SDSU Systems Neuroscience

Professor:

Marty Sereno -- email: msereno@sdsu.edu

class time (2018): MWF 9:00-9:50 AM (grad: F 8:00-8:50 AM)

location: SSW 2667 expect to take copious notes

exam mostly based on lecture content

Readings:

readings, lecture videos (links, top of homepage) background reading (neuroscience reference texts): Squire, Berg et al., eds. (2008/2013) Fundamental

Neuroscience, 3rd/4th ed.

Kandel, Jessell, Schwartz, eds. (2008/2012) Principles of Neural Science, 5th/6th ed.

Nieuwenhuys, Voogd, van Huijzen (2008) The Human Central

Nervous System, 4th ed.

background reading (undergrad neuroscience textbooks): Nicholls et al. (2012) From Neuron to Brain, 5th ed.

Bear, Connors, and Paradiso (2006/2015) Neuroscience: Exploring the Brain, 3rd/4th ed.

Exams:

multiple question short-answer, each question with a few subsections, examples given in lecture

undergraduate: 2 midterms, final -- short-answer (midterms: 30% each, final: 40%)

graduate: 2 midterms, final (midterms: 24% each, final: 32%), and short final paper (20%)

old pdf answer keys from my similar UCSD Systems Neuroscience course (2007) here and here

Learning Objectives:

Students will be able to do the following:

(1) describe neuronal electrochemistry, development, and relation to simple dendritic, Hebbian, and attractor models

(2) diagram neuroanatomical structures/connections from low to high levels in visual, somatosensory, auditory sensory systems

(3) diagram structures/connections involving superior colliculus, cerebellum, striatum, motor cortex, and limbic systems

(4) analyze sequential processing stages in visual, somatosens., and auditory systems from signals and systems perspective

(5) describe neural models of eye movement planning, hierarchical motor control, and body position and orientation N.B.: consult with me if a disability hinders your performance so we can use University resources to maximize learning

Lecture Topics: (Spring 2018)

Week of Jan 15 (WF) -- Introduction

introduction to course membrane (Nernst) potential

Week of Jan 22 (MWF) -- Cellular Physiology

action potential, voltage-gated channels post-synaptic potentials, ligand-gated channels NMDA channels, synaptic-timing-dependent plasticity

Week of Jan 29 (MWF) -- Relation to Neural Models

dendritic propagation, equivalent circuits relation to simple Hebbian network models relation to simple attractor network models

Week of Feb 05 (MWF) -- Neural Development

gastrulation, neural plate, neural tube, optic cup cylindrical coordinate system, temporal lobe formation the 'rule of Sereno'

Week of Feb 12 (MWF) -- Visual System I

retinal circuitry and streams

dLGN (layers, non-lagged/lagged) visual map structure (conformal maps)

Week of Feb 19 (MWF) -- Visual System II

general scheme for cortical layers edges, brightness, and primary motion in V1 1st midterm review

1st Midterm Exam -- Fri, Feb 23

Week of Feb 26 (MWF) -- Visual System III

aperture problems in general (color intro) aperture problems for vis. pattern translation, optical flow visual attention visual object recognition

Week of Mar 05 (MWF) -- Somatosensory System

somatosensory receptor types arm diagram (length, force, alpha/gamma motoneurons) pathways (dorsal column, spinothalamic, spinocerebellar) somatosensory cortical areas somatosensory cortical plasticity

Week of Mar 12 (MWF) -- Auditory System I

auditory transduction and hair cell receptors monaural cochlear nuclei responses

Week of Mar 19 (MWF) -- Auditory System II

auditory brainstem sound localization echolocation and speech sound processing auditory cortical areas

Week of Mar 26 -- SPRING BREAK

Week of Apr 02 (MWF) -- Motor System I

gaze stabilization (VOR, OKN, pursuit) superior colliculus retinal and motor maps sensorimotor coord transforms (double-step memory saccade) multisensory map interactions -- sup. collic visual/auditory multisensory map interactions -- VIP somatosensory/visual

Week of Apr 09 (MWF) -- Motor System II

motor system overview cortical and spinal pattern generators motor cortex 2nd midterm review 2nd Midterm Exam -- Fri, Apr 13

Week of Apr 16 (MWF) -- Motor System III

cerebellum anatomy, physiology cerebellum and learning/conditioning connectional overview connectional/functional overview striatum striatum and hierarchical sequencing

Week of Apr 23 (MWF)-- Limbic System

connectional overview limbic system H.M. and intermediate term memory vs. inertial guidance place cells head direction cells grid cells models: theta rhythms, attractor networks

Week of Apr 30 (MW) -- Neuroimaging EEG/MEG

hardware, spin vs. precession, Bloch equation spin echo and gradient echo phase-sensitive detection, intro to complex numbers, frequency-encoding -- incorrect and correct intuitions signal-to-noise neural source of EEG/MEG signals current source density, linear forward solution course review

May 07 -- Final Exam 8-10 AM

Graduate students: final paper due May 10