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Automated Manifold Surgery: Constructing
Geometrically Accurate and Topologically Correct
Models of the Human Cerebral Cortex

Bruce Fischl*, Arthur Liu, and Anders M. Dale

Abstract—Highly accurate surface models of the cerebral cortex bral cortex is that of a 2-D sheet. For instance, estimates of the
are becoming increasingly important as tools in the investigation of amount of “buried” cortex range from 60% to 70% [27], [28].
the functional organization of the human brain. The construction Thus, Cartesian distances measured in 3-D space between two
of such models is difficult using current neuroimaging technology ! . . . -
due to the high degree of cortical folding. Even single voxel mis- points on _the cortical surface WI|| substannally_ undere_stlmate
classifications can result in erroneous connections being created the true distance along the cortical sheet, particularly in cases
between adjacent banks of a sulcus, resulting in a topologically in- where the points lie on different banks of a sulcus.
accurate model. These topological defects cause the cortical model  For this reason, the analysis of cortical data is greatly facil-
to no longer be homeomorphic to a sheet, preventing the accurate jiateq py the use of accurate 2-D models of the cortical sheet

inflation, flattening, or spherical morphing of the reconstructed - .
cortex. Surface deformation techniques can guarantee the topolog- [1], [28]-[34]. The construction of these models using current

ical correctness of a model, but are time-consuming and may result Neuroimaging data is a difficult task due to the tradeoff be-
in geometrically inaccurate models. In order to address this need tween spatial resolution, field of view and signal-to-noise ratio

we have developed a technique for taking a model of the cortex, (SNR). These factors typically constrain the spatial resolution of
detecting and fixing the topological defects while leaving that ma-  gir,ctyral neuroimaging data to be on the order of a cubic mil-
jority of the model intact, resulting in a surface that is both geo- limeter or greater. At this resolution, even single voxel misclas-
metrically accurate and topologically correct. L St ’ ; .
sifications can result in erroneous connections being generated
across disparate parts of cortex due to the high degree of cortical
folding. These erroneous connections can make the analysis of
l. INTRODUCTION the functional topography of the cortex difficult or impossible.
Methods for the construction of cortical models can be
Hroadly divided into two separate types—those that enforce
ug'iven topology [35]-[37] and those that do not [30], [31],
38]-[42]. The topology-enforcing techniques typically start
ith a surface of known topology (usually a supertessellated
osahedral approximation to a sphigrand deform it so that it

Index Terms—Human cerebral cortex, topology, segmentation.

HE cerebral cortex is the largest part of the human brai
T and a structure that has been the subject of numerous n
roimaging studies [1]-[26]. Although the cortex is highly folde
in many mammalian species, its intrinsic “unfolded” structure
that of a two-dimensional (2-D) sheet, several millimeters thic

Itis WeII_-acce_pted th{;\tmany function_al dimensions (e.g., retinﬁ’és on the cortical surface. These methods have the advantage
topy, orientation tuning, ocular dominance, somatotopy, tonge allowing the user to specify the proper topology and not

topy, e':jc.) are mtapped on thehcortical Sl}(;l;aqe;tsn?\;hz(ajt_ th% wing it to change. Unfortunately, the energy functionals that
Mmapped parameters vary much more rapidly in theé (o dimeflyq he deformation are highly nonconvex [43], resulting in

sions parallel to the surface than they do through the Seveéathiﬁicult and time-consuming numerical integration. Further,

ml_lll_lkr]n etersl of_cor?f[:s ! thlcknﬁssl(l.e., th?.y are ‘;ﬁoll:;nnar;)_. these methods often fail to accurately represent deep sulci [44].
€ analysis of these cortical properties in the thrée-tiMei- - yqition, small errors in the assignment of tissue labels to

sional (3-D) embedding space in which imaging data s typical xels that is the basis for the initial surface can result in large

acquired suffers from serious drawbacks. These drawbacks Sgémetric inaccuracies in the final surface due to the global

rive directly from the fact that the intrinsic topology of the Ceret'opology constraint. This can occur for example when an erro-

neous segmentation results in a bridge connecting two banks of

_ _ _ a sulcus. In order to maintain the correct topology, the surface
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than the topology-enforcing techniques. That is, the segméogically equivalent to a small perforation in a thin white matter
tation can be performed using local intensity, prior probabilsheet. In the first case, we wish to “cut” the bridge, while in the
ties, and/or geometric information without regard to topologgecond we wish to “fill” the hole, and it is this decision that must
Regions such as those described above give rise only to snhallbased on geometric information, as will be discussed in Sec-
geometric errors in the surfaéeThis is, however, at the costtion II-D.
of allowing topological defects in the form of incorrect sur- In order to resolve these problems and combine the advan-
face connectivity. Furthermore, because the surface is no lontgges of the two classes of surface reconstruction methods, we
homeomorphic to a patch &, the connectivity errors preventhave developed a technique that takes a representation of the
it from being accurately inflated, flattened, or morphed into eortex and alters its topology to conform to that of a reference
spherical space to generate a surface-based coordinate syssemnface. The method leaves the surface geometry essentially un-
techniques that are increasingly common in the computatiomélanged, except in regions containing topological defects. This
neuroscience community [28], [32], [33], [37], [45], [46]. technique has a number of advantages. Like the deformable sur-
The difficulties encountered in the use of the surface-defdiace algorithms, the resulting model is guaranteed to be topolog-
mation techniques are due to the fact that in addition to inhécally correct, allowing it to be accurately inflated, flattened, and
iting the propetopologyfrom the initial surface representationmorphed. However, in separating the specification of topology
these methods also use the initial geometry of this surface.ftom the classification of tissue classes, it allows a more accu-
most cases this geometry is far smoother than the target surfaate segmentation to be performed without regard for topolog-
This problem is further complicated by the fact that much of thHeal correctness. Furthermore, since the alternative paths making
cortical surface area is buried deep within cortical sulci that ang a topological defect are explicitly identified, geometric in-
frequently quite narrow. Thus, large regions of the evolving suiermation from the remainder of the surface can be used in the
face must be driven into these narrow openings, then expandatorection of the defect. Finally, most of the initial tessellation
cover the extensive cortical area within. The nonconvexity oof the cortex is retained. This is advantageous, as the cortical
curs because these vertices must be moved away from the tessellation is uniform on the surface of the cortex as opposed
tical surface at the opening of the sulcus in order to eventuatty the spherical or planar space in which the surface deforma-
settle at the surface near the fundus [43]. tion methods are uniform, a property that is important for ac-
Models of the cortical surface, and indeed most solid modedarately representing the functional and structural properties of
in general, are typically instantiated as lists of triangles, edgi® cortex.
and vertices in which each point on the surface lies in exactlyFurther, given reasonable quality data, no manual interaction
one trianglet Such a structure is calledmmlygonal tessellation isrequired in order to generate surfaces that are suitable for visu-
The presence of topological defects in a polygonal tessellatialization or establishing surface-based coordinate systems using
can be easily detected by computing tBeler numberof the the proposed technique. Manual editing may result in a slight
tessellation. The Euler number is a topological invariant ofiacrease in surface accuracy, mainly in noncortical regions.
surface, and is given by — e + f wherew, ¢, and f are the Finally, the models generated with these techniques have been
number of vertices, edges, and faces in the tessellation, resgdmwn to accurately represent the pial and white matter surfaces
tively [47]. The number of defects in the surface is then given lig within 1/2 mm [48].
1 — (v — e+ f)/2. However, while the Euler number specifies
the number of topological defects, it reveals nothing regarding II. METHODS

either their location or their spatial scale, and is, therefore, OfTh to00l . dure beai ith ious
limited use for correcting the topology of a defective surface. € topoogy correction procedure begins with a previously

The defects arise due to incorrect surface connectivity th%qnstructed model of the cortical surface. All the results shown
results in the generation of two (or more) qualitatively differer] this pdaper useh_a hclortéc?I -Isudrface rectqns(tjructhnfproc?cmre
paths between a pair of points on the surface—paths that can ¢ pro juces a highly detailed geometric description of the
be continuously deformed into each othdn order to correct gray-white matter boundary, as well as the pial surface of the

man cortex, as described in [30], [31], and [48]. It is impor-

the topology and remove the defect, one would need to ident ) . -
to note that the details of the segmentation and initial surface

these paths, then choose to retain one and discard the other. . :

former issue, that of identifying the presence and location geonstruction are completely separate fr_omthat ofensgnng the
topologically inconsistent paths on the surface, is a purely top%q(rjrect topolcl;gy. Thlljs’ oéher segrgelntaftlorrl]{recpnsltructlofntr? ro-
logical one. In contrast, the latter issue, the arbitration amofi egrﬁzr(;an € employed in a modular fashion in place of those

alternative paths, must be based solely on geometric infor Brieflv. th ¢ tructi d lov b
tion, as the two paths are topologically indistinguishable. Thus, rietly, the surface reconstruction procedure we employ be-

for example, a bridge between two banks of a sulcus is top%—ns_w'th a_h|gh—resolut|on T1-weighted Image, and removes n-
tensity variations due to low-frequency bias fields. The skull is

2Here, we use the term “geometric accuracy” to mean a model that accuratgen removed by shrink-wrapping a deformable ellipsoidal tem-

follows the folds of the actual cortex. In these terms, a bridge across adja(rzﬁﬂ.&te onto the inner-boundary of the skull. Next, a binary seg-
banks of a sulcus is a “small” inaccuracy, although the errors introduced ifto ) !

surface geodesics can be substaqt|a!. ) ) ) SFor example, studies of the thickness of the cortex require the surface rep-
*Note that degenerate cases exist in which a point falls precisely on leg @entations to be placed with subvoxel precision. In this type of study, we typ-

triangle, thus either lying within two (or more!) triangles. Computationally, thigcally manually inspect and edit the large defects due to anatomical departures

situation never arises. from spherical topology, such as the ventricles and the basal ganglia, as well as
4Assuming the deformation lies within the surface and the endpoints are fixedsmall number of cortical locations.
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mentation procedure is applied to the skull-stripped image such  targetsurface. This particular tessellation chosen will be
that each voxel is assigned to one of two classes: white matter or  one that optimizes a metric measure insbercesurface.
not white matter. An automated algorithm then finds seed points  Thus, the topology is specified by the target surface, but
in each cerebral hemisphere and automatically disconnects the the geometry by the source surface. (15 rhin)
corpus callosum in order to generate two connected masses of
voxels, each of which represents a cortical hemisphere. The &x-Spherical Inflation
terior of each connected mass is covered with vertices, edgeShe initial mapping of the cortical surface to that of a sphere
and triangles resulting in an initial surface representation of eagbuld be accomplished by simply projecting each point on the
cortical hemisphere. folded surface to the closest point on the sphere. However, doing
The surface deformation methods described earlier seekstowould resultin large regions of the initial mapping being non-
find a mappingV from an initial surfaces (typically a sphere, homeomorphic (i.e., substantial folds on the spherical surface),
although patches of the plane have been used as well), to ga@sing the subsequent numerical integration to be time con-
cortical surface” suming and prone to local minima. Instead, we use a simple
procedure to unfold and smooth the folded cortical surface so
N:5—C. (1)  that it approaches that of a sphere whose origin is the centroid
. . of the initial surface. After applying this procedure, the surface
The necessary and sufficient condition 0t to have the o, then be projected with relatively few folds. The algorithm

proper topology is that the mappig be a homeomorphism, ¢, gists of iteratively updating the position of each vertex based
that is a continuous bijection [49].The difficulty of finding . 4 smoothness fords, and a radial spherical fordey
such an/V is that the target surface is significantly less smooth

than the initial one. Thus, large geometric deformations must xp(t+1) =x4(t) + Fs(t) + ArFr(t) (3)
be introduced into the initial surface in order to generate an ) N ) )
accurate model of the cortex. In order to avoid this difficultyVherexy is the position of thé:th vertex at iteration number

we propose to find a mappint/ and the smoothness fori®; is given by
. 1 1 «
M:C— 5. @ FS:F Z (Xj_xk)_vz E(nin;)-(xj—xi)

This is a significantly easier task &8s much smoother than s Lo (4)
C. If M is a homeomorphism, then the two surfaces are topo-
logically equivalent and no further action is required. Typicallywhere
however, the surface model will not be homeomorphic to the x, set of vertices neighboring thigh vertex;
target surface (e.g., a sphere). The topology correction then cony number of vertices in the tessellation:;
sists of finding regions in which the inverse of the candidete = n, andn), surface normal at locatioh and its transpose,
is multivalued and correcting it, thus constructing a homeomor- respectively.

phism. This is accomplished by discarding the surface tesselfadre smoothness teriiis moves each vertex in the direction of
tion in these regions and generating a new, topologically cahe centroid of its neighbors, while projecting out the average
rect tessellation, resulting in a surface with the proper topologgwards movement this creates over the entire surface.

More specifically, the algorithm proceeds as follows (the times The radial term simply drives each vertex toward the surface
in parentheses were obtained running the algorithm on a typiegla sphere with the desired radiiis
dataset on a 500-MHz Pentium III):

1) Find a mapping/ from the original surface onto a sur- Fr = (R —x3) ®)

face with the desired topology (a sphere in this case), sughere g, is the radial projection afy onto the sphere with ra-

thatM is a homeomorphism on as much of the surface g§,s g Note that we have omitted the functional dependence on

possible. We call such aif aquasi-homeomorphic map ¢ jteration number in (4) and (5) to avoid notational clutter.

(1. h) . ) ) _ We use arR on the order of 100 mm as this results in a sphere
2) Find all regions on the target surfasein which the in-\ih ahout the same total surface area as an average cortex, and

verse mapping/ ~* is multivalued. These are detectable, ) . o 0.25 to allow sufficient smoothing to take place during

as regions in which edges in the tessellation intersege spherical inflation. Once the inflation has converged, the sur-

Mark all vertices in a face with an intersecting edge a§ce s projected so it lies precisely on the surface of a sphere of
ambiguous. (4 min) radiusR.

3) Segment the ambiguous vertices into connected regionsgig 1 jjlustrates this process, showing a sequence of lateral

(<1 min) o views of the spherical inflation process. Sulcal regions are col-
4) Discard the tessellation in each defect, and generate a

new tessellation so that no edge intersection occurs in théThe computational complexity of step 4) is quadratic in the number of ver-
tices contained within the convex hull of each defect. Minimal manual editing to
6Note that the while the connectivity is typically specified explicitly, topologremove large defects caused by anatomical departures from spherical topology
ical correctness in the embedding space requires that the surface deformatio#§eto structures such as the fornix or the basal ganglia can reduce this to a few
constrained to prevent the surface from intersecting itself. Techniques for prainutes.
venting self-intersection are typically quite computationally intensive and are8Each vertex is assigned a surface normal that is the normalized average of
reviewed in [43]. the surface normals of all the triangles that it is a member of.
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Fig. 1. Example of initial transformation of folded cortical surface into spherical form via simultaneous smoothing and radial inflation. Feomgleftnitial
cortical surface (gray/white interface), and surface after 25, 50, 75, 100 and 300 iterations of (3)—(5). The white arrow indicates a largel foycacapsdogical
defect.

ored dark gray, and gyral light gray (based on mean curvature) The determinant of the Jacobian yields a measure of what
Note that by the end of the inflation process the majority dfappens to an oriented area element under the mapping. With
cortex has been unfolded, with the bulk of the remaining foldkis in mind, we use an energy functional based on the com-
due to topological defects. An example of this can be seenpression/expansion each face experiences under the mapping.
Fig. 1 in the form of the large fold at the anterior end of the sylFhis compression/expansion is transformed by a nonlinearity
vian fissure (see white arrow at the right). This fold is due todesigned to discount the influence of positive definite regions.
hole through the basal ganglia, which creates one of the largkkire specifically, if the initial area on the folded surfa€eof

defects on the surface. theith face in the tessellation i4?, and the area on the spher-
ical surfaceS at timet of the numerical integration id}, then
B. Quasi-Homeomorphic Mapping the energy functional we minimize is given bywhereis the

Once the initial spherical configuration has been est::xblishéEc?_’imber of faces in the tessellation, antb a positive constant.

we wish to modify the mapping in order construct a homeomor: € Iogarith_mic nonlin_earity "”_‘“5 the_ penal_ization of compres-
phism. This procedure consists of two separate steps. In the i primarily to nggatwe semi-definite regions, as can be seen
the plot to the right of (6) at the bottom of the page, which

step, a mapping/; is found from the folded surface to a sphen’é1 . : S
that is maximally aomeomorphic, which we ternqaasi-home- showsE over the interval £ 0.1 0.1]. Computing the derivative

omorphicmapping. Next, regions d¥/;* that are multivalued OfEWiJ_[h respept tq achangt_e in th_e area ofdififace y_ieIdsThe_

are detected and discarded, and a new mapping is establishe%ei%vat've Of£ is simply a sigmoid (shown 3‘ th_e ”gh_t’ again

these regions, resulting in a global homeomorphism. over the |nterva[—0:1 O._l]), the slope of Wh'Ch. IS defln.e(_:i by
In generating the mappindy/;, we are only concerned with k: The extent tq wh|_ch highly compressed p05|_t|v§ definite re-

its topological properties, that is, we wigdlf; to be as close to gions are penallzed IS thgs.deterr_nlnedcbw the I.|m|t of large .

a homeomorphism as possible. A mappivlg is a homeomor- k, only negative semi-definite regions are penalized. In practice,

phism if the determinant of the Jacobian matrixidf is non- a somewhat smaller (e.9.,k = 100) results in a mapping with

singular, and the mapping itself is continuous. This is of c:ourgeewer folds, as extending the energy functional slightly into pos-

the multidimensional analog of monotonicity. To construct thigve regions encourages vertices in these areas to move away

mapping, we minimize an energy functional that directly penalr-Om folds, giving vertl_ces n qeggtlve Qeflmtg regions spherical
rface area to move into. This sigmoid nonlinearity in the areal

izes regions in which the determinant becomes zero or negati% ) ) . . . .
thus encouraging positive definitenésdlote that this is the fcerm IS now used in flattenlng_ [32], maX|_maIIy 'SO"?e”'C spher-
only term in the energy functional—no preservation of metri¢@ Mapping [32], and spherical morphing of cortical surfaces
properties is needed. into an atlas [33]. In all of these contexts, we have found that

it provides a strong “regularizing” effect, limiting the solution

9We could equivalently construct a negative definite mapping. space to positive definite mappings where possible.

0.1

log(1 + e*&) Al

E:Z (——-—k ~ R, ,Ri-A—? (6)
=1
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_axb,

In order to complete the definition of the topology term of
the energy functional, we consider thb triangle in the surface
tessellation depicted in Fig. 2, with unit normal vectgr and
edgesa; andb; connecting the vertex; to two of its neigh- \ o = ArcTan{ax b-n,a- b)
bors (note that bold-faced symbols denote vector quantities). Ly
The unit normakh; is given on the original manifold by the nor-
malized cross product of the edggsandb;, while the area of Fig. 2. Metric properties of the triangular tessellation.
the triangle is half the cross product @f andb; dotted with
the unit normal (i.e., the triple scalar product). In the spherical
representation, the normal vector field can be given a consistent
orientation on the surfatgeusing the embedding space, asd a0an|
becomes awrientedarea, which may take on negative values

-axb-n

A
' 2

indicating folds in the surface. We choose an outward pointing =
normal vector on the surface of the sphere, given by =
. znmn;
n; = i_ (8)
[l
In order to derive a rule for modifying the vertex positions,
we compute the directional derivative &fwith respect to the [
- 1000 L
position of thekth vertex ] 1o, ] ) 40
itaration &
oF OF OA!
— == —. 9
x| DAL %, ©) ~ @
The first factor is given by (7), shown at the bottom of the pre- & »
vious page. The second is the change in the area atlhtei- -
angle caused by moving ttigh vertex, which can be computed =
from the prior description of the metric properties of the tessel- =14
lation using the chain rule as TEr,
9AL DAl Da; 0OAl 3b; OAl b x OA! o -;
= =0, XN;——=MN; Xa;. =
a.’l:k aaz a:l:k abz (9.’!:k7 8ai 8bz E
(10) g 08
-
The partials of the change in the legs with respect to a change in %
the vertex position are dependent on what position the vertex in M- = = —is e
guestion occupies in a given triangle (refer to Fig. 2 for subscript iteration #
meaning) (b)
[_1 —1.-1 ]T k=1 Fig. 3. (a) Plot of sum-squared error and (b) percent negative area during
da; -{n 1’ ] o k—lL minimization of (6).
Oz 0, otherwise . .
T } surface area that is folded on the spheret, each plotted agains
f that is folded on th heret h plotted t
b, [-1,-1,-1,]%, k=i o . AR
A k=1 (11) iteration number of the numerical minimization Bffor a typ-
oz, 0’ Ty otherwise ical surface.

The mappingl/ is modified by numerically minimizing (6), C. Detection of Surface Defects
employing the gradient given by (7)—(10) and the numerical in- after the quasi-homeomorphic mappidd; has been con-
tegration scheme described in [32]. After each iteration of thgrcted, the spherical surface is examined for regions of non-
numerical minimization, the surface is projected back onto thgertibility, as these are areas where the current tessellation
sphere, obviating any need for additional terms in the energyst he discarded and a new one constructed in order to ensure
functional to keep the surface from leaving the sphere. This kg proper topology. The noninvertible regions are characteriz-
sults in a new mapping/, that is typically positive definite gpje as portions of the sphere in which more than one triangle
across more than 99% of the cortical surface area. Thus, the Merlap, and can thus be detected by checking for intersecting
jority of the initial surface reconstruction can be retained witgqges in the tessellation. The overlap detection procedure uti-
only a small percentage of the cortical surface requiring fUfzes a spatial lookup table (LUT) that lists the faces passing
ther attention. This is illustrated in Fig. 3(a) which displays thﬁ‘urough each 1 mivoxel, making the procedure quite rapid
sum-squared erro#]in (6)] and Fig. 3(b) the percentage of thq|ess than 4 min). After the spatial LUT has been constructed,

10This is always possible except in pathological cases such as the Mﬁbﬁ@Ch edge in the tessellation is checked for intersection with all
strip that are said to be nonorientable [50]. the edges in every face that passes through any of the voxels that
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Fig. 4. (a) Multivalued regions of the quasi-homeomorphic mapping painted onto the original folded surface as well as (b) an inflated surfaoeedfrifia sa
as Fig. 1 for better visualization. The arrows indicate a defect across the posterior and anterior banks of the central sulcus shown in morg.detail in Fi

@) (b)

Fig. 5. Close-up of defective region indicated by arrows in Fig. 4. White coloring indicates region of ambiguity. The white bar at the bottom ofdt =a s
indicating 1 cm.

the candidate edge passes through. Defective vertices are thetmal Euler number of this surface-isl01, indicating a total
defined as those vertices that are part of a face in which anyadf51 topological defects in the polygonal representation.
the edges are in the set of intersecting edges. The defective veifhe arrows in Fig. 4 indicate a defect that spans the banks
tices are then partitioned into connected components for furthafrthe central sulcus, a close-up of which is shown in Fig. 5.
processing, with each connected component representing aMete that the region of ambiguity encompasses two different
fective region that will require retessellation. paths between the points on the posterior and anterior banks of
The results of this procedure are shown in Fig. 4, with thtee central sulcus, paths that cannot be continuously deformed
noninvertible regions painted bright white on a folded [Fig. 4(ajtom one to the other. This erroneous connectivity changes the
and inflated [Fig. 4(b)] hemisphere (the inflated representatigeodesic distance between the two endpoints from the correct
is useful for visualization purposes as it exposes sulcal regiosarface distance of 5 or 6 centimeters to a few millimeters—an
Details of this technique are given in [32]. The bulk of these anefror of over an order of magnitude, a point to which we will
biguous regions are the product of small topological defects treturn in Section II-D.
causes of which are difficult to find in the segmented volume, Fig. 6 shows the same defect (as indicated by the red arrow)
as they are frequently the result of incorrect surface connectivity(a) coronal, (b) sagitta, and (c) horizontal slices through the
that does not lie in any of the three cardinal planes. In fact, alelume, with the surface intersection overlaid in yellow. As can
though visual inspection only reveals a handful of defects, the seen here and in the prior figures, the defect arises due to
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@) (b) ©

Fig. 6. Sagittal, coronal, and horizontal views of a T1 volume with the surface intersection overlaid in yellow. The red arrows indicate theflacigfeatdn
the region of the central sulcus.

@ (b)
Fig. 7. Schematic of defect types: (a) a “handle”, and (b) a “hole”.

a small misclassification at a particularly narrow point in thaot intersect with the existing tessellation being added at each

sulcus. step!! After all possible edges have been added; two triangular
faces are generated for each edge, completing the polygonal rep-
D. Surface Retessellation resentation of the surface. This then gives a topologically correct

The labeled defective regions on the surface include incdgssellation of the patch 8 in the defect [51] and, hence, pre-
rect pieces of surface that give rise to erroneous connectivii§ves the spherical topology of the entire closed surface.
and, hence, must be removed, as well as regions of true cortical '€ decision as to what to keep and what to discard is made
surface that should be retained. While these regions were foufplicitly via the ordering of the edges. That is, if the edges in
usingtopologicalcriteria, namely edge intersection in the sphef2n€ path are added to the tessellation prior to an incompatible
ical space, the decision of what to keep and what to discard m@a¢h, the edges in the second path will cause intersections with
be made on geometridasis. This decision corresponds to thée (already added) edges from the first path, and will, there-
arbitration between alternative, incompatible paths discussedf€, be discarded. Thus, the choice of what metric to use to
Section I. Explicitly finding these discrete alternative paths @enerate the ordering is a critical one, as it embodies the arbi-
a difficult problem. Instead, we solve the problem implicitlyration process.
through the manner in which the defective surface regions ard Practice, two types of defects occur—which we term
retessellated. The retessellation algorithm we use is a gree@igles” and “handles.” Holes consist of small perforations
one [51]in which an ordered list is created of all possible edges”OnIythe convex hull of the defect and its border must be checked to prohibit
in each defect and its border, with the shortest edge that deege intersection.
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Fig. 8. Close-up view of a surface defect during smoothing: (a) 0, (b) 30, and (c) 60 iterations of surface smoothing. The white bar at the botterhas a scal
indicating 1 cm.

in planar sheets of white matter, while handles are bridgsction we are hoping to clarify, a somewhat different approach
between nonadjacent points in cortex. A schematic exampleiefequired. Another characteristic of the topological defects is
each type of defect is given in Fig. 7, which shows a “holethat they create surface paths which give rise to dramatically dif-
[Fig. 7(a) ] and a “handle” [Fig. 7(b) ]. Each defect of eitheferent shortest path lengths between points on opposite ends of
type will reduce the Euler number by two, indicating theithe defect? In order to detect the defect, we wish to modify the
topological equivalence. The essential distinguishing charaairface in such a way as to make this fact more apparent. Toward
teristic between these two situations is the spatial scale of tiat end, we design a simple smoothing procedure similar to the
hole, or, equivalently, whether the surface along the bordersafe used in [30] and [32] for visualization purposes, as well as
the hole or the surface on the bridge is more in agreement witle smoothing term in the spherical inflation described in Sec-
the remainder of the surface. That is, the hole is an essentidityn 11-A. This technique models the surface tessellation as a
one-dimensional (1-D) tunnel through a 2-D sheet, while theetwork of springs with zero resting length. Allowing the sur-
handle is a 1-D bridge between adjacent 2-D sheets. It is thésee to evolve under this model smooths the surface by moving
geometric features of the defect that we exploit in order tach vertex in the direction of the centroid of its neighbors. In
generate the proper ordering. defective regions this results in a pronounced stretching as the
The most obvious choice for a metric to us for ordering theulk of the surface pulls the two endpoints of the defect apart,
edges is the 3-D Cartesian metric in the space in which tB#ploiting the essentially 1-D nature of the defect.
folded surface is embedded. However, in general, the use of #n example of this process is illustrated in Fig. 8, which
simple 3-D metric to generate the edge ordering will fail. Thehows snapshots of the smoothing procedure in a region of the
reason for this can be seen in Fig. 7, in which the distance @ntral sulcus defect. Note the stretching of the edges in the
tween points 1 and 2 in the hole shown in Fig. 7(b) may be géfect relative to those in the remainder of the tessellation in
short or shorter than the distance between points 1 and 3,F@ 8(c). Ordering the edges in inverse order of their length on
sheets of white matter are frequently only a single millimetéhis smoothed surface results in the proper retessellation, shown
thick (which is what causes perforations in the first place!). M Fig. 9, with Fig. 10 depicting the corrected surface overlaid
similar caveat applies to the handle defect illustrated in Fig. 7(&)to orthogonal slices.
the bridge from point 1 to point 2 may be shorter than the dis- More specifically, the retessellation algorithm proceeds as
tance from point 1 to point 3. In fact, in general, the defectii@llows. First, the tessellation in defective areas is discarded, in-
edges will be short, as the regions in which defects occur @igding all edges and faces in the original polygonal represen-
precisely those in which sheets of white matter are very thit@tion contained within defective areas, as well as all vertices
or opposing banks of a sulcus pass in close proximity to offeat lie within of regions in which the determinant of the Ja-
another. These problems with the use of a 3-D metric for gegebian of the spherical mapping is nonpositive. The vertices in
erating the edge ordering arise because the 3-D metric incOggative semi-definite regions typically comprise less than 1%
the same drawback in this context as it does in others [33]-ai the tessellation, and must be removed to ensure that the final
does not respect the geometry of the surface. Thatis, distancg®&pping is a homeomorphism. An edge list is then generated
3-D willin general be poor approximations of surface geodesig®ntaining an entry for every pairwise combination of vertices
Thus, a retessellation algorithm based on 3-D distances will filithe defect and its convex hull. Next, the smoothing algorithm
in these situations, causing sulci to be “sewn shut.” is applied to the surface, and the edge list is ordered by Carte-

What is needed is a distance metric that is governed by tfi@n distance on the smoothed surface (the smoothed surface is
nondefective parts of the surface—that is, something approfiMilar to the one shown in Fig. 4). The ordered edges are then
mating surface geodesics that ar? only a_"(_)wed to_ pass thmfjghln cases where this is not true, the defect is extremely locabaydetes-
the “correct” surface. However, since this is precisely the disellation will be satisfactory.



78 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 1, JANUARY 2001

R
‘__"i";"l:j ] | P
EH&‘E‘#.‘?E\L. i
f?;.‘?l?-la h.“i""# ¥
#_ 4!&‘%:!=u
] i Y

A
.

(@) (b)

Fig. 9. (&) Topologically correct folded surface with a white arrow indicating the previous location of the defect and (b) close-up of samendsssiadcted
region.

Fig. 10. Topologically correct surface (after fixing) overlaid on T1 volume.

sequentially added, without allowing intersection between eabh “sewn shut.” The smoothing process is illustrated in Fig. 8(b)
candidate edge and the convex hull of the defect and its borded (c), which shows snapshots of this process in a region of the
in the spherical space, yielding a topologically correct tesselldefect. Note the stretching of the edges in the defect relative to
tion of a patch ofRR?. After all possible edges have been addedhose in the remainder of the tessellation in Fig. 8(c). Ordering
each pair of vertices that share an edge is examined for comntlb@ edges in inverse order of their length on this smoothed sur-
neighbors, with one triangle being generated for each commiaice and retessellating in the spherical space results in the proper
neighbor that does not lie within another putative triangle. Thistessellation, shown in Fig. 9, with Fig. 10 depicting the cor-
results in two triangular faces being generated for each edgested surface overlaid onto orthogonal slices.

completing the polygonal representation of the surface.

This procedure is illustrated in Figs. 8, 9, and —10, which
show a close-up view of the central sulcus surface defect with
the original tessellation overlaid in red. Note that the lengths Models of the human cerebral cortex are important in a va-
of the edges crossing the sulcus (i.e., the defect) in the origety of contexts, including visualization of functional and struc-
inal surface shown in Fig. 8(a) are approximately equal to thoseal neuroimaging data, computational modeling of cortical
covering its banks. Thus, a retessellation algorithm based foimction, as well as statistical analysis of cortical properties.
3-D distances will fail in this situation, causing the sulcus th order for a model of the cortex to be useful in all of these

I1l. CONCLUSION
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domains it must be geometrically accurate as well as topolog-
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such models sacrifice one of these properties in order to m
mize the other. In this paper we have presented a technique that
preserves geometric accuracy while at the same time insuring
topological correctness.

Topological correctness and geometric accuracy are impor-
tant for a number of reasons. Incorrect topology manifests it-[]
self through spurious connections between potentially disparate
parts of cortex. These connections are problematic in that they
result in geodesic distances between cortical locations being er?]
roneous by potentially large amounts. Further, such improper
connectivity prevents accurate inflation for visualization pur-
poses, or transformation to spherical or flattened formats, as th§3]
surface or pieces of it are no longer homeomorphic to a spher
or a sheet, respectively.

Geometric accuracy is necessary for correct and complet

) . 4]
representation of the cortex. Techniques that enforce topolog;eg
can result in surface models that underestimate the true cortical
surface area, particularly in narrow deep sulci. These region%5
are difficult to accurately reconstruct using deformable surface ]
models, as they require the surface to pass through local minima
in the deformation energy functional. Using the topology cor- [6]
rection procedure outlined in this paper, defects caused by
narrow openings in sulci are easily corrected, as they give rise
to surface geodesics that typically differ from distances along[’]
the majority of the surface by more than an order of magnitude.

Furthermore, the topology correction procedure detailed in
this paper can be used as a preprocessing step for a deformablfé
surface algorithm. This may be useful in the context of multiple
surface deformations in which the pial and white matter surfaceg9]
are deformed simultaneously, each giving clues to the location
of the other [35]. Initializing the deformation procedure with
surfaces that are correctly positioned over the vast majority gfio]
the cortex should result in considerably faster and more robu?itl]
surface generation.

Another point to note is that while this technique has been
used in the context of enforcing spherical topology onto a gel!?]
ometrically accurate model of the cortex, it is applicable to en-
forcing the topology of any regular orientable manifold onto an-
other such manifold. For example, portions of the cortex shouldt3]
be topologically equivalent to a sheet. This topology could be
enforced on cortical patches by applying the topology correcfi4]
tion procedure in the plane.

Finally, we have reconstructed over 200 cortical hemisphere[§5]
using the topology correction technique. Our experiments in-
dicate that the vast majority of surfaces require no manual in-
tervention for use in visualization or establishing surface—baseael
coordinate systems. The software used in the generation of these
surfaces is freely availablé,and it is our hope that these tools
will make surface-based analysis a routine part of neuroimaginbﬂ]
studies of functional and structural properties of the human cere-
bral cortex. (18]

(19]

Bsurfer.nmr.mgh.harvard.edu.

[essner and D. Salat for extensive testing of the proposed al-
thms.
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