

43

CHAPTER 5

Computers vs.
Cells (and Minds)

There have been many attempts to understand
natural symbol systems that draw upon our
knowledge of artificially constructed digital
computing systems. Digital computers are the
latest in a long line of human artifacts that have
been used as analogical source domains for the
human mind. They certainly have a more
variegated and adaptable architecture than steam
engines or water fountain piping. However,
computers share with other products of human
manual and mental skill a dependence on humans
for their birth, growth, maintenance, and
reproduction. Because they did not have to emerge
’by themselves’ from the non-mental (or
non-biological) world, they can take advantage of
modes of organization that are different from those
employed by naturally-occurring systems like cells
and people. When a disk drive fails, a human can
replace it; when a program or an operating system
crashes, a human can edit, recompile, and restart it
(or more commonly, curse, restart, and remember
to avoid). The much more stringent conditions on
biological and cultural evolution don’t allow
’crashes’--at least among the survivors--of which
there always have to be some. Modern life can be
traced back through an unbroken reticulum of cell
generations that haven’t crashed since the origin of
life. Similarly, cultural evolution depends
absolutely on an unbroken stream of new
individuals who are capable of and who actually
did develop peculiarly human activity patterns in
their brains.

Having a smart maintainer, though, is hardly an
impediment to making an artificial cognitive
system (or artificial life); instead, it surely must
open up new routes to intelligence. And many
different routes have been tried. So far, it has not
yet been possible to construct artificial systems
with the same degree of resilient common sense as
the natural ones have; and larger systems
approaching a fraction of the size of a human
cognitive system become harder and harder to
maintain. Finally, none of these systems are even
vaguely close to self-reproduction. On the other
hand, it

has

 been possible in a few short decades to
construct and debug systems that have far
surpassed humans abilities in many different
specialized areas. And here, we have arrived at the
main point--obvious, but often neglected--that
modern digital computers were designed to be
programmable for human ends, not to maintain

themselves and reproduce. Our goal here is to
describe the architecture that makes this possible,
explain why it is that way, and then show how it
differs materially from the architecture introduced
in the previous chapter.

The attempt to model intelligence with computers
has generated a large amount of peevish
controversy (e.g., Searle (1980), Fodor and
Pylyshyn (1988), and responses to them) as the
focus of interest and funding has see-sawed back
and forth between symbolic artificial intelligence
and more neural-like approaches. Despite
continual improvements, symbolic artificial
intelligence has lost the self-assuredness it had in
the 1970’s. As neuroscience began to grow
explosively, some of AI’s excitement, funding, and
even researchers were captured by the rebirth of
connectionism and neural modeling in the mid
1980’s. After a decade of connectionism, though,
some of the complaints originally directed against
AI--particularly the difficulty of generalizing
beyond restricted ’microworlds’--have re-surfaced.
And some of the hard problems tackled by
symbolic AI were not necessarily solved better, but
often temporarily put aside. This is particularly
true of tasks that require establishing
variable-sized temporary representations--like
problem solving, scene understanding, and
language comprehension. The point of the present
analogy, in fact, is to try to come up with more
neural-like solutions to postponed, but very real
problems. Symbol-use in computers will be our
last diversion. The comparison with cellular
symbols provides a fresh perspective on these
perennially rehearsed debates.

The idea and realization of a digital
computer

In returning to the earliest modern description of
the idea of a computer--before it was possible to
actually make one--it is interesting to find that the

source

 domain for the human/computer analogy
was human thought; Turing envisaged his abstract
computer as a mechanized, idealized version of a
human consciously following rules with pencil and
paper. The analogy was turned around only later,
after the development of higher level programming
languages in the late 1950’s. We will start with the
original Turing idea and then see how most of its
key aspects have been retained fifty years later.

The abstract Turing machine has a linear tape with
individual cells on it each capable of holding one
symbol, a head that can hold a symbol of its own

44

and that can read and write tape symbols, and then
the operating instructions--a table that associates
each possible input pair (current head symbol,
current tape symbol) with an output triple (new
head symbol, new tape symbol, left or right move).
The original Turing machine is local and serial,
only executing one action (reading then
writing/moving) at a time. It reads and writes
symbols with digital effects (noiseless, ideal
symbols). Finally, it assumes that the tape is inert
and one-dimensional--that is, if the head writes a
symbol at a particular tape cell at one time, it is
guaranteed to find the same symbol there the next
time the head gets back to that cell. The tape
symbols don’t interact with the world or with each
other. Because the symbols in a Turing machine
live completely in their own world, they will have
an arbitrary relationship (of the symbol-object
kind) with anything they might be taken to stand
for in the world or in the mind of the user.

The idea of detaching the symbols and
symbol-processor from anything in the world was
not new; it was a thread running through early 20th
century analytic philosophy and philosophy of
science. But the deceptively simple local serial
symbol processing machinery turned out to be
quite powerful and general. A Universal Turning
machine is one that can simulate any other Turing
machine given a description of the other one on its
tape--in essence, it is a programmable Turing
machine. Universal Turing machines can be very
small; Marvin Minsky found one with only 28
entries in its input/output table (see Haugeland,
1985). A Universal Turing machine turned out to
be exactly as powerful as any computer in terms of
the stepwise solvable problems that it could solve
(though certainly nowhere as efficient as a modern
computer). Adding additional parallel heads and
tapes doesn’t change what can be solved either
(Hopcroft and Ullman, 1979).

The Turing machine is an abstract idea. To make a
real physical computer, some additional key
engineering ideas were needed. One key
requirement is a mechanism for generating the
digital effects assumed by Turing in the reading
and writing of symbols. This is no more (or less)
than a simple categorization whereby a class of
similar tokens (examples) are taken to be exactly
equivalent to the category exemplar. A particular
token of a tape symbol (or head state symbol) must
be recognized or written just as surely as any other
token of that symbol (or head state). In a real
microprocessor or disk drive, symbols are coded as
binary patterns (each bit is OFF or ON--e.g., 0 or 5
volts). But real voltages in the millions of gates of

a microprocessor never measure exactly 0 or 5
volts; they have to be actively classified as one or
the other. When a voltage on a particular line is a
little off--say, 4.97 volts--it must nevertheless have
exactly the same effect as 5 volts; similarly,
voltages a little above or below 0 must act exactly
like true 0. Elaborate mechanisms have been
developed to maintain this digital idealization
despite conduction losses, electrical noise,
imperfect transistors, stray capacitance which
rounds pulses, disk imperfections, and so on.
Stochastic computation is possible; but it is fair to
say that virtually all real work (even on stochastic
computation!) is done with non-stochastic
computers that are characterized by an absolutely
strict maintenance of the digital idealization.
Modern microprocessors can perform billions of
these perfect classifications per second for weeks
at a time and reliably store and retrieve trillions of
ideal symbols from a disk without a single error.

The other key physical ingredient of a computer is
the provision for long one-dimensional chains of
symbols that can serve as the substrate for a
digital-effects recognition and writing
device--namely RAM and disk space. As in the
original Turing idea, the crucial property of these
symbol chains is that the symbols in them do not
directly interact with each other. The recognition
device in the CPU can count on finding a symbol
where it was last put; it doesn’t have to worry
about between-symbol interactions occurring
while it’s ’not looking’. There are, of course, some
transitional cases at the boundaries of a
computational system. For example, an
analog-to-digital (A/D) sound card may turn
smoothly changing voltages from a microphone
into digital bits that it inserts into specialized
registers, which may then be addressed as memory
locations by the CPU. A mouse or keyboard has
similar effects. Or a disk drive may be intelligent
enough to move some bits to a new location when
the old location gets flaky, while making it appear
to the CPU that nothing happened. But the main
point is that in the great bulk of conventional
computation, the string of symbols in memory is
one-dimensional; it does not routinely ’fold up’
and interact with itself. Symbols only interact with
each other via the CPU. All of the convenient
higher level language abstractions depend on
fundamentally on an architecture like this.

Modern computers typically have a slightly
different, more efficient architecture than a Turing
machine. Instead of a head that can only move one
cell at a time, the CPU ’head’ can go directly to
any location on the memory ’tape’ in a small

45

number of steps. Program and data are then easier
to separate. There is a specialized part of the CPU
(stack, registers) where data is temporarily put
when it is actively being worked on, and high
speed, temporary cache memory. Finally, there are
a variety of things that are done in parallel to speed
things up (for example, at an if-A-do-X-if-B-do-Y
branch point, both X

and

 Y may be done
concurrently with the A vs. B test, and then the
unneeded one of X and Y discarded). But none of
these things fundamentally changes the idea of a
computer as initially outlined by Turing; this more
practical von Neumann architecture is not capable
of computing things that a Turing machine can’t
compute. And in the best of all programmer’s
worlds, memory still appears to be one (really)
long 1-D string.

Computers vs. cells as
symbol-using systems

When we turn to cells (’life machines’), we can
point quite uncontroversially to long symbol
strings that are accessed with digital effects, and
that behave as inert one-dimensional objects. But
these symbols are used in a remarkably different
way than they are in computers (Alberts et al.,
1994). First, let’s see why the symbol strings are
similar. Each living cell contains somewhere
between 1 and 200 megabytes of DNA code.
Messenger RNA sequences are transcribed from
this permanent DNA store and are then recognized
by the cell during the process of protein synthesis
to contain three-nucleotide codons (words). Each
of the 4 nucleotide bases--adenosine (A), thymine
(T), guanine (G), and cytosine (C)--can be
described as having two binary features or
bits--"long/short" and "strong/weak". A and G
(purines) are longer than C and T (pyrimidines);
but then G and C form a stronger bond (3 hydrogen
bonds) than A and T (two hydrogen bonds). Thus,
A, for example, is [+long] [-strong]. There are
therefore 4

3

 = 64 possible three-nucleotide words.
After excluding three stop codons, the remaining
61 codons are grouped into 20 different sets that
are actually distinguished (thus, 5 out of the 6 bits
per 3-nucleotide codon would have more than
sufficed since 5 bits can already code for 32
different things if there is no redundancy).

Thought of as static structures, it is easy to forget
the underlying continuity that is being categorized
to generate the ideal digital effects that occur when
the cellular symbols are copied or used. For any
actual recognition event in which a nucleotide base
is being paired with its complement (e.g., a G

recognizing a C), the binary features that direct this
pairing will only be approximately present. The
units in a long chain of a polynucleotides are in
constant

relative

 motion so that the long crevice
presented by the short C in a strand-to-be-read is
only approximately ’long’--any given C will be
bulging, receding, and rotating a bit during the
recognition event, which will nevertheless result in
a full G being matched to it. The recognition
accuracy is not quite as high as a computer. But but
it still has to be quite good; there are several
hundred megabytes of code in many eukaryotic
cells, and a single bit error can sometimes disable a
protein.

These symbol strings also have the property of
being inert and one-dimensional. This means that
they don’t generally interact with themselves at a
distance. It is true that eukaryotic cells, which have
a lot of DNA, have developed archival strategies to
help them manage their extremely long DNA
molecules. For example, eukaryotic DNA is often
wrapped around histone cores to form a
beads-on-a-string structure which then condenses
into a 6-bead-thick strand, which is itself then
condensed into even higher order loops (Alberts et
al., 1994, pp. 342-346). And there are DNA
twisting and untwisting and untangling enzymes
(more on all this later). But this uniform
condensation for the most part ignores the
sequence; and DNA can even be read while still
wrapped around the histones. Barring various
mutational disasters, the recognition apparatus can
count on finding a particular DNA base just where
it was in the sequence the next time it comes by.

As with symbol chains in a computer, we find
exceptions around the edges; for example, the
tertiary structure of mRNA’s may control whether
or not they are interpreted (for now, we will
postpone discussion of the important structural
RNA’s--tRNA, rRNA, 7S RNA, cutting and
splicing RNA’s, nucleolar RNAs). But, in general,
most mRNA’s are disentangled and fed through the
ribosome, one codon at a time, and the particular
amino acid chosen to add to the chain on the basis
of the current codon is not affected by codons at a
distance.

But when we turn to how cells actually

use

 these
code strings, we find that they have put them to
work in a remarkably different fashion than
computers. Instead of reading code for the purpose
of

operating on other code

, cells use the code to
make proteins (especially enzymes), which they
then use to maintain a metabolism (see Fig. 13).
Proteins are constructed by simply bonding amino

46

acids into an initially 1-D chain that is parallel to
the recognized codons (words) in the messenger
RNA chain and then allowing it to fold up in 3-D.
Protein folding is a particularly intimate kind of
folding that brings specific units into tight contact
with each other to form a unique, densely packed
3-D structure for each particular sequence (quite
different from the uniform warehousing of DNA
described above). Despite the initial linearity of the
output string, the result of reading the code can in
no way be construed as writing symbol chains of
the same kind that were read, as occurs in the
operation of a computer; in fact, there is no
code-writing in the cellular ’life machine’ at all, as
we have previously noted.

Proteins are complex molecules, each containing
thousands of atoms in a precise 3-D arrangement
that is crucial to their function. The DNA
sequences in the genome, however, constitute only
a trivial portion of what would be required to
explicitly specify the 3-D structure of a protein; a
single gene typically contains only a few hundred
bytes of information. This information goes such a
long way because it depends for its interpretation
on the existence of elaborate geometrical
constraints due to covalent chemical bonding,
weak electronic interactions, the hydrophobic
effect, the structural details of the 20 amino acids,
and so on--a large set of 'hard-wired' effects that
the cell harnesses, but cannot change. Once the
amino acid chain has been synthesized, its
self-assembly (folding) is directed by these
prebiotic, non-symbolic chemical constraints.

There are of course, some switch-like digital
effects in proteins; for example, an enzyme may be
switched on and off by a particular cofactor. But
then isolated digital effects are found all over, at

many levels. There is a kind of digital effect when
an ant falls into the conical sand well of an ant
lion--once the ant gets ’close enough’, it always
ends up in the jaws. This is not a computer. And
neither is a cell. There is no sense in which the
basic function of a protein can be said to depend on
it being a chain of non-interacting digital subunits.
The subunit amino acids of a protein must directly
interact in a non-digital way

without

 the
intervention of a CPU to realize the intended
function of the whole protein.

Computer-like cells and cell-like
computers

A brief inspection of Figure 13 reveals that there is
a fundamentally different locus of symbol-object
arbitrariness in the computer and the cell. In the
computer, there is an arbitrary relation between
particular segments of code and their referents in
the world. This has been widely trumpeted as the
fundamental advance brought about by the
computational metaphor (e.g., Pylyshyn, 1984). It
doesn’t matter whether a particular symbol in a
memory location stands for a hamburger or some
part of a sub-sub-lemma in a computerized proof
of the four-color theorem. The hamburger program
will make the computer do the right thing for
hamburgers just as the four color proving program
will make it do the right thing in that much more
abstract domain.

In the cell, by contrast, the main symbol-object
arbitrariness is between code-like DNA and RNA,
on one hand, and object-like amino acids on the
other. There is much less representational
flexibility in the rest of the system. For example, in
protein assembly, the cell can’t control what a

FIGURE 13: Code use in computers vs. cells

COMPUTER CELL

symbols

CPU

(person)

world

rules of
chemistry

metabolism

world

DNA symbols

proteins
arbitrary
relation

amino
acids

47

particular amino acid is going to do in any given
protein. It is stuck with the hardwired chemistry of
the peptide linkage, van der Waals forces, the
hydrophobic effect, and so on; it can only vary the
input sequence and see what comes out. Similarly,
there is little flexibility in defining the relationship
between a folded protein and the rest of the world.
If a folded protein doesn’t have the right shape to
stick to (some molecular component of) a
hamburger, then there is nothing the cell can do
except try a different sequence. In fact, at the
cellular level, the ability to establish different maps
across the arbitrary connection has not been
’exercised’ much at all--the genetic code is almost
universal.

As in the previous chapter, it helps to imagine what
each system would be like if it used symbols more
like the other one. First we can ask about a cell that
was made more like a computer. This would be a
cell that was actually able to write DNA code as a
result of reading DNA according to a rule table.
This is not nearly as far-fetched as our last chapter
scenarios; in fact, there has been some progress
toward trying to solve hard computational
problems with various artificial DNA systems
(Adleman, 1994; Ouyang et al., 1997). Our project
here, by contrast, is to turn a cell into a stand-alone
computer. The most straightforward version of a
computing cell would be a DNA-based Turing
machine. Cells can already ’write DNA’ in the
minimal sense of DNA replication or reverse
transcription (RNA => DNA); but this makes for a
particularly boring Turing machine. To compute
something useful, there would minimally have to
be the ability to read one DNA symbol and then
write a

different

 one. There are a class of
DNA-maintenance enzymes that fix up various
aspects of DNA after the slings, arrows, and
mutagens of a hard day (e.g., tacking lost purines
back on, unsticking thymine dimers, and others).
Overly aggressive forms of these can actually
introduce substitutions into a DNA strand while
attempting to ’repair’ it. There are also a set of
’DNA-editing’ enzymes with similar effects. It
might be possible to generate a fuller set of these
by directed mutation. The modified enzymes
would also have to maintain some minimal state
themselves. With a large enough set, it might be
possible to generate a transition table for a useful,
or even a Universal Turing machine. With the
latter, the program could be generated with a DNA
synthesizer. It is not clear that it would ever be
possible to make a useful computer this way.
Turing machines are slow, and DNA repair and
editing enzymes operate so much more slowly than
silicon gates do that it seems unlikely that even the

truly massive parallelism possible with replicating
cells would ever allow us to catch up to the ever
faster and easier-to-program CPU’s that make it to
the desktop each year. Nevertheless, it is pretty
clear what would have to be done to turn a cell into
a computer. Perhaps the most interesting
unanswered question this brings up is why cells
haven’t come up with this themselves.

Conversely, we might imagine turning a computer
into something more like a cell. In this case, we
would have to add on an elaborate ’chemical
soup’--imagine a large electronic network into
which activity patterns could be injected and where
they would propagate around and interact with
each other. Instead of the computer reading code
and writing code, it would only read code and then
use it to assemble patterns in this large add-on
device. The hamstrung ’programmer’ would be
unable to directly control the many properties of
the add-on (e.g., how the injected activity patterns
interacted with each other) and could only use
code to control the sequence of patterns that were
introduced--a greatly reduced job description.

From the perspective of these two scenarios, it is
pretty clear why computers have been designed as
they have been. For the purpose of helping out
humans solve mathematical proofs, control
ignition timing, simulate weather, model neural
circuits, transcribe speech to text, simulate the
sound of an overdriven vacuum tube guitar
amplifier, reformat office memos, and many other
amazingly diverse things, you

certainly

 wouldn’t
want a computer to use its code more like a cell
does. A computer whose code was completely
entangled with a large, recalcitrant dynamical
system would be

very

 difficult to program. The
idea of making a clean break with the real world
and letting symbols operate on other symbols
without any outside interference is a wonderful
and useful idea. These kinds of systems have
turned out to be tremendously more practical than
early twentieth century philosophers could ever
have conceived (imagine explaining to Frege that
even toasters are now controlled by formal systems
that process symbols at a rate of millions per
second).

Computers vs. cells as models of the
mind

But I hope to eventually convince you that those
philosophers and Turing were probably wrong
about disconnected symbol processing as a model
of human thought (despite, ironically, thought

48

being the source domain for the original analogy).
Figure 14 is similar to the previous figure but

instead of comparing a computer to a cell, it more
explicitly lays out a comparison between the
computer and cell

analogies

 for language
understanding in the human mind. The two
analogies agree on the existence of external speech
sounds as well as on internal categorized copies of
them. After that, the models are completely
different. The computer analogy postulates a much
larger set of internal symbols not having anything
directly to do with speech sounds, and, just beyond
specialized sensory modules, a symbol processing
core that operates on the non-speech sound
symbols (e.g., Fodor, 1983). This is all, of course,
supposed to be implemented in neural circuits. But
the neural symbols are supposed to retain certain
crucial computer-like characteristics; the digital
aspects (usually called "causal properties") of the
symbols that are actually used by the internal
symbol processing device are supposed to be
causally detached from the world, just as in the
original Turing idea (Fodor, 1983; Pylyshyn,
1984).

Simulation, production systems, and
cells

At this point, those with some knowledge of
artificial intelligence are likely to be surprised or
outraged that we have hardly said anything so far
about higher level virtual machines or high level
program architectures--the things that are usually
singled out for as models for a new brain operating

system. They would complain that no one today
tries to compare the grungy low level details and
fast clock speed of a von Neumann CPU to a brain.
Turing did initially say his machine was like
conscious rule-following by a human (a
mathematician). But after the development of
compilers and higher level languages, the
Turing-machine-like lower level of a modern
computer running, say, a production system, is now
merely an implementational detail; the
computational architecture of the

production
system

 (e.g., Anderson, 1983; Newell, 1990) is
what is supposed to be important.

One problem with these arguments is that they
forget just how good computers are at simulating
other systems (cf. Haugeland, 1985). Computers
can be used to prove mathematical theorems,
which does look quite a lot like symbol processing;
but they can also be used to simulate the weather.
Most people would not want grant symbol
processing to the actual physical weather. There is
a smooth gradation of intermediate examples.
Computers can simulate a serial production
system; but they can also simulate a parallel
production system (Rosenbloom et al., 1987). They
can simulate an abstract neural net with simple
units (Hopfield, 1982); but then they can also
simulate a realistic neural net with neurons that
have Hodgkin-Huxley conductances and branched
dendrites with hundreds of compartments (Koch
and Segev, 1998). They can simulate an abstract
neural net simulating a parallel noise tolerant

FIGURE 14: Two analogies for human symbol-use

COMPUTER-LIKE MIND CELL-LIKE MIND

processor

world

rules of pattern
assembly in

metabolism"

world

internal auditory

arbitrary
relation

visual cortex
patterns

symbol

internal
other

external
speech symbols

external
speech symbols

symbols

"mental

visual cortexpattern
demons

symbols

internal auditory
symbols

49

production system (Touretzky and Hinton, 1986).
All this flexibility critically depends on being able
to read and write non-interacting
symbols--something that is often

not

 true of the
system being simulated.

The problem is that since computers are such good
simulation machines, it seems hard to argue that
what is being done in the

system being simulated

 is
computation without being able to see the only
kind of physical hardware we know for sure is
actually capable of computation--namely,
something like a von Neuman machine with
symbol reading and writing, and non-interacting
symbol chains. As with cells, the argument is that
the ’bottom level’ shouldn’t be ignored. Most of
what happens in the world isn’t computation
(arguments about hypothetical computers made out
of pecking pigeons aside). If it was, we wouldn’t
have had to work to make usable computers.
Computers have a very specific architecture. It
seems different than the architecture of the brain.

But what about production systems--even if they

are

 simulated, and therefore not positively a pure
form of computation? Don’t they have the right
architecture anyway, philosophical disputes about
what precisely computation is aside? Leaving aside

also, for the moment, the brain, let’s compare a

production system

 to a

cell

. A number of aspects of
the architecture of cellular metabolism are, in fact,
very much like a production system. The enzymes
(productions) of metabolism operate on their
chemical substrates (objects in working memory)
in a cytoplasm (shared memory space), which
requires that the enzymes have a great deal of
specificity to avoid inappropriate interactions.
Different enzymes see many of the objects in
working memory in parallel, but only operate on
the ones that they ’match’. As in some kinds of AI
production systems, enzymes can take other
enzymes as substrates (productions modifying
other productions). There is even a certain amount
of conflict resolution since a substrate can only be
in one place at a time. There can be multiple copies
of particular objects, again like in a production
system. To help with scheduling, the cell
compartmentalizes the cytoplasm with some areas
reserved for active synthesis and other areas with
more long term storage of objects (working
memory vs. long-term memory).

There is a key difference, though, between a
standard production system model and a cell. The
code in the cellular system is used strictly to make
the enzyme ’productions’ (see Fig. 15). Once the

’productions’ are made, they fold up and operate
primarily in a non-symbolic milieu and on
non-symbolic things in the cytoplasm. Instead of
recognizing code-like features of their substrates,
enzymes recognize the distributed surface shape of
their substrates. Most of the substrates
themselves--for example, small molecules,
polysaccharides, polypeptides--are not code

strings. The cell has no access to the convenient
symbolic names we have given these things; they
have to do hard work to recognize and distinguish
their three-dimensional surfaces. It is true that
some proteins bind to DNA code and can
recognize code sequences on it; but the purpose is
almost entirely to decide which part of the DNA

FIGURE 15: Working memory vs. metabolism

PRODUCTION SYSTEM CELL

rules
of chemistry

world

DNA symbol string

amino acid
chain

world

production1production2

symbol strings in

symbol strings in

object´
object´´ object

condition

action

working memory

production memory

enzyme1

enzyme2

substrate´

substrate´´
substrate

non-symbolic
metabolism

condition
action

50

should be turned into non-code-like folded
enzymes.

A persistent and extremely cooperative AI
supporter might say, well then, we could model the
key recognition events between the enzyme-like
productions and the working memory objects with
a more complex non-binary-like surface-shape
recognition mechanism rather than with
productions that simply look for a few binary
features. At this point, I would grant that we would
finally be getting close to the beginnings of a

simulated

 model of a cell (and, we will soon argue,
a simulated human brain). Once the complex
constraints on how enzymes actually get their
shapes and how they actually modify their
substrates begin to be added in, however, the
system would immediately become much less
code-like, and much less programmable--just like a
real cell. All these additional constraints are what
makes the cellular code go so far; the DNA code
for an entire living, reproducing, self-maintaining

E. coli

 bacterium is a fraction of the size of the
code for Microsoft Word. Most of us would agree
that life is a better bang for the byte.

So Turing was a little wrong about his initial idea
of what a computer was. It is actually a general
purpose simulation machine to help humans rather
than a human thought simulation machine. Most
thoughts (even of mathematicians) are far too
attached by non-arbitrary connections to the world
to be very good for general purpose,
computer-style simulation. Humans are very bad at
most of the things that computers are used for.
Instead of trying to defend outposts of human
superiority against computers that are using
obviously different methods than humans (chess
playing computers are an excellent example), we
should recognize that the human-thought-like parts

omitted

 from computers are exactly the things that
make them better than humans for simulation.

Why aren't there more
naturally-occurring cell-like
symbol-using systems?

Living cells are all based on the same kind of
symbol-using system that, as far as we can tell,
came into existence soon after the earth cooled
enough for there to be sedimentary rocks. The
basic ideas are:

•

use mostly pre-existing, pre-biotic amino acid
meaning units

•

use 1-D symbol strings to control only the order of
assembly of meaning units

•

bond the pre-systemic meanings into chains to
exploit the rules of chemistry via chain folding
(non-adjacent interactions)

•

arrange a production system-like metabolism
controlled by thousands of bonded-together meaning
chains

•

use material (mRNA, tRNA, rRNA) halfway
between a symbols (DNA) and meanings (protein) to
help decode symbols

At first glance (especially to someone without
detailed knowledge of molecular biology), this
doesn't seem that hard. An immediate question is,
why, if it was successful enough to coat the entire
earth’s surface with megabytes of DNA code per
square millimeter hasn't a parallel system of this
kind naturally appeared again and again?

One answer is that once a cellular living system
came into existence, it was able to eat up the early
stages of all the other ones that ever ’tried’ to come
into existence afterward, at least at the
single-cellular level. But, what about symbol-using
systems at other, higher levels of organization?
(lower levels are possible, but perhaps less likely
since cellular symbols are already single molecules
with each symbol segment containing only a
handful of atoms). We can consider long
symbol-chains and symbol-use in both biological
and geological contexts--e.g., non-human-brain
tissues, animal social groups including ants, the
geology and hydrology of streams, the slow
convective currents in the earth's mantle, volcanos,
and so on.

A moment's thought brings us to the conclusion
that these other systems don't have the proper
connectivity or interrelatedness, or crowdedness to
make something like a cell work, process the code
chains fast enough to keep everything assembled
(proteins are assembled at the rate of a couple of
amino acids per second--but they also break down
relatively rapidly), and in general, prevent attack
by dissipative forces of the prebiotic soup.
Certainly it

is

 possible to dissect out many of the
different reactions of cellular metabolism and run
them each individually in a test tube. Like the
brain-in-multiple-vats question of Dan Dennett
(could brain function survive neurons being
separated into many separate but
intercommunicating vats?), the question is whether
we could implement "cell-in-multiple-tiny-vats".
This, of course, is exactly how biochemists and
molecular biologists figured out how cells work.
But, in a real cell, these things are all crowded
together in an amazingly intimate fashion; codon
(word) recognition for cellular mRNA code
streams takes place with thousands of irrelevant

51

constituents of the cytoplasm constantly crashing
into the ribosomal apparatus, the code chain, and
the amino acid meanings (Goodsell, 1991). The
crucial point, however, is that is it not possible to
'uncrowd' all these reactions and
reaction-controllers into separate compartments
and still get the thing to work right, at least with
enzymes the way they are now. For example, time
constants of reactions are intimately interwoven
into the mechanism. The cell in multiple vats (or
perhaps, the "really small Chinese
gymnasium/room" argument) won't work for
seemingly trivial reasons.

Now this might seem a mere cavil; wouldn't it
work if we just got all the reactions right and made
different stable intermediates that could sit around
longer while we more leisurely transferred them
between bins? Perhaps, but remember that this

thing has to actually live in the world without a
biochemist if we really wanted it to be freely-living
and -reproducing like a real cell. As we noted, even
the relatively stable parts of the cell, like DNA, are
actively maintained--millions of base pairs are
repaired every day. There is no magic barrier
here--just a complex set of constraints on a
dynamical system made out of a soup of
reasonably stable covalently-bonded molecules.
We don't really have an explicit, large-scale theory
of how the dynamics of cells work, or exactly what
it is about that dynamics that is lacking from
streams or other geological systems. But we have
very little difficulty distinguishing living cells from
other non-living stuff in the world. For now, it
seems reasonable to think that making such a
system demands a certain connectedness and
crowdedness, for lack of better terms, that the most
dynamical regimes just don't have. [5,700]

