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Automated Manifold Surgery: Constructing
Geometrically Accurate and Topologically Correct

Models of the Human Cerebral Cortex
Bruce Fischl*, Arthur Liu, and Anders M. Dale

Abstract—Highly accurate surface models of the cerebral cortex
are becoming increasingly important as tools in the investigation of
the functional organization of the human brain. The construction
of such models is difficult using current neuroimaging technology
due to the high degree of cortical folding. Even single voxel mis-
classifications can result in erroneous connections being created
between adjacent banks of a sulcus, resulting in a topologically in-
accurate model. These topological defects cause the cortical model
to no longer be homeomorphic to a sheet, preventing the accurate
inflation, flattening, or spherical morphing of the reconstructed
cortex. Surface deformation techniques can guarantee the topolog-
ical correctness of a model, but are time-consuming and may result
in geometrically inaccurate models. In order to address this need
we have developed a technique for taking a model of the cortex,
detecting and fixing the topological defects while leaving that ma-
jority of the model intact, resulting in a surface that is both geo-
metrically accurate and topologically correct.

Index Terms—Human cerebral cortex, topology, segmentation.

I. INTRODUCTION

T HE cerebral cortex is the largest part of the human brain,
and a structure that has been the subject of numerous neu-

roimaging studies [1]–[26]. Although the cortex is highly folded
in many mammalian species, its intrinsic “unfolded” structure is
that of a two-dimensional (2-D) sheet, several millimeters thick.
It is well-accepted that many functional dimensions (e.g., retino-
topy, orientation tuning, ocular dominance, somatotopy, tono-
topy, etc.) are mapped on the cortical surface; and that these
mapped parameters vary much more rapidly in the two dimen-
sions parallel to the surface than they do through the several
millimeters of cortical thickness (i.e., they are “columnar”).

The analysis of these cortical properties in the three-dimen-
sional (3-D) embedding space in which imaging data is typically
acquired suffers from serious drawbacks. These drawbacks de-
rive directly from the fact that the intrinsic topology of the cere-
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bral cortex is that of a 2-D sheet. For instance, estimates of the
amount of “buried” cortex range from 60% to 70% [27], [28].
Thus, Cartesian distances measured in 3-D space between two
points on the cortical surface will substantially underestimate
the true distance along the cortical sheet, particularly in cases
where the points lie on different banks of a sulcus.

For this reason, the analysis of cortical data is greatly facil-
itated by the use of accurate 2-D models of the cortical sheet
[1], [28]–[34]. The construction of these models using current
neuroimaging data is a difficult task due to the tradeoff be-
tween spatial resolution, field of view and signal-to-noise ratio
(SNR). These factors typically constrain the spatial resolution of
structural neuroimaging data to be on the order of a cubic mil-
limeter or greater. At this resolution, even single voxel misclas-
sifications can result in erroneous connections being generated
across disparate parts of cortex due to the high degree of cortical
folding. These erroneous connections can make the analysis of
the functional topography of the cortex difficult or impossible.

Methods for the construction of cortical models can be
broadly divided into two separate types—those that enforce
a given topology [35]–[37] and those that do not [30], [31],
[38]–[42]. The topology-enforcing techniques typically start
with a surface of known topology (usually a supertessellated
icosahedral approximation to a sphere1 ) and deform it so that it
lies on the cortical surface. These methods have the advantage
of allowing the user to specify the proper topology and not
allowing it to change. Unfortunately, the energy functionals that
drive the deformation are highly nonconvex [43], resulting in
a difficult and time-consuming numerical integration. Further,
these methods often fail to accurately represent deep sulci [44].
In addition, small errors in the assignment of tissue labels to
voxels that is the basis for the initial surface can result in large
geometric inaccuracies in the final surface due to the global
topology constraint. This can occur for example when an erro-
neous segmentation results in a bridge connecting two banks of
a sulcus. In order to maintain the correct topology, the surface
must “drape” over the incorrectly classified region. Finally,
a more subtle drawback is that the surface representation is
uniform on the initial (i.e., spherical) surface, whereas it is
usually desirable to sample the target (i.e., cortical) surface
uniformly.

Conversely, methods for generating models of the cortex that
do not enforce a given topology can focus on accuracy of seg-
mentation and, therefore, may result in more accurate models

1For a detailed discussion on the use of spherical versus planar topology, see
[33].
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than the topology-enforcing techniques. That is, the segmen-
tation can be performed using local intensity, prior probabili-
ties, and/or geometric information without regard to topology.
Regions such as those described above give rise only to small
geometric errors in the surface.2 This is, however, at the cost
of allowing topological defects in the form of incorrect sur-
face connectivity. Furthermore, because the surface is no longer
homeomorphic to a patch of , the connectivity errors prevent
it from being accurately inflated, flattened, or morphed into a
spherical space to generate a surface-based coordinate system,
techniques that are increasingly common in the computational
neuroscience community [28], [32], [33], [37], [45], [46].

The difficulties encountered in the use of the surface-defor-
mation techniques are due to the fact that in addition to inher-
iting the propertopologyfrom the initial surface representation,
these methods also use the initial geometry of this surface. In
most cases this geometry is far smoother than the target surface.
This problem is further complicated by the fact that much of the
cortical surface area is buried deep within cortical sulci that are
frequently quite narrow. Thus, large regions of the evolving sur-
face must be driven into these narrow openings, then expand to
cover the extensive cortical area within. The nonconvexity oc-
curs because these vertices must be moved away from the cor-
tical surface at the opening of the sulcus in order to eventually
settle at the surface near the fundus [43].

Models of the cortical surface, and indeed most solid models
in general, are typically instantiated as lists of triangles, edges
and vertices in which each point on the surface lies in exactly
one triangle.3 Such a structure is called apolygonal tessellation.
The presence of topological defects in a polygonal tessellation
can be easily detected by computing theEuler numberof the
tessellation. The Euler number is a topological invariant of a
surface, and is given by where , , and are the
number of vertices, edges, and faces in the tessellation, respec-
tively [47]. The number of defects in the surface is then given by

. However, while the Euler number specifies
the number of topological defects, it reveals nothing regarding
either their location or their spatial scale, and is, therefore, of
limited use for correcting the topology of a defective surface.

The defects arise due to incorrect surface connectivity that
results in the generation of two (or more) qualitatively different
paths between a pair of points on the surface—paths that cannot
be continuously deformed into each other.4 In order to correct
the topology and remove the defect, one would need to identify
these paths, then choose to retain one and discard the other. The
former issue, that of identifying the presence and location of
topologically inconsistent paths on the surface, is a purely topo-
logical one. In contrast, the latter issue, the arbitration among
alternative paths, must be based solely on geometric informa-
tion, as the two paths are topologically indistinguishable. Thus,
for example, a bridge between two banks of a sulcus is topo-

2Here, we use the term “geometric accuracy” to mean a model that accurately
follows the folds of the actual cortex. In these terms, a bridge across adjacent
banks of a sulcus is a “small” inaccuracy, although the errors introduced into
surface geodesics can be substantial.

3Note that degenerate cases exist in which a point falls precisely on leg of a
triangle, thus either lying within two (or more!) triangles. Computationally, this
situation never arises.

4Assuming the deformation lies within the surface and the endpoints are fixed.

logically equivalent to a small perforation in a thin white matter
sheet. In the first case, we wish to “cut” the bridge, while in the
second we wish to “fill” the hole, and it is this decision that must
be based on geometric information, as will be discussed in Sec-
tion II-D.

In order to resolve these problems and combine the advan-
tages of the two classes of surface reconstruction methods, we
have developed a technique that takes a representation of the
cortex and alters its topology to conform to that of a reference
surface. The method leaves the surface geometry essentially un-
changed, except in regions containing topological defects. This
technique has a number of advantages. Like the deformable sur-
face algorithms, the resulting model is guaranteed to be topolog-
ically correct, allowing it to be accurately inflated, flattened, and
morphed. However, in separating the specification of topology
from the classification of tissue classes, it allows a more accu-
rate segmentation to be performed without regard for topolog-
ical correctness. Furthermore, since the alternative paths making
up a topological defect are explicitly identified, geometric in-
formation from the remainder of the surface can be used in the
correction of the defect. Finally, most of the initial tessellation
of the cortex is retained. This is advantageous, as the cortical
tessellation is uniform on the surface of the cortex as opposed
to the spherical or planar space in which the surface deforma-
tion methods are uniform, a property that is important for ac-
curately representing the functional and structural properties of
the cortex.

Further, given reasonable quality data, no manual interaction
is required in order to generate surfaces that are suitable for visu-
alization or establishing surface-based coordinate systems using
the proposed technique. Manual editing may result in a slight
increase in surface accuracy, mainly in noncortical regions.5

Finally, the models generated with these techniques have been
shown to accurately represent the pial and white matter surfaces
to within 1/2 mm [48].

II. M ETHODS

The topology correction procedure begins with a previously
constructed model of the cortical surface. All the results shown
in this paper use a cortical surface reconstruction procedure
that produces a highly detailed geometric description of the
gray–white matter boundary, as well as the pial surface of the
human cortex, as described in [30], [31], and [48]. It is impor-
tant to note that the details of the segmentation and initial surface
reconstruction are completely separate from that of ensuring the
correct topology. Thus, other segmentation/reconstruction pro-
cedures can be employed in a modular fashion in place of those
used here.

Briefly, the surface reconstruction procedure we employ be-
gins with a high-resolution T1-weighted image, and removes in-
tensity variations due to low-frequency bias fields. The skull is
then removed by shrink-wrapping a deformable ellipsoidal tem-
plate onto the inner-boundary of the skull. Next, a binary seg-

5For example, studies of the thickness of the cortex require the surface rep-
resentations to be placed with subvoxel precision. In this type of study, we typ-
ically manually inspect and edit the large defects due to anatomical departures
from spherical topology, such as the ventricles and the basal ganglia, as well as
a small number of cortical locations.



72 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 1, JANUARY 2001

mentation procedure is applied to the skull-stripped image such
that each voxel is assigned to one of two classes: white matter or
not white matter. An automated algorithm then finds seed points
in each cerebral hemisphere and automatically disconnects the
corpus callosum in order to generate two connected masses of
voxels, each of which represents a cortical hemisphere. The ex-
terior of each connected mass is covered with vertices, edges
and triangles resulting in an initial surface representation of each
cortical hemisphere.

The surface deformation methods described earlier seek to
find a mapping from an initial surface (typically a sphere,
although patches of the plane have been used as well), to the
cortical surface

(1)

The necessary and sufficient condition for to have the
proper topology is that the mapping be a homeomorphism,
that is a continuous bijection [49].6 The difficulty of finding
such an is that the target surface is significantly less smooth
than the initial one. Thus, large geometric deformations must
be introduced into the initial surface in order to generate an
accurate model of the cortex. In order to avoid this difficulty,
we propose to find a mapping

(2)

This is a significantly easier task asis much smoother than
. If is a homeomorphism, then the two surfaces are topo-

logically equivalent and no further action is required. Typically,
however, the surface model will not be homeomorphic to the
target surface (e.g., a sphere). The topology correction then con-
sists of finding regions in which the inverse of the candidate
is multivalued and correcting it, thus constructing a homeomor-
phism. This is accomplished by discarding the surface tessella-
tion in these regions and generating a new, topologically cor-
rect tessellation, resulting in a surface with the proper topology.
More specifically, the algorithm proceeds as follows (the times
in parentheses were obtained running the algorithm on a typical
dataset on a 500-MHz Pentium III):

1) Find a mapping from the original surface onto a sur-
face with the desired topology (a sphere in this case), such
that is a homeomorphism on as much of the surface as
possible. We call such an aquasi-homeomorphic map.
(1 h)

2) Find all regions on the target surfacein which the in-
verse mapping is multivalued. These are detectable
as regions in which edges in the tessellation intersect.
Mark all vertices in a face with an intersecting edge as
ambiguous. (4 min)

3) Segment the ambiguous vertices into connected regions.
1 min)

4) Discard the tessellation in each defect, and generate a
new tessellation so that no edge intersection occurs in the

6Note that the while the connectivity is typically specified explicitly, topolog-
ical correctness in the embedding space requires that the surface deformation be
constrained to prevent the surface from intersecting itself. Techniques for pre-
venting self-intersection are typically quite computationally intensive and are
reviewed in [43].

targetsurface. This particular tessellation chosen will be
one that optimizes a metric measure in thesourcesurface.
Thus, the topology is specified by the target surface, but
the geometry by the source surface. (15 min)7

A. Spherical Inflation

The initial mapping of the cortical surface to that of a sphere
could be accomplished by simply projecting each point on the
folded surface to the closest point on the sphere. However, doing
so would result in large regions of the initial mapping being non-
homeomorphic (i.e., substantial folds on the spherical surface),
causing the subsequent numerical integration to be time con-
suming and prone to local minima. Instead, we use a simple
procedure to unfold and smooth the folded cortical surface so
that it approaches that of a sphere whose origin is the centroid
of the initial surface. After applying this procedure, the surface
can then be projected with relatively few folds. The algorithm
consists of iteratively updating the position of each vertex based
on a smoothness force , and a radial spherical force

(3)

where is the position of the th vertex at iteration number
and the smoothness force is given by

(4)

where
set of vertices neighboring theth vertex;
number of vertices in the tessellation;

and surface normal at location and its transpose,
respectively.8

The smoothness term moves each vertex in the direction of
the centroid of its neighbors, while projecting out the average
inwards movement this creates over the entire surface.

The radial term simply drives each vertex toward the surface
of a sphere with the desired radius

(5)

where is the radial projection of onto the sphere with ra-
dius . Note that we have omitted the functional dependence on
the iteration number in (4) and (5) to avoid notational clutter.
We use an on the order of 100 mm as this results in a sphere
with about the same total surface area as an average cortex, and
a of 0.25 to allow sufficient smoothing to take place during
the spherical inflation. Once the inflation has converged, the sur-
face is projected so it lies precisely on the surface of a sphere of
radius .

Fig. 1 illustrates this process, showing a sequence of lateral
views of the spherical inflation process. Sulcal regions are col-

7The computational complexity of step 4) is quadratic in the number of ver-
tices contained within the convex hull of each defect. Minimal manual editing to
remove large defects caused by anatomical departures from spherical topology
due to structures such as the fornix or the basal ganglia can reduce this to a few
minutes.

8Each vertex is assigned a surface normal that is the normalized average of
the surface normals of all the triangles that it is a member of.
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Fig. 1. Example of initial transformation of folded cortical surface into spherical form via simultaneous smoothing and radial inflation. From leftto right: initial
cortical surface (gray/white interface), and surface after 25, 50, 75, 100 and 300 iterations of (3)–(5). The white arrow indicates a large fold caused by a topological
defect.

ored dark gray, and gyral light gray (based on mean curvature).
Note that by the end of the inflation process the majority of
cortex has been unfolded, with the bulk of the remaining folds
due to topological defects. An example of this can be seen in
Fig. 1 in the form of the large fold at the anterior end of the syl-
vian fissure (see white arrow at the right). This fold is due to a
hole through the basal ganglia, which creates one of the largest
defects on the surface.

B. Quasi-Homeomorphic Mapping

Once the initial spherical configuration has been established,
we wish to modify the mapping in order construct a homeomor-
phism. This procedure consists of two separate steps. In the first
step, a mapping is found from the folded surface to a sphere
that is maximally homeomorphic, which we term aquasi-home-
omorphicmapping. Next, regions of that are multivalued
are detected and discarded, and a new mapping is established in
these regions, resulting in a global homeomorphism.

In generating the mapping , we are only concerned with
its topological properties, that is, we wish to be as close to
a homeomorphism as possible. A mapping is a homeomor-
phism if the determinant of the Jacobian matrix of is non-
singular, and the mapping itself is continuous. This is of course
the multidimensional analog of monotonicity. To construct the
mapping, we minimize an energy functional that directly penal-
izes regions in which the determinant becomes zero or negative,
thus encouraging positive definiteness.9 Note that this is the
only term in the energy functional—no preservation of metric
properties is needed.

9We could equivalently construct a negative definite mapping.

The determinant of the Jacobian yields a measure of what
happens to an oriented area element under the mapping. With
this in mind, we use an energy functional based on the com-
pression/expansion each face experiences under the mapping.
This compression/expansion is transformed by a nonlinearity
designed to discount the influence of positive definite regions.
More specifically, if the initial area on the folded surfaceof
the th face in the tessellation is , and the area on the spher-
ical surface at time of the numerical integration is , then
the energy functional we minimize is given bywhereis the
number of faces in the tessellation, andis a positive constant.
The logarithmic nonlinearity limits the penalization of compres-
sion primarily to negative semi-definite regions, as can be seen
in the plot to the right of (6) at the bottom of the page, which
shows over the interval [ 0.1 0.1]. Computing the derivative
of with respect to a change in the area of theth face yieldsThe
derivative of is simply a sigmoid (shown at the right, again
over the interval 0.1 0.1]), the slope of which is defined by

. The extent to which highly compressed positive definite re-
gions are penalized is thus determined by. In the limit of large

, only negative semi-definite regions are penalized. In practice,
a somewhat smaller (e.g., 100) results in a mapping with
fewer folds, as extending the energy functional slightly into pos-
itive regions encourages vertices in these areas to move away
from folds, giving vertices in negative definite regions spherical
surface area to move into. This sigmoid nonlinearity in the areal
term is now used in flattening [32], maximally isometric spher-
ical mapping [32], and spherical morphing of cortical surfaces
into an atlas [33]. In all of these contexts, we have found that
it provides a strong “regularizing” effect, limiting the solution
space to positive definite mappings where possible.
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In order to complete the definition of the topology term of
the energy functional, we consider theth triangle in the surface
tessellation depicted in Fig. 2, with unit normal vector, and
edges and connecting the vertex to two of its neigh-
bors (note that bold-faced symbols denote vector quantities).
The unit normal is given on the original manifold by the nor-
malized cross product of the edgesand , while the area of
the triangle is half the cross product of and dotted with
the unit normal (i.e., the triple scalar product). In the spherical
representation, the normal vector field can be given a consistent
orientation on the surface10 using the embedding space, and
becomes anorientedarea, which may take on negative values
indicating folds in the surface. We choose an outward pointing
normal vector on the surface of the sphere, given by

(8)

In order to derive a rule for modifying the vertex positions,
we compute the directional derivative of with respect to the
position of the th vertex

(9)

The first factor is given by (7), shown at the bottom of the pre-
vious page. The second is the change in the area of theth tri-
angle caused by moving theth vertex, which can be computed
from the prior description of the metric properties of the tessel-
lation using the chain rule as

(10)

The partials of the change in the legs with respect to a change in
the vertex position are dependent on what position the vertex in
question occupies in a given triangle (refer to Fig. 2 for subscript
meaning)

otherwise

otherwise.
(11)

The mapping is modified by numerically minimizing (6),
employing the gradient given by (7)–(10) and the numerical in-
tegration scheme described in [32]. After each iteration of the
numerical minimization, the surface is projected back onto the
sphere, obviating any need for additional terms in the energy
functional to keep the surface from leaving the sphere. This re-
sults in a new mapping that is typically positive definite
across more than 99% of the cortical surface area. Thus, the ma-
jority of the initial surface reconstruction can be retained with
only a small percentage of the cortical surface requiring fur-
ther attention. This is illustrated in Fig. 3(a) which displays the
sum-squared error [ in (6)] and Fig. 3(b) the percentage of the

10This is always possible except in pathological cases such as the Möbius
strip that are said to be nonorientable [50].

Fig. 2. Metric properties of the triangular tessellation.

(a)

(b)

Fig. 3. (a) Plot of sum-squared error and (b) percent negative area during
minimization of (6).

surface area that is folded on the spheret, each plotted against
iteration number of the numerical minimization offor a typ-
ical surface.

C. Detection of Surface Defects

After the quasi-homeomorphic mapping has been con-
structed, the spherical surface is examined for regions of non-
invertibility, as these are areas where the current tessellation
must be discarded and a new one constructed in order to ensure
the proper topology. The noninvertible regions are characteriz-
able as portions of the sphere in which more than one triangle
overlap, and can thus be detected by checking for intersecting
edges in the tessellation. The overlap detection procedure uti-
lizes a spatial lookup table (LUT) that lists the faces passing
through each 1 mmvoxel, making the procedure quite rapid
(less than 4 min). After the spatial LUT has been constructed,
each edge in the tessellation is checked for intersection with all
the edges in every face that passes through any of the voxels that
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(a) (b)

Fig. 4. (a) Multivalued regions of the quasi-homeomorphic mapping painted onto the original folded surface as well as (b) an inflated surface of the same brain
as Fig. 1 for better visualization. The arrows indicate a defect across the posterior and anterior banks of the central sulcus shown in more detail in Fig. 5.

(a) (b)

Fig. 5. Close-up of defective region indicated by arrows in Fig. 4. White coloring indicates region of ambiguity. The white bar at the bottom of (a) is a scale bar
indicating 1 cm.

the candidate edge passes through. Defective vertices are then
defined as those vertices that are part of a face in which any of
the edges are in the set of intersecting edges. The defective ver-
tices are then partitioned into connected components for further
processing, with each connected component representing a de-
fective region that will require retessellation.

The results of this procedure are shown in Fig. 4, with the
noninvertible regions painted bright white on a folded [Fig. 4(a)]
and inflated [Fig. 4(b)] hemisphere (the inflated representation
is useful for visualization purposes as it exposes sulcal regions.
Details of this technique are given in [32]. The bulk of these am-
biguous regions are the product of small topological defects the
causes of which are difficult to find in the segmented volume,
as they are frequently the result of incorrect surface connectivity
that does not lie in any of the three cardinal planes. In fact, al-
though visual inspection only reveals a handful of defects, the

actual Euler number of this surface is101, indicating a total
of 51 topological defects in the polygonal representation.

The arrows in Fig. 4 indicate a defect that spans the banks
of the central sulcus, a close-up of which is shown in Fig. 5.
Note that the region of ambiguity encompasses two different
paths between the points on the posterior and anterior banks of
the central sulcus, paths that cannot be continuously deformed
from one to the other. This erroneous connectivity changes the
geodesic distance between the two endpoints from the correct
surface distance of 5 or 6 centimeters to a few millimeters—an
error of over an order of magnitude, a point to which we will
return in Section II-D.

Fig. 6 shows the same defect (as indicated by the red arrow)
in (a) coronal, (b) sagitta, and (c) horizontal slices through the
volume, with the surface intersection overlaid in yellow. As can
be seen here and in the prior figures, the defect arises due to
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(a) (b) (c)

Fig. 6. Sagittal, coronal, and horizontal views of a T1 volume with the surface intersection overlaid in yellow. The red arrows indicate the location of a defect in
the region of the central sulcus.

(a) (b)

Fig. 7. Schematic of defect types: (a) a “handle”, and (b) a “hole”.

a small misclassification at a particularly narrow point in the
sulcus.

D. Surface Retessellation

The labeled defective regions on the surface include incor-
rect pieces of surface that give rise to erroneous connectivity
and, hence, must be removed, as well as regions of true cortical
surface that should be retained. While these regions were found
usingtopologicalcriteria, namely edge intersection in the spher-
ical space, the decision of what to keep and what to discard must
be made on ageometricbasis. This decision corresponds to the
arbitration between alternative, incompatible paths discussed in
Section I. Explicitly finding these discrete alternative paths is
a difficult problem. Instead, we solve the problem implicitly,
through the manner in which the defective surface regions are
retessellated. The retessellation algorithm we use is a greedy
one [51] in which an ordered list is created of all possible edges
in each defect and its border, with the shortest edge that does

not intersect with the existing tessellation being added at each
step.11 After all possible edges have been added; two triangular
faces are generated for each edge, completing the polygonal rep-
resentation of the surface. This then gives a topologically correct
tessellation of the patch of in the defect [51] and, hence, pre-
serves the spherical topology of the entire closed surface.

The decision as to what to keep and what to discard is made
implicitly via the ordering of the edges. That is, if the edges in
one path are added to the tessellation prior to an incompatible
path, the edges in the second path will cause intersections with
the (already added) edges from the first path, and will, there-
fore, be discarded. Thus, the choice of what metric to use to
generate the ordering is a critical one, as it embodies the arbi-
tration process.

In practice, two types of defects occur—which we term
“holes” and “handles.” Holes consist of small perforations

11Only the convex hull of the defect and its border must be checked to prohibit
edge intersection.
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(a) (b) (c)

Fig. 8. Close-up view of a surface defect during smoothing: (a) 0, (b) 30, and (c) 60 iterations of surface smoothing. The white bar at the bottom is a scale bar
indicating 1 cm.

in planar sheets of white matter, while handles are bridges
between nonadjacent points in cortex. A schematic example of
each type of defect is given in Fig. 7, which shows a “hole”
[Fig. 7(a) ] and a “handle” [Fig. 7(b) ]. Each defect of either
type will reduce the Euler number by two, indicating their
topological equivalence. The essential distinguishing charac-
teristic between these two situations is the spatial scale of the
hole, or, equivalently, whether the surface along the borders of
the hole or the surface on the bridge is more in agreement with
the remainder of the surface. That is, the hole is an essentially
one-dimensional (1-D) tunnel through a 2-D sheet, while the
handle is a 1-D bridge between adjacent 2-D sheets. It is these
geometric features of the defect that we exploit in order to
generate the proper ordering.

The most obvious choice for a metric to us for ordering the
edges is the 3-D Cartesian metric in the space in which the
folded surface is embedded. However, in general, the use of a
simple 3-D metric to generate the edge ordering will fail. The
reason for this can be seen in Fig. 7, in which the distance be-
tween points 1 and 2 in the hole shown in Fig. 7(b) may be as
short or shorter than the distance between points 1 and 3, as
sheets of white matter are frequently only a single millimeter
thick (which is what causes perforations in the first place!). A
similar caveat applies to the handle defect illustrated in Fig. 7(a):
the bridge from point 1 to point 2 may be shorter than the dis-
tance from point 1 to point 3. In fact, in general, the defective
edges will be short, as the regions in which defects occur are
precisely those in which sheets of white matter are very thin,
or opposing banks of a sulcus pass in close proximity to one
another. These problems with the use of a 3-D metric for gen-
erating the edge ordering arise because the 3-D metric incurs
the same drawback in this context as it does in others [33]—it
does not respect the geometry of the surface. That is, distances in
3-D will in general be poor approximations of surface geodesics.
Thus, a retessellation algorithm based on 3-D distances will fail
in these situations, causing sulci to be “sewn shut.”

What is needed is a distance metric that is governed by the
nondefective parts of the surface—that is, something approxi-
mating surface geodesics that are only allowed to pass through
the “correct” surface. However, since this is precisely the dis-

tinction we are hoping to clarify, a somewhat different approach
is required. Another characteristic of the topological defects is
that they create surface paths which give rise to dramatically dif-
ferent shortest path lengths between points on opposite ends of
the defect.12 In order to detect the defect, we wish to modify the
surface in such a way as to make this fact more apparent. Toward
that end, we design a simple smoothing procedure similar to the
one used in [30] and [32] for visualization purposes, as well as
the smoothing term in the spherical inflation described in Sec-
tion II-A. This technique models the surface tessellation as a
network of springs with zero resting length. Allowing the sur-
face to evolve under this model smooths the surface by moving
each vertex in the direction of the centroid of its neighbors. In
defective regions this results in a pronounced stretching as the
bulk of the surface pulls the two endpoints of the defect apart,
exploiting the essentially 1-D nature of the defect.

An example of this process is illustrated in Fig. 8, which
shows snapshots of the smoothing procedure in a region of the
central sulcus defect. Note the stretching of the edges in the
defect relative to those in the remainder of the tessellation in
Fig. 8(c). Ordering the edges in inverse order of their length on
this smoothed surface results in the proper retessellation, shown
in Fig. 9, with Fig. 10 depicting the corrected surface overlaid
onto orthogonal slices.

More specifically, the retessellation algorithm proceeds as
follows. First, the tessellation in defective areas is discarded, in-
cluding all edges and faces in the original polygonal represen-
tation contained within defective areas, as well as all vertices
that lie within of regions in which the determinant of the Ja-
cobian of the spherical mapping is nonpositive. The vertices in
negative semi-definite regions typically comprise less than 1%
of the tessellation, and must be removed to ensure that the final
mapping is a homeomorphism. An edge list is then generated
containing an entry for every pairwise combination of vertices
in the defect and its convex hull. Next, the smoothing algorithm
is applied to the surface, and the edge list is ordered by Carte-
sian distance on the smoothed surface (the smoothed surface is
similar to the one shown in Fig. 4). The ordered edges are then

12In cases where this is not true, the defect is extremely local andany retes-
sellation will be satisfactory.
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(a) (b)

Fig. 9. (a) Topologically correct folded surface with a white arrow indicating the previous location of the defect and (b) close-up of same tessellation in corrected
region.

Fig. 10. Topologically correct surface (after fixing) overlaid on T1 volume.

sequentially added, without allowing intersection between each
candidate edge and the convex hull of the defect and its border
in the spherical space, yielding a topologically correct tessella-
tion of a patch of . After all possible edges have been added;
each pair of vertices that share an edge is examined for common
neighbors, with one triangle being generated for each common
neighbor that does not lie within another putative triangle. This
results in two triangular faces being generated for each edge,
completing the polygonal representation of the surface.

This procedure is illustrated in Figs. 8, 9, and –10, which
show a close-up view of the central sulcus surface defect with
the original tessellation overlaid in red. Note that the lengths
of the edges crossing the sulcus (i.e., the defect) in the orig-
inal surface shown in Fig. 8(a) are approximately equal to those
covering its banks. Thus, a retessellation algorithm based on
3-D distances will fail in this situation, causing the sulcus to

be “sewn shut.” The smoothing process is illustrated in Fig. 8(b)
and (c), which shows snapshots of this process in a region of the
defect. Note the stretching of the edges in the defect relative to
those in the remainder of the tessellation in Fig. 8(c). Ordering
the edges in inverse order of their length on this smoothed sur-
face and retessellating in the spherical space results in the proper
retessellation, shown in Fig. 9, with Fig. 10 depicting the cor-
rected surface overlaid onto orthogonal slices.

III. CONCLUSION

Models of the human cerebral cortex are important in a va-
riety of contexts, including visualization of functional and struc-
tural neuroimaging data, computational modeling of cortical
function, as well as statistical analysis of cortical properties.
In order for a model of the cortex to be useful in all of these
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domains it must be geometrically accurate as well as topolog-
ically correct. Unfortunately, many methods for constructing
such models sacrifice one of these properties in order to maxi-
mize the other. In this paper we have presented a technique that
preserves geometric accuracy while at the same time insuring
topological correctness.

Topological correctness and geometric accuracy are impor-
tant for a number of reasons. Incorrect topology manifests it-
self through spurious connections between potentially disparate
parts of cortex. These connections are problematic in that they
result in geodesic distances between cortical locations being er-
roneous by potentially large amounts. Further, such improper
connectivity prevents accurate inflation for visualization pur-
poses, or transformation to spherical or flattened formats, as the
surface or pieces of it are no longer homeomorphic to a sphere
or a sheet, respectively.

Geometric accuracy is necessary for correct and complete
representation of the cortex. Techniques that enforce topology
can result in surface models that underestimate the true cortical
surface area, particularly in narrow deep sulci. These regions
are difficult to accurately reconstruct using deformable surface
models, as they require the surface to pass through local minima
in the deformation energy functional. Using the topology cor-
rection procedure outlined in this paper, defects caused by
narrow openings in sulci are easily corrected, as they give rise
to surface geodesics that typically differ from distances along
the majority of the surface by more than an order of magnitude.

Furthermore, the topology correction procedure detailed in
this paper can be used as a preprocessing step for a deformable
surface algorithm. This may be useful in the context of multiple
surface deformations in which the pial and white matter surfaces
are deformed simultaneously, each giving clues to the location
of the other [35]. Initializing the deformation procedure with
surfaces that are correctly positioned over the vast majority of
the cortex should result in considerably faster and more robust
surface generation.

Another point to note is that while this technique has been
used in the context of enforcing spherical topology onto a ge-
ometrically accurate model of the cortex, it is applicable to en-
forcing the topology of any regular orientable manifold onto an-
other such manifold. For example, portions of the cortex should
be topologically equivalent to a sheet. This topology could be
enforced on cortical patches by applying the topology correc-
tion procedure in the plane.

Finally, we have reconstructed over 200 cortical hemispheres
using the topology correction technique. Our experiments in-
dicate that the vast majority of surfaces require no manual in-
tervention for use in visualization or establishing surface-based
coordinate systems. The software used in the generation of these
surfaces is freely available,13 and it is our hope that these tools
will make surface-based analysis a routine part of neuroimaging
studies of functional and structural properties of the human cere-
bral cortex.

13surfer.nmr.mgh.harvard.edu.
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