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CHAPTER 5

 

Computers vs. 
Cells (and Minds)

 

There have been many attempts to understand 
natural symbol systems that draw upon our 
knowledge of artificially constructed digital 
computing systems. Digital computers are the 
latest in a long line of human artifacts that have 
been used as analogical source domains for the 
human mind. They certainly have a more 
variegated and adaptable architecture than steam 
engines or water fountain piping. However, 
computers share with other products of human 
manual and mental skill a dependence on humans 
for their birth, growth, maintenance, and 
reproduction. Because they did not have to emerge 
’by themselves’ from the non-mental (or 
non-biological) world, they can take advantage of 
modes of organization that are different from those 
employed by naturally-occurring systems like cells 
and people. When a disk drive fails, a human can 
replace it; when a program or an operating system 
crashes, a human can edit, recompile, and restart it 
(or more commonly, curse, restart, and remember 
to avoid). The much more stringent conditions on 
biological and cultural evolution don’t allow 
’crashes’--at least among the survivors--of which 
there always have to be some. Modern life can be 
traced back through an unbroken reticulum of cell 
generations that haven’t crashed since the origin of 
life. Similarly, cultural evolution depends 
absolutely on an unbroken stream of new 
individuals who are capable of and who actually 
did develop peculiarly human activity patterns in 
their brains.

Having a smart maintainer, though, is hardly an 
impediment to making an artificial cognitive 
system (or artificial life); instead, it surely must 
open up new routes to intelligence. And many 
different routes have been tried. So far, it has not 
yet been possible to construct artificial systems 
with the same degree of resilient common sense as 
the natural ones have; and larger systems 
approaching a fraction of the size of a human 
cognitive system become harder and harder to 
maintain. Finally, none of these systems are even 
vaguely close to self-reproduction. On the other 
hand, it 

 

has

 

 been possible in a few short decades to 
construct and debug systems that have far 
surpassed humans abilities in many different 
specialized areas. And here, we have arrived at the 
main point--obvious, but often neglected--that 
modern digital computers were designed to be 
programmable for human ends, not to maintain 

themselves and reproduce. Our goal here is to 
describe the architecture that makes this possible, 
explain why it is that way, and then show how it 
differs materially from the architecture introduced 
in the previous chapter.

The attempt to model intelligence with computers 
has generated a large amount of peevish 
controversy (e.g., Searle (1980), Fodor and 
Pylyshyn (1988), and responses to them) as the 
focus of interest and funding has see-sawed back 
and forth between symbolic artificial intelligence 
and more neural-like approaches. Despite 
continual improvements, symbolic artificial 
intelligence has lost the self-assuredness it had in 
the 1970’s. As neuroscience began to grow 
explosively, some of AI’s excitement, funding, and 
even researchers were captured by the rebirth of 
connectionism and neural modeling in the mid 
1980’s. After a decade of connectionism, though, 
some of the complaints originally directed against 
AI--particularly the difficulty of generalizing 
beyond restricted ’microworlds’--have re-surfaced. 
And some of the hard problems tackled by 
symbolic AI were not necessarily solved better, but 
often temporarily put aside. This is particularly 
true of tasks that require establishing 
variable-sized temporary representations--like 
problem solving, scene understanding, and 
language comprehension. The point of the present 
analogy, in fact, is to try to come up with more 
neural-like solutions to postponed, but very real 
problems. Symbol-use in computers will be our 
last diversion. The comparison with cellular 
symbols provides a fresh perspective on these 
perennially rehearsed debates.

 

The idea and realization of a digital 
computer

 

In returning to the earliest modern description of 
the idea of a computer--before it was possible to 
actually make one--it is interesting to find that the 

 

source

 

 domain for the human/computer analogy 
was human thought; Turing envisaged his abstract 
computer as a mechanized, idealized version of a 
human consciously following rules with pencil and 
paper. The analogy was turned around only later, 
after the development of higher level programming 
languages in the late 1950’s. We will start with the 
original Turing idea and then see how most of its 
key aspects have been retained fifty years later.

The abstract Turing machine has a linear tape with 
individual cells on it each capable of holding one 
symbol, a head that can hold a symbol of its own 
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and that can read and write tape symbols, and then 
the operating instructions--a table that associates 
each possible input pair (current head symbol, 
current tape symbol) with an output triple (new 
head symbol, new tape symbol, left or right move). 
The original Turing machine is local and serial, 
only executing one action (reading then 
writing/moving) at a time. It reads and writes 
symbols with digital effects (noiseless, ideal 
symbols). Finally, it assumes that the tape is inert 
and one-dimensional--that is, if the head writes a 
symbol at a particular tape cell at one time, it is 
guaranteed to find the same symbol there the next 
time the head gets back to that cell. The tape 
symbols don’t interact with the world or with each 
other. Because the symbols in a Turing machine 
live completely in their own world, they will have 
an arbitrary relationship (of the symbol-object 
kind) with anything they might be taken to stand 
for in the world or in the mind of the user.

The idea of detaching the symbols and 
symbol-processor from anything in the world was 
not new; it was a thread running through early 20th 
century analytic philosophy and philosophy of 
science. But the deceptively simple local serial 
symbol processing machinery turned out to be 
quite powerful and general. A Universal Turning 
machine is one that can simulate any other Turing 
machine given a description of the other one on its 
tape--in essence, it is a programmable Turing 
machine. Universal Turing machines can be very 
small; Marvin Minsky found one with only 28 
entries in its input/output table (see Haugeland, 
1985). A Universal Turing machine turned out to 
be exactly as powerful as any computer in terms of 
the stepwise solvable problems that it could solve 
(though certainly nowhere as efficient as a modern 
computer). Adding additional parallel heads and 
tapes doesn’t change what can be solved either 
(Hopcroft and Ullman, 1979).

The Turing machine is an abstract idea. To make a 
real physical computer, some additional key 
engineering ideas were needed. One key 
requirement is a mechanism for generating the 
digital effects assumed by Turing in the reading 
and writing of symbols. This is no more (or less) 
than a simple categorization whereby a class of 
similar tokens (examples) are taken to be exactly 
equivalent to the category exemplar. A particular 
token of a tape symbol (or head state symbol) must 
be recognized or written just as surely as any other 
token of that symbol (or head state). In a real 
microprocessor or disk drive, symbols are coded as 
binary patterns (each bit is OFF or ON--e.g., 0 or 5 
volts). But real voltages in the millions of gates of 

a microprocessor never measure exactly 0 or 5 
volts; they have to be actively classified as one or 
the other. When a voltage on a particular line is a 
little off--say, 4.97 volts--it must nevertheless have 
exactly the same effect as 5 volts; similarly, 
voltages a little above or below 0 must act exactly 
like true 0. Elaborate mechanisms have been 
developed to maintain this digital idealization 
despite conduction losses, electrical noise, 
imperfect transistors, stray capacitance which 
rounds pulses, disk imperfections, and so on. 
Stochastic computation is possible; but it is fair to 
say that virtually all real work (even on stochastic 
computation!) is done with non-stochastic 
computers that are characterized by an absolutely 
strict maintenance of the digital idealization. 
Modern microprocessors can perform billions of 
these perfect classifications per second for weeks 
at a time and reliably store and retrieve trillions of 
ideal symbols from a disk without a single error.

The other key physical ingredient of a computer is 
the provision for long one-dimensional chains of 
symbols that can serve as the substrate for a 
digital-effects recognition and writing 
device--namely RAM and disk space. As in the 
original Turing idea, the crucial property of these 
symbol chains is that the symbols in them do not 
directly interact with each other. The recognition 
device in the CPU can count on finding a symbol 
where it was last put; it doesn’t have to worry 
about between-symbol interactions occurring 
while it’s ’not looking’. There are, of course, some 
transitional cases at the boundaries of a 
computational system. For example, an 
analog-to-digital (A/D) sound card may turn 
smoothly changing voltages from a microphone 
into digital bits that it inserts into specialized 
registers, which may then be addressed as memory 
locations by the CPU. A mouse or keyboard has 
similar effects. Or a disk drive may be intelligent 
enough to move some bits to a new location when 
the old location gets flaky, while making it appear 
to the CPU that nothing happened. But the main 
point is that in the great bulk of conventional 
computation, the string of symbols in memory is 
one-dimensional; it does not routinely ’fold up’ 
and interact with itself. Symbols only interact with 
each other via the CPU. All of the convenient 
higher level language abstractions depend on 
fundamentally on an architecture like this.

Modern computers typically have a slightly 
different, more efficient architecture than a Turing 
machine. Instead of a head that can only move one 
cell at a time, the CPU ’head’ can go directly to 
any location on the memory ’tape’ in a small 
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number of steps. Program and data are then easier 
to separate. There is a specialized part of the CPU 
(stack, registers) where data is temporarily put 
when it is actively being worked on, and high 
speed, temporary cache memory. Finally, there are 
a variety of things that are done in parallel to speed 
things up (for example, at an if-A-do-X-if-B-do-Y 
branch point, both X 

 

and

 

 Y may be done 
concurrently with the A vs. B test, and then the 
unneeded one of X and Y discarded). But none of 
these things fundamentally changes the idea of a 
computer as initially outlined by Turing; this more 
practical von Neumann architecture is not capable 
of computing things that a Turing machine can’t 
compute. And in the best of all programmer’s 
worlds, memory still appears to be one (really) 
long 1-D string.

 

Computers vs. cells as 
symbol-using systems

 

When we turn to cells (’life machines’), we can 
point quite uncontroversially to long symbol 
strings that are accessed with digital effects, and 
that behave as inert one-dimensional objects. But 
these symbols are used in a remarkably different 
way than they are in computers (Alberts et al., 
1994). First, let’s see why the symbol strings are 
similar. Each living cell contains somewhere 
between 1 and 200 megabytes of DNA code. 
Messenger RNA sequences are transcribed from 
this permanent DNA store and are then recognized 
by the cell during the process of protein synthesis 
to contain three-nucleotide codons (words). Each 
of the 4 nucleotide bases--adenosine (A), thymine 
(T), guanine (G), and cytosine (C)--can be 
described as having two binary features or 
bits--"long/short" and "strong/weak". A and G 
(purines) are longer than C and T (pyrimidines); 
but then G and C form a stronger bond (3 hydrogen 
bonds) than A and T (two hydrogen bonds). Thus, 
A, for example, is [+long] [-strong]. There are 
therefore 4

 

3

 

 = 64 possible three-nucleotide words. 
After excluding three stop codons, the remaining 
61 codons are grouped into 20 different sets that 
are actually distinguished (thus, 5 out of the 6 bits 
per 3-nucleotide codon would have more than 
sufficed since 5 bits can already code for 32 
different things if there is no redundancy).

Thought of as static structures, it is easy to forget 
the underlying continuity that is being categorized 
to generate the ideal digital effects that occur when 
the cellular symbols are copied or used. For any 
actual recognition event in which a nucleotide base 
is being paired with its complement (e.g., a G 

recognizing a C), the binary features that direct this 
pairing will only be approximately present. The 
units in a long chain of a polynucleotides are in 
constant 

 

relative

 

 motion so that the long crevice 
presented by the short C in a strand-to-be-read is 
only approximately ’long’--any given C will be 
bulging, receding, and rotating a bit during the 
recognition event, which will nevertheless result in 
a full G being matched to it. The recognition 
accuracy is not quite as high as a computer. But but 
it still has to be quite good; there are several 
hundred megabytes of code in many eukaryotic 
cells, and a single bit error can sometimes disable a 
protein.

These symbol strings also have the property of 
being inert and one-dimensional. This means that 
they don’t generally interact with themselves at a 
distance. It is true that eukaryotic cells, which have 
a lot of DNA, have developed archival strategies to 
help them manage their extremely long DNA 
molecules. For example, eukaryotic DNA is often 
wrapped around histone cores to form a 
beads-on-a-string structure which then condenses 
into a 6-bead-thick strand, which is itself then 
condensed into even higher order loops (Alberts et 
al., 1994, pp. 342-346). And there are DNA 
twisting and untwisting and untangling enzymes 
(more on all this later). But this uniform 
condensation for the most part ignores the 
sequence; and DNA can even be read while still 
wrapped around the histones. Barring various 
mutational disasters, the recognition apparatus can 
count on finding a particular DNA base just where 
it was in the sequence the next time it comes by.

As with symbol chains in a computer, we find 
exceptions around the edges; for example, the 
tertiary structure of mRNA’s may control whether 
or not they are interpreted (for now, we will 
postpone discussion of the important structural 
RNA’s--tRNA, rRNA, 7S RNA, cutting and 
splicing RNA’s, nucleolar RNAs). But, in general, 
most mRNA’s are disentangled and fed through the 
ribosome, one codon at a time, and the particular 
amino acid chosen to add to the chain on the basis 
of the current codon is not affected by codons at a 
distance.

But when we turn to how cells actually 

 

use

 

 these 
code strings, we find that they have put them to 
work in a remarkably different fashion than 
computers. Instead of reading code for the purpose 
of 

 

operating on other code

 

, cells use the code to 
make proteins (especially enzymes), which they 
then use to maintain a metabolism (see Fig. 13). 
Proteins are constructed by simply bonding amino 
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acids into an initially 1-D chain that is parallel to 
the recognized codons (words) in the messenger 
RNA chain and then allowing it to fold up in 3-D. 
Protein folding is a particularly intimate kind of 
folding that brings specific units into tight contact 
with each other to form a unique, densely packed 
3-D structure for each particular sequence (quite 
different from the uniform warehousing of DNA 
described above). Despite the initial linearity of the 
output string, the result of reading the code can in 
no way be construed as writing symbol chains of 
the same kind that were read, as occurs in the 
operation of a computer; in fact, there is no 
code-writing in the cellular ’life machine’ at all, as 
we have previously noted.

Proteins are complex molecules, each containing 
thousands of atoms in a precise 3-D arrangement 
that is crucial to their function. The DNA 
sequences in the genome, however, constitute only 
a trivial portion of what would be required to 
explicitly specify the 3-D structure of a protein; a 
single gene typically contains only a few hundred 
bytes of information. This information goes such a 
long way because it depends for its interpretation 
on the existence of elaborate geometrical 
constraints due to covalent chemical bonding, 
weak electronic interactions, the hydrophobic 
effect, the structural details of the 20 amino acids, 
and so on--a large set of 'hard-wired' effects that 
the cell harnesses, but cannot change. Once the 
amino acid chain has been synthesized, its 
self-assembly (folding) is directed by these 
prebiotic, non-symbolic chemical constraints.

There are of course, some switch-like digital 
effects in proteins; for example, an enzyme may be 
switched on and off by a particular cofactor. But 
then isolated digital effects are found all over, at 

many levels. There is a kind of digital effect when 
an ant falls into the conical sand well of an ant 
lion--once the ant gets ’close enough’, it always 
ends up in the jaws. This is not a computer. And 
neither is a cell. There is no sense in which the 
basic function of a protein can be said to depend on 
it being a chain of non-interacting digital subunits. 
The subunit amino acids of a protein must directly 
interact in a non-digital way 

 

without

 

 the 
intervention of a CPU to realize the intended 
function of the whole protein. 

 

Computer-like cells and cell-like 
computers

 

A brief inspection of Figure 13 reveals that there is 
a fundamentally different locus of symbol-object 
arbitrariness in the computer and the cell. In the 
computer, there is an arbitrary relation between 
particular segments of code and their referents in 
the world. This has been widely trumpeted as the 
fundamental advance brought about by the 
computational metaphor (e.g., Pylyshyn, 1984). It 
doesn’t matter whether a particular symbol in a 
memory location stands for a hamburger or some 
part of a sub-sub-lemma in a computerized proof 
of the four-color theorem. The hamburger program 
will make the computer do the right thing for 
hamburgers just as the four color proving program 
will make it do the right thing in that much more 
abstract domain.

In the cell, by contrast, the main symbol-object 
arbitrariness is between code-like DNA and RNA, 
on one hand, and object-like amino acids on the 
other. There is much less representational 
flexibility in the rest of the system. For example, in 
protein assembly, the cell can’t control what a 

FIGURE  13: Code use in computers vs. cells

COMPUTER CELL

symbols

CPU

(person)

world

rules of
chemistry

metabolism

world

DNA symbols

proteins
arbitrary
relation

amino
acids



 

47 

 

particular amino acid is going to do in any given 
protein. It is stuck with the hardwired chemistry of 
the peptide linkage, van der Waals forces, the 
hydrophobic effect, and so on; it can only vary the 
input sequence and see what comes out. Similarly, 
there is little flexibility in defining the relationship 
between a folded protein and the rest of the world. 
If a folded protein doesn’t have the right shape to 
stick to (some molecular component of) a 
hamburger, then there is nothing the cell can do 
except try a different sequence. In fact, at the 
cellular level, the ability to establish different maps 
across the arbitrary connection has not been 
’exercised’ much at all--the genetic code is almost 
universal.

As in the previous chapter, it helps to imagine what 
each system would be like if it used symbols more 
like the other one. First we can ask about a cell that 
was made more like a computer. This would be a 
cell that was actually able to write DNA code as a 
result of reading DNA according to a rule table. 
This is not nearly as far-fetched as our last chapter 
scenarios; in fact, there has been some progress 
toward trying to solve hard computational 
problems with various artificial DNA systems 
(Adleman, 1994; Ouyang et al., 1997). Our project 
here, by contrast, is to turn a cell into a stand-alone 
computer. The most straightforward version of a 
computing cell would be a DNA-based Turing 
machine. Cells can already ’write DNA’ in the 
minimal sense of DNA replication or reverse 
transcription (RNA => DNA); but this makes for a 
particularly boring Turing machine. To compute 
something useful, there would minimally have to 
be the ability to read one DNA symbol and then 
write a 

 

different

 

 one. There are a class of 
DNA-maintenance enzymes that fix up various 
aspects of DNA after the slings, arrows, and 
mutagens of a hard day (e.g., tacking lost purines 
back on, unsticking thymine dimers, and others). 
Overly aggressive forms of these can actually 
introduce substitutions into a DNA strand while 
attempting to ’repair’ it. There are also a set of 
’DNA-editing’ enzymes with similar effects. It 
might be possible to generate a fuller set of these 
by directed mutation. The modified enzymes 
would also have to maintain some minimal state 
themselves. With a large enough set, it might be 
possible to generate a transition table for a useful, 
or even a Universal Turing machine. With the 
latter, the program could be generated with a DNA 
synthesizer. It is not clear that it would ever be 
possible to make a useful computer this way. 
Turing machines are slow, and DNA repair and 
editing enzymes operate so much more slowly than 
silicon gates do that it seems unlikely that even the 

truly massive parallelism possible with replicating 
cells would ever allow us to catch up to the ever 
faster and easier-to-program CPU’s that make it to 
the desktop each year. Nevertheless, it is pretty 
clear what would have to be done to turn a cell into 
a computer. Perhaps the most interesting 
unanswered question this brings up is why cells 
haven’t come up with this themselves.

Conversely, we might imagine turning a computer 
into something more like a cell. In this case, we 
would have to add on an elaborate ’chemical 
soup’--imagine a large electronic network into 
which activity patterns could be injected and where 
they would propagate around and interact with 
each other. Instead of the computer reading code 
and writing code, it would only read code and then 
use it to assemble patterns in this large add-on 
device. The hamstrung ’programmer’ would be 
unable to directly control the many properties of 
the add-on (e.g., how the injected activity patterns 
interacted with each other) and could only use 
code to control the sequence of patterns that were 
introduced--a greatly reduced job description.

From the perspective of these two scenarios, it is 
pretty clear why computers have been designed as 
they have been. For the purpose of helping out 
humans solve mathematical proofs, control 
ignition timing, simulate weather, model neural 
circuits, transcribe speech to text, simulate the 
sound of an overdriven vacuum tube guitar 
amplifier, reformat office memos, and many other 
amazingly diverse things, you 

 

certainly

 

 wouldn’t 
want a computer to use its code more like a cell 
does. A computer whose code was completely 
entangled with a large, recalcitrant dynamical 
system would be 

 

very

 

 difficult to program. The 
idea of making a clean break with the real world 
and letting symbols operate on other symbols 
without any outside interference is a wonderful 
and useful idea. These kinds of systems have 
turned out to be tremendously more practical than 
early twentieth century philosophers could ever 
have conceived (imagine explaining to Frege that 
even toasters are now controlled by formal systems 
that process symbols at a rate of millions per 
second).

 

Computers vs. cells as models of the 
mind

 

But I hope to eventually convince you that those 
philosophers and Turing were probably wrong 
about disconnected symbol processing as a model 
of human thought (despite, ironically, thought 
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being the source domain for the original analogy). 
Figure 14 is similar to the previous figure but 

instead of comparing a computer to a cell, it more 
explicitly lays out a comparison between the 
computer and cell 

 

analogies

 

 for language 
understanding in the human mind. The two 
analogies agree on the existence of external speech 
sounds as well as on internal categorized copies of 
them. After that, the models are completely 
different. The computer analogy postulates a much 
larger set of internal symbols not having anything 
directly to do with speech sounds, and, just beyond 
specialized sensory modules, a symbol processing 
core that operates on the non-speech sound 
symbols (e.g., Fodor, 1983). This is all, of course, 
supposed to be implemented in neural circuits. But 
the neural symbols are supposed to retain certain 
crucial computer-like characteristics; the digital 
aspects (usually called "causal properties") of the 
symbols that are actually used by the internal 
symbol processing device are supposed to be 
causally detached from the world, just as in the 
original Turing idea (Fodor, 1983; Pylyshyn, 
1984).

 

Simulation, production systems, and 
cells

 

At this point, those with some knowledge of 
artificial intelligence are likely to be surprised or 
outraged that we have hardly said anything so far 
about higher level virtual machines or high level 
program architectures--the things that are usually 
singled out for as models for a new brain operating 

system. They would complain that no one today 
tries to compare the grungy low level details and 
fast clock speed of a von Neumann CPU to a brain. 
Turing did initially say his machine was like 
conscious rule-following by a human (a 
mathematician). But after the development of 
compilers and higher level languages, the 
Turing-machine-like lower level of a modern 
computer running, say, a production system, is now 
merely an implementational detail; the 
computational architecture of the 

 

production 
system

 

 (e.g., Anderson, 1983; Newell, 1990) is 
what is supposed to be important.

One problem with these arguments is that they 
forget just how good computers are at simulating 
other systems (cf. Haugeland, 1985). Computers 
can be used to prove mathematical theorems, 
which does look quite a lot like symbol processing; 
but they can also be used to simulate the weather. 
Most people would not want grant symbol 
processing to the actual physical weather. There is 
a smooth gradation of intermediate examples. 
Computers can simulate a serial production 
system; but they can also simulate a parallel 
production system (Rosenbloom et al., 1987). They 
can simulate an abstract neural net with simple 
units (Hopfield, 1982); but then they can also 
simulate a realistic neural net with neurons that 
have Hodgkin-Huxley conductances and branched 
dendrites with hundreds of compartments (Koch 
and Segev, 1998). They can simulate an abstract 
neural net simulating a parallel noise tolerant 

FIGURE  14: Two analogies for human symbol-use

COMPUTER-LIKE MIND CELL-LIKE MIND

processor

world

rules of pattern
assembly in

metabolism"

world

internal auditory

arbitrary
relation

visual cortex
patterns

symbol

internal
other

external
speech symbols

external
speech symbols

symbols

"mental

visual cortexpattern
demons

symbols

internal auditory
symbols



 

49 

 

production system (Touretzky and Hinton, 1986). 
All this flexibility critically depends on being able 
to read and write non-interacting 
symbols--something that is often 

 

not

 

 true of the 
system being simulated.

The problem is that since computers are such good 
simulation machines, it seems hard to argue that 
what is being done in the 

 

system being simulated

 

 is 
computation without being able to see the only 
kind of physical hardware we know for sure is 
actually capable of computation--namely, 
something like a von Neuman machine with 
symbol reading and writing, and non-interacting 
symbol chains. As with cells, the argument is that 
the ’bottom level’ shouldn’t be ignored. Most of 
what happens in the world isn’t computation 
(arguments about hypothetical computers made out 
of pecking pigeons aside). If it was, we wouldn’t 
have had to work to make usable computers. 
Computers have a very specific architecture. It 
seems different than the architecture of the brain.

But what about production systems--even if they 

 

are

 

 simulated, and therefore not positively a pure 
form of computation? Don’t they have the right 
architecture anyway, philosophical disputes about 
what precisely computation is aside? Leaving aside 

also, for the moment, the brain, let’s compare a 

 

production system

 

 to a 

 

cell

 

. A number of aspects of 
the architecture of cellular metabolism are, in fact, 
very much like a production system. The enzymes 
(productions) of metabolism operate on their 
chemical substrates (objects in working memory) 
in a cytoplasm (shared memory space), which 
requires that the enzymes have a great deal of 
specificity to avoid inappropriate interactions. 
Different enzymes see many of the objects in 
working memory in parallel, but only operate on 
the ones that they ’match’. As in some kinds of AI 
production systems, enzymes can take other 
enzymes as substrates (productions modifying 
other productions). There is even a certain amount 
of conflict resolution since a substrate can only be 
in one place at a time. There can be multiple copies 
of particular objects, again like in a production 
system. To help with scheduling, the cell 
compartmentalizes the cytoplasm with some areas 
reserved for active synthesis and other areas with 
more long term storage of objects (working 
memory vs. long-term memory).

There is a key difference, though, between a 
standard production system model and a cell. The 
code in the cellular system is used strictly to make 
the enzyme ’productions’ (see Fig. 15). Once the 

’productions’ are made, they fold up and operate 
primarily in a non-symbolic milieu and on 
non-symbolic things in the cytoplasm. Instead of 
recognizing code-like features of their substrates, 
enzymes recognize the distributed surface shape of 
their substrates. Most of the substrates 
themselves--for example, small molecules, 
polysaccharides, polypeptides--are not code 

strings. The cell has no access to the convenient 
symbolic names we have given these things; they 
have to do hard work to recognize and distinguish 
their three-dimensional surfaces. It is true that 
some proteins bind to DNA code and can 
recognize code sequences on it; but the purpose is 
almost entirely to decide which part of the DNA 

FIGURE  15: Working memory vs. metabolism
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should be turned into non-code-like folded 
enzymes.

A persistent and extremely cooperative AI 
supporter might say, well then, we could model the 
key recognition events between the enzyme-like 
productions and the working memory objects with 
a more complex non-binary-like surface-shape 
recognition mechanism rather than with 
productions that simply look for a few binary 
features. At this point, I would grant that we would 
finally be getting close to the beginnings of a 

 

simulated

 

 model of a cell (and, we will soon argue, 
a simulated human brain). Once the complex 
constraints on how enzymes actually get their 
shapes and how they actually modify their 
substrates begin to be added in, however, the 
system would immediately become much less 
code-like, and much less programmable--just like a 
real cell. All these additional constraints are what 
makes the cellular code go so far; the DNA code 
for an entire living, reproducing, self-maintaining 

 

E. coli

 

 bacterium is a fraction of the size of the 
code for Microsoft Word. Most of us would agree 
that life is a better bang for the byte.

So Turing was a little wrong about his initial idea 
of what a computer was. It is actually a general 
purpose simulation machine to help humans rather 
than a human thought simulation machine. Most 
thoughts (even of mathematicians) are far too 
attached by non-arbitrary connections to the world 
to be very good for general purpose, 
computer-style simulation. Humans are very bad at 
most of the things that computers are used for. 
Instead of trying to defend outposts of human 
superiority against computers that are using 
obviously different methods than humans (chess 
playing computers are an excellent example), we 
should recognize that the human-thought-like parts 

 

omitted

 

 from computers are exactly the things that 
make them better than humans for simulation.

 

Why aren't there more 
naturally-occurring cell-like 
symbol-using systems?

 

Living cells are all based on the same kind of 
symbol-using system that, as far as we can tell, 
came into existence soon after the earth cooled 
enough for there to be sedimentary rocks. The 
basic ideas are:

 

•

 

use mostly pre-existing, pre-biotic amino acid 
meaning units

 

•

 

use 1-D symbol strings to control only the order of 
assembly of meaning units

 

•

 

bond the pre-systemic meanings into chains to 
exploit the rules of chemistry via chain folding 
(non-adjacent interactions)

 

•

 

arrange a production system-like metabolism 
controlled by thousands of bonded-together meaning 
chains

 

•

 

use material (mRNA, tRNA, rRNA) halfway 
between a symbols (DNA) and meanings (protein) to 
help decode symbols

 

At first glance (especially to someone without 
detailed knowledge of molecular biology), this 
doesn't seem that hard. An immediate question is, 
why, if it was successful enough to coat the entire 
earth’s surface with megabytes of DNA code per 
square millimeter hasn't a parallel system of this 
kind naturally appeared again and again?

One answer is that once a cellular living system 
came into existence, it was able to eat up the early 
stages of all the other ones that ever ’tried’ to come 
into existence afterward, at least at the 
single-cellular level. But, what about symbol-using 
systems at other, higher levels of organization? 
(lower levels are possible, but perhaps less likely 
since cellular symbols are already single molecules 
with each symbol segment containing only a 
handful of atoms). We can consider long 
symbol-chains and symbol-use in both biological 
and geological contexts--e.g., non-human-brain 
tissues, animal social groups including ants, the 
geology and hydrology of streams, the slow 
convective currents in the earth's mantle, volcanos, 
and so on.

A moment's thought brings us to the conclusion 
that these other systems don't have the proper 
connectivity or interrelatedness, or crowdedness to 
make something like a cell work, process the code 
chains fast enough to keep everything assembled 
(proteins are assembled at the rate of a couple of 
amino acids per second--but they also break down 
relatively rapidly), and in general, prevent attack 
by dissipative forces of the prebiotic soup. 
Certainly it 

 

is

 

 possible to dissect out many of the 
different reactions of cellular metabolism and run 
them each individually in a test tube. Like the 
brain-in-multiple-vats question of Dan Dennett 
(could brain function survive neurons being 
separated into many separate but 
intercommunicating vats?), the question is whether 
we could implement "cell-in-multiple-tiny-vats". 
This, of course, is exactly how biochemists and 
molecular biologists figured out how cells work. 
But, in a real cell, these things are all crowded 
together in an amazingly intimate fashion; codon 
(word) recognition for cellular mRNA code 
streams takes place with thousands of irrelevant 



 

51 

 

constituents of the cytoplasm constantly crashing 
into the ribosomal apparatus, the code chain, and 
the amino acid meanings (Goodsell, 1991). The 
crucial point, however, is that is it not possible to 
'uncrowd' all these reactions and 
reaction-controllers into separate compartments 
and still get the thing to work right, at least with 
enzymes the way they are now. For example, time 
constants of reactions are intimately interwoven 
into the mechanism. The cell in multiple vats (or 
perhaps, the "really small Chinese 
gymnasium/room" argument) won't work for 
seemingly trivial reasons.

Now this might seem a mere cavil; wouldn't it 
work if we just got all the reactions right and made 
different stable intermediates that could sit around 
longer while we more leisurely transferred them 
between bins? Perhaps, but remember that this 

thing has to actually live in the world without a 
biochemist if we really wanted it to be freely-living 
and -reproducing like a real cell. As we noted, even 
the relatively stable parts of the cell, like DNA, are 
actively maintained--millions of base pairs are 
repaired every day. There is no magic barrier 
here--just a complex set of constraints on a 
dynamical system made out of a soup of 
reasonably stable covalently-bonded molecules. 
We don't really have an explicit, large-scale theory 
of how the dynamics of cells work, or exactly what 
it is about that dynamics that is lacking from 
streams or other geological systems. But we have 
very little difficulty distinguishing living cells from 
other non-living stuff in the world. For now, it 
seems reasonable to think that making such a 
system demands a certain connectedness and 
crowdedness, for lack of better terms, that the most 
dynamical regimes just don't have. [5,700]


