distortions adequately. The main difference between the
two is intensity variations that the conjugate phase methods do
not correct.

The real benefit of the CG methods appears at larger-field
offsets (48–80 Hz), where both intensity inhomogeneity and ge-
ometrical distortions are corrected.

In both cases of conjugate phase and CG methods, no signif-
icant difference can be observed between the 1-D and the 2-D
versions. This can be explained by the fact that the 1-D approx-
imation of the EPI PSF is valid for all ranges of field offset used
in the simulation.

At large field offsets ( 64 Hz), all methods fail to reconstruct
adequately in regions where a large local-field gradient is
present. Nevertheless, the CG2D method provides a better re-
construction (based on rms deviation from the original) than
do the other methods. Outside of these regions, the CG recon-
struction again performs better than do the other methods. One
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Fig. 8. Derivative of the�80-HzB -map in the phase encoding direction.
The white circles indicate regions with the largest negativeB -inhomogeneity
gradient in the phase encoding direction.

Fig. 9. Difference between the corrected images of Fig. 7 and the undistorted
analysitc phantom image.

possible reason for the failure of the reconstruction in these re-
gions of high local -field gradient is that the kernel may be-
come singular or badly ill-conditioned. This point can be better
appreciated by looking at the -field derivative in the phase
encoding direction for the 80-Hz case (Fig. 8). The regions
where reconstruction fails correspond exactly to the most neg-
ative -derivatives. Note that negative derivatives are associ-
ated with compression in the distorted image, whereas positive
derivatives are associated with stretching. It also appears that
positive gradients, as opposed to negative gradients, do not af-
fect the ability of CG to reconstruct perfectly.

The benefit of the 2-D processing over the 1-D processing
may be better appreciated by looking at the difference images
of Fig. 9. The CG2D method is the only one that can reduce
significantly the -inhomogeneity–induced ghosting artifacts.

B. Effect of Noise in EPI Images

In order to evaluate noise effects on the various correction
methods, simulations were performed using the random field
map with a frequency range of48 Hz. All corrections methods
were applied with the simulated EPI image on which different
levels of complex white Gaussian noise was added.

TABLE II
MEAN SNR WITH STANDARD ERROR OVER100 EXPERIMENTS FOR

THE VARIOUS METHODS AS A FUNCTION OF THE SNR OF THE

SIMULATED EPI IMAGE

Fig. 10. Simulations on the effect of noise in of theB -map on the distortion
correction.

The SNR was computed as the mean value of the corrected
noiseless images, divided by the standard deviation of the image
noise, estimated by the Rayleigh distribution corrected standard
deviation of the background noise sampled in two rectangular
regions on the side of each image

SNR
mean(signal)
std(signal)

mean(signal)
std(background)

(26)

Results, shown in Table II, demonstrate little differences in the
SNR obtained with the different methods.

C. Effect of Noise in -Field Map

A simulated EPI image matrix was computed with a-in-
homogeneity range of 48 Hz. Reconstructions were then per-
formed with different levels of Gaussian noise added to the field
map (Fig. 10). The rms difference between the reconstructed im-
ages with the noisy -map and the reconstructed images with
the ideal -map was computed and is shown in Table III.

D. Results on Real EPI Images

The correction methods were applied to real blipped EPI im-
ages of a phantom and of a volunteer’s head (matrix size
64 64, TE 35 ms, T ms) on a Siemens Vision
1.5-T scanner (Siemens Medical Systems, Erlangen, Germany).
Nonuniform sampling of the signal was performed to obtain
equally spaced points in-space. This nonuniform sampling has
been taken into consideration in the calculation of the kernel in
(1). No phase correction was applied to the EPI raw data.

A normal spin echo sequence (matrix size 64 64,
TE1/TE2/TR ms), interleaved with a second
having the echo shifted by ms, was used to
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TABLE III
RMS DIFFERENCESBETWEEN THEIMAGE RECONSTRUCTED WITHNOISY B MAP AND THE IMAGE

RECONSTRUCTED FROMNOISELESSB -MAP

Fig. 11. B -field mapping sequence.

generate the -map (Fig. 11). The -field map is obtained
by subtracting the phases of the two acquisition. With this value
of , water and fat protons, although precessing at different
rates, conserve the same relative phase at TE and TE,
which makes the phase difference observed between the two
acquisitions dependent on static field inhomogeneity only and
not on chemical shift [18]. We found that, for this example,
phase unwrapping was not required. We note that, although
the acquired field map is subject to distortion because of field
inhomogeneity, the magnitude of these distortions is negligible
compared with the distortions affecting the EPI image.

For the phantom acquisition, the field map was fitted with 2-D
splines to remove noise. The -map of the brain was filtered
with a Gaussian kernel of full-width at half-maximum (FWHM)

3 pixels.
The phantom reconstructions (Fig. 12) shows that the best

distortion and intensity inhomogeneity correction are provided
by CG1D and CG2D. The Weisskoff’s method gives a good ho-
mogeneity correction, but the distortion correction is not com-
plete. The CP1 and CP2 reconstructions correct for geometrical
distortions but not for intensity inhomogeneity. As in the simu-
lations, little difference can be noticed between the 1-D and the
2-D versions of CG and conjugate phase.

The in vivo experiment (Fig. 13) shows again the best per-
formance of CG1D and CG2D. The intensity correction pro-
vided by the CG method can be seen on the difference image
CG2D–CP1D. We also note that the Weisskoff method provides
good distortion correction in low-distortion regions, but fails in
high-distortion regions.

E. Computation Time

A important issue to be discussed is the computation time
associated with the various reconstruction methods. All of

Fig. 12. Reconstruction with the various methods of the EPI image of a
phantom.

the methods presented in this paper were implemented with
MATLAB 5.0 (The MathWorks Inc., Natick, MA), on a Pen-
tium 200-MHz running RedHat Linux 5.1. (RedHat, Durham,
NC).

As an example, consider thein vivo brain experiment. The
computation of the full 2-D kernel (used in CP2D and CG2D
reconstructions) took around 2 min. Because it grows as, it
would take around 30 min for a 128128 matrix size. Although
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Fig. 13. Distortion correction on a volunteer’s head EPI image.

the calculation of the kernel may be expensive, it needs to be
computed only once for a given -map, which makes this time
spent worthwhile for correcting a large number of images of the
same slice (in dynamic functional MRI studies, for instance).

Once the kernel is computed, solving the system of equations
with the CG method takes on the order of a few seconds per
image. The time required is roughly proportional to the number
of elements stored in the 2-D sparse kernel and the number
of iterations performed. For the brain example, with the kernel
having around 73 000 elements and two iterations, the compu-
tation time was 2 s.

One-dimensional kernel calculation is significantly faster
than 2-D. The time required for the calculation of the 1-D
kernel (used by CP1D and CG1D) was around 6 s. However,
calculation of the solution was slightly longer than for the 2-D
case. The two CG iterations took 3 s (recall that this involves
the CG solution of 64, 64 64 systems of linear equations).

The Weisskoff reconstruction took 3.5 s. Note that it is
also possible to implement this method as a two-step process:
calculation of the kernel and computation of the corrected
image. Therefore, the previous remark about the reconstruction
of several images based on the same-map also applies to
this method.

V. CONCLUSION

This paper has presented a technique for correcting distortion
in EPI images based on the CG method. It can be efficiently
applied for the full resolution of the 4-D tensor imaging equa-
tion. However, when the field offsets are small, a simplification
that allows 1-D processing on each column of the image may be
used. This is because the phase variation occurs mainly in the
blip encoding direction.

Our method was compared with previously proposed
methods: the conjugate phase reconstruction and the Weisskoff
method. We have shown that all methods work well for small
field offsets, but the CG method leads to the best intensity
homogeneity, even with a small number of iterations.

One particularly relevant application of this method is the cor-
rection of EPI functional MRI time series data, in which many
hundreds of images of the same slices are acquired in a single
session. Because the calculation of the kernel is decoupled from
the computation of the solution of the equation system, it only
has to be computed once. This allows a large number of dynamic
images to be corrected in a reasonable amount of time.

It was shown that a 1-D processing is sufficient when field
inhomogeneity is not too large. However, 2-D processing may
be necessary when field offsets become large, such as in the case
of fat signal, which has a field offset of approximately 200 Hz
at 1.5 T.

Although the CG method does not significantly amplify the
noise present in the EPI image, it is somewhat sensitive to noise
in the field map. Thus, some preprocessing of the field map (e.g.,
low-pass filtering, polynomial or spline fitting) may be required.
Because the field map is usually smooth, this preprocessing is
not particularly problematic.

In practice, it was observed that the convergence of the CG
method may be very fast in the case of EPI correction. In most
cases, most of the correction was achieved after two iterations
when the initial guess corresponded to the conjugate phase solu-
tion. In this case, the CG method can be thought of as a second-
order correction over the conjugate phase solution.

The image restoration approach that we describe in this paper
has already been applied for MRI projection data [7] and for
1-D correction of EPI images [6]. Application to other acquisi-
tion schemes may also be considered. However, the degree of
correction and the rate of convergence may vary because of the
different structure of the PSF. The effectiveness of the CG re-
construction on EPI data is because of the relatively simple form
of the PSF.
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