Structure and Measurement of the brain lecture notes

Marty Sereno 2009/2010

Based on slides from Flavia Filimon, 2008

Auditory system

Lecture 4

Topics

- Auditory transduction and hair cell receptors
- Auditory brain stem
- Sound localization (owl)
- Echolocation (bats)
- Vowel sound processing

Auditory receptors are mechanoreceptors: hair cells

Sound makes basilar membrane vibrate up and down

 as a result, stereocilia at the top are mechanically deflected / pushed against tectorial membrane → release of neurotransmitter

How stereocilia transduce sound into current

- Tips of individual stereocilia are linked
- deflections to one side depolarize; to the other: hyperpolarize

How stereocilia transduce sound into current

The cochlea is the sensory endorgan for the auditory system

Basilar membrane stiffness

- stiffness of basilar membrane varies
- tonotopic organization:
 - hair cells are arranged by

frequency (from low to high)

→ <u>frequency tuning</u>

e valles	\bigcirc
	$\bigcap \left(\int \right)$
/ basil	ar
	^{a membrane} 7
not stiff	
low freq.	stiff
	bi freq
	m neq.

Two types of frequency tuning (mechanisms for frequency selectivity in hair cells)

• mechanical: due to stiffness in basilar membrane

(in lower vertebrates: height of stereocilia varies: longer toward the low-freq. end)

- electrical: due to <u>kinetics of K+ channels</u> in hair cell
 →conductance of ionic current differs among hair cells
- E.g. recording from single turtle hair cell: depolarization will lead to "ringing" of membrane potential at **characteristic frequency** of that cell (< 500 Hz).

Basilar membrane: frequency mapping (tonotopy)

Cochlea breaks incoming sound into individual frequencies

• = Fourier Transform

What is the Fourier Transform?

Decompose sound waveform into component frequencies (sine waves)

ITD - interaural time delay

R

- how to localize sound need to know which ear heard it first compare L w/ R
- if one ear delayed relative to the other → sound coming from first ear's direction

Aperture Problem for Sound Localization

- frequency filtering poses a problem for sound localization a pure sound wave cannot be localized in space.
- Aperture Problem: each receptor only sees a tiny part of the picture - one frequency
- How does the auditory system solve this problem?

can't tell which peak matches up with which (i.e. which came first - L or R?)

Owl auditory system

- barn owls are nocturnal
- very good at sound localization
- feathers guide sound towards ears ('radar dish'); special facial muscles

From cochlea to brain stem, midbrain

- NA = nucleus angularis (amplitude pathway) (PVCN)
- NM = nucleus magnocellularis (frequency/timing pathway) (AVCN = anterior ventral cochlear nucleus)
- NL = nucleus laminaris (binaural; coincidence detector) (MSO
 = superior olive in humans)
- IC = inferior colliculus
- ICc lat = central inferior colliculus, lateral part; ICc med; ICx = IC external part
- ICx has a complete space map of both horizontal and vertical location in space; projects to SC (superior colliculus)

Nucleus Angularis response properties

- NA codes for AMPLITUDE (loudness) of sounds
- NA is tonotopic: each neuron codes for I frequency
- monaural
- response is not phase-locked to wave

Nucleus Angularis response properties:

• if you have a louder sound: more spikes.

Reason for NA's non-time-locked response:

 big dendrites smear out the temporal signal; capacitance of membrane delays signal integration.

Nucleus Magnocellularis Response Properties

- NM has phase-locked responses
- NM is also tonotopic: each cell represents one frequency
- monaural
- don't need to respond to each wavefront but always with the same delay

Nucleus Magnocellularis Response Properties

amplitude does not affect time-locked response

Reason for NM's phase-locked response:

- cochlear ganglion synapses tightly directly onto cell body of NM neurons
- no dendrites; no delay

Ipsilateral and contralateral NM project to Ipsilateral Nucleus Laminaris

NL can't figure out true true ITD

- NL is BINAURAL. Can it solve the problem? No:
- each neuron has its own preferred "ITD"
- ambiguity

Two different NL cells

NL - nucleus laminaris: coincidence detector

Each NL neuron only spikes when spikes coming from left and right NM coincide

 how many times would this coincidence detector spike?

from NL to ICc_lateral: solution

 greatest activation (in column of ICc_lat cells) reflects true interaural time delay; bands of activated neurons

ICc_medial does similar thing in the amplitude pathway

- interaural intensity difference (IID)
- vertical location perceived b/c owl ears are asymmetrical -R ear closest to the ground, noises from below are louder

• ICx contains complete spatial map (vertical and horizontal)

Flavia Filimon, Systems Neuroscience 2008

- ICx has auditory map of space
- azimuth: horizontal position
- elevation: vertical position
- from ICx to SC: point-to-line projection again (auditory system connecting to visual system)

Difference between auditory system and visual & somatosensory systems

- Vis., somato.: receptors are arranged on a 2-D sheet; point-to-column projection
- Auditory: receptors are arranged in a I-D line; point-to-sheet projection

Note:

 bat head is too small to use ITD (inter-aural time delay: delay too small, since ears are so close)

Bats navigate and find prey via echolocation

- high-frequency, very loud (120dB) sound emitted (biosonar pulse); bounces off prey (moth) and echo returns to bat:
 - Doppler-shifted (CF: constant frequency component)
 - delayed (FM: frequency-modulated component)

Bat call sonogram

 CF = constant frequency; FM = frequency modulation

CF and FM components

- Constant Frequency: the Dopper shift of the frequency tells bat how fast the moth is flying away from it → relative velocity
- Frequency Modulated part: the delay between the FM part in the outgoing call and incoming echo signals the range or distance of the target

Doppler shift

- a moving source of sound compresses sound waves in the direction of movement; → higher frequency (ambulance effect)
- sound in the wake of source: waves are more spaced out → low freq.

Doppler shift demo

 <u>http://www.kettering.edu/~drussell/Demos/</u> <u>doppler/carhorn.wav</u>

Doppler shift in bat call

Doppler shift compensation

- bats adjust outgoing call so that Doppler-shifted echo is in the range of 60-62 kHz
- bats have an "auditory fovea" more receptors devoted to this frequency range

Doppler shift compensation

- If moth is flying away (distance increasing), will bat increase or decrease the frequency of its call?
- If bat is approaching moth (distance decreasing), will bat increase or decrease the frequency of its call?

Bat auditory cortex has combination-sensitive neurons: CF-CF and FM-FM

bat CF/CF area

freq. 1 (outgoing)

- in CF-CF region, the outgoing frequency (CF1) is compared with the incoming echo frequency (CF2)
- this makes individual neurons selective for particular moth velocities

Bat auditory cortex

- CF-CF combinationsensitive neurons: relative velocity of moth
- FM-FM combinationsensitive neurons: target range

Nobuo Suga, 1988

What bat echolocation has to do with human speech processing

 vowels are characterized by bands of emphasized frequencies (formants), which are produced by the oral/pharyngeal filter, e.g. F1 and F2

Formants for one vowel

L: blurry time, good freq;

can see individual harmonics of vocal folds

R: good freq, blurry time;

can see individual time-resolved taps of each opening and closing of the vocal folds

Formants for one vowel

Frequencies contained in the vocal tract when a vowel is pronounced:

emphasized frequencies (formants)

		3/1			
	-	Z.	NULL N		
4	Ŧ				
	1			-	

Vowel formant centers

Vowel	IPA	Formant f ₁	Formant f2	
u	u	320 Hz	800 Hz	
0	0	500 Hz	1000 Hz	
α	α	700 Hz	1150 Hz	
а	а	1000 Hz	1400 Hz	
ø	ø	500 Hz	1500 Hz	
у	у	320 Hz	1650 Hz	
æ	З	700 Hz	1800 Hz	
е	е	500 Hz	2300 Hz	
i	i	320 Hz	2500 Hz	

time

Formants

Formants

Vowel formants and gender

- depending on vocal tract size, vowel formants will be shifted up or down (females have high-pitch voice, format bands are shifted up → higher frequencies)
- how do we still recognize a vowel spoken by different speakers?
- → Suga (1988): perhaps combination-sensitive neurons in human auditory cortex detect relative spacing between formant bands, just like bats detect Doppler shift: F1 compared with F2
- same "frequency ratio" F1: F2 despite upward/downward shift

Formants vs. Doppler shift

bat CF/CF area

• similar auditory area in humans?

freq. 1 (outgoing)