Structure and Measurement of
the brain lecture notes

Based on slides from Flavia Filimon, 2008



Auditory system

Lecture 4



Topics

® Auditory transduction and hair cell receptors
® Auditory brain stem

® Sound localization (owl)

® Echolocation (bats)

® Vowel sound processing



Auditory receptors are
mechanoreceptors: hair cells
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Sound makes basilar membrane vibrate
up and down

® as a result, stereocilia at the top are
mechanically deflected / pushed against
tectorial membrane — release of
neurotransmitter



How stereocilia transduce sound into
current

® Tips of individual
stereocilia are
linked

® deflections to one
side depolarize; to
the other:
hyperpolarize

Tip link



How stereocilia transduce sound into
current

mechanically-
gated ion
channels

deflection towards
longest stereocilia:
more channels open
— depolarization
— response to
sound



The cochlea is the sensory endorgan for
the auditory system
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Basilar membrane stiffness

® stiffness of basilar membrane varies

® tonotopic organization: w

- hair cells are arranged by

frequency (from low to high)

. not stitt
— frequency tuning low freq.

stiff
hi freq.



Two types of frequency tuning
(mechanisms for frequency selectivity in
hair cells)

® mechanical: due to stiffness in basilar membrane

(in lower vertebrates: height of stereocilia varies: longer
toward the low-freq. end)

® electrical: due to kinetics of K+ channels in hair cell
— conductance of ionic current differs among hair cells

® E.g. recording from single turtle hair cell: depolarization
will lead to “ringing” of membrane potential at
characteristic frequency of that cell (< 500 Hz).



Basilar membrane: frequency mapping

(tonotopy)
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Cochlea breaks incoming sound into
individual frequencies

® = Fourier Transform



What is the Fourier Transform?
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ITD - interaural time delay

® how to localize sound -
need to know which
ear heard it first -
compare L w/ R

® if one ear delayed
relative to the other —
sound coming from
first ear’s direction




Aperture Problem for Sound
Localization

® frequency filtering poses a
problem for sound localization -
a pure sound wave cannot be L
localized in space.

® Aperture Problem: each R
receptor only sees a tiny part of

the picture - one frequency
can’t tell which peak

® How does the auditory system matches up with

solve this problem? which (i.e. which
came first - L or R?)



Owl auditory system

® barn owls are
nocturnal

® very good at sound
localization

® feathers guide sound
towards ears (‘radar
dish’); special facial
muscles




From cochlea to brain stem, midbrain
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NA = nucleus angularis (amplitude pathway) (PVCN)

NM = nucleus magnocellularis (frequency/timing pathway)
(AVCN = anterior ventral cochlear nucleus)

NL = nucleus laminaris (binaural; coincidence detector) (MSO
= superior olive in humans)

|C = inferior colliculus

|ICc lat = central inferior colliculus, lateral part; ICc med; ICx =
|C external part

|Cx has a complete space map of both horizontal and vertical
location in space; projects to SC (superior colliculus)



Nucleus Angularis response properties

AV VA VAV

) NN \ ]\

® NA codes for AMPLITUDE (loudness) of sounds
e NA is tonotopic: each neuron codes for | frequency
® monaural

® response is not phase-locked to wave
20



Nucleus Angularis response properties:

)\ ANN N N AN )

® if you have a louder sound: more spikes.
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Reason for NA’s non-time-locked response:

NUCLEUS ANGULARIS
CELL

W

O

® big dendrites smear out the temporal
signal; capacitance of membrane delays
signal integration.
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Nucleus Magnocellularis Response
Properties

AVAVAVAVAVA
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NM has phase-locked responses

NM is also tonotopic: each cell represents one frequency
monaural

don’t need to respond to each wavefront - but always

with the same delay
23



Nucleus Magnocellularis Response
Properties

® amplitude does not affect time-locked
response
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Reason for NM'’s phase-locked response:

NUCLEUS MAGNOCELLULARIS
CELL

FE @

Calyces of Held

® cochlear ganglion synapses tightly directly
onto cell body of NM neurons

® no dendrites; no delay
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Ipsilateral and contralateral NM project
to Ipsilateral Nucleus Laminaris
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NL can’t figure out true true ITD

e NL is BINAURAL. Can it solve the problem? - No:
® each neuron has its own preferred “ITD”

® ambiguity

Two different NL cells

response
(spikes/s)




NL - nucleus laminaris: coincidence
detector

binaural!

NL

_ right
left

NM

NM

freq.

(tonotopic / NL blindly matches up
elay spikes from left and
rensh® right - can’t tell which

came first

Flavia Filimon, Systems Neuroscience 2008
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Each NL neuron only spikes when spikes
coming from left and right NM coincide

NN N

_AA @

® how many times would this coincidence
detector spike?

29



from NL to ICc_lateral: solution
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® greatest activation (in column of ICc_lat cells) reflects
true interaural time delay; bands of activated neurons



|Cc_medial does similar thing in the
amplitude pathway

ICce! ICc

medial : Iate:ral

® interaural intensity difference (1ID)

e vertical location perceived b/c owl ears are asymmetrical -
R ear closest to the ground, noises from below are
louder
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Projections from |ICClat & ICCmed to
|Cx
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® |Cx contains complete spatial map (vertical and horizontal)

Flavia Filimon, Systems Neuroscience 2008
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|Cx has auditory map of space
azimuth: horizontal position
elevation: vertical position

from ICx to SC: point-to-line projection
again (auditory system connecting to visual
system)
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Difference between auditory system and
visual & somatosensory systems
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® Vis.,, somato.: receptors are arranged on a 2-D sheet;
point-to-column projection

® Auditory: receptors are arranged in a |-D line;
point-to-sheet projection
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Note:

® bat head is too small to use ITD (inter-aural
time delay: delay too small, since ears are so
close)



Bats navigate and find prey via
echolocation

® high-frequency, very loud (120dB) sound
emitted (biosonar pulse); bounces off prey
(moth) and echo returns to bat:

- Doppler-shifted (CF: constant frequency
component)

- delayed (FM: frequency-modulated
component)



frequency

Bat call sonogram
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CF and FM components

® Constant Frequency: the Dopper shift of the
frequency tells bat how fast the moth is

flying away from it = relative velocity

® Frequency Modulated part: the delay
between the FM part in the outgoing call
and incoming echo signals the range or
distance of the target



Doppler shift

® a moving source of

sound compresses
sound waves in the
direction of
movement; — higher
frequency (ambulance
effect)

sound in the wake of
source: waves are more
spaced out — low freq.



Doppler shift demo

® http://www.kettering.edu/~drussell/Demos/
doppler/carhorn.wav




Doppler shift in bat call

outgoing call

Flavia Filimon, Systems Neuroscience 2008



Doppler shift compensation

60 62

stiffness of basilar memb.

frequency (kHz)

® bats adjust outgoing call so that Doppler-shifted
echo is in the range of 60-62 kHz

® bats have an “auditory fovea” - more receptors
devoted to this frequency range

Flavia Filimon, Systems Neuroscience 2008
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Doppler shift compensation

® If moth is flying away (distance increasing), will bat
increase or decrease the frequency of its call?

® |f bat is approaching moth (distance decreasing),
will bat increase or decrease the frequency of its
call?

Flavia Filimon, Systems Neuroscience 2008



freq. 2 (echo)

Bat auditory cortex has

combination-sensitive neurons:
CF-CF and FM-FM

bat CF/CF area

freq.1 (outgoing)

® in CF-CF region, the
outgoing frequency
(CF1) is compared
with the incoming
echo frequency (CF2)

® this makes individual
neurons selective for
particular moth
velocities

Flavia Filimon, Systems Neurosc ience 2008
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What bat echolocation has to do
with human speech processing

® vowels are characterized by
bands of emphasized
frequencies (formants),

oral cavit
' which are produced by the
oral/pharyngeal filter, e.g. F1
and F2
pharyngeal
cavity

of pe

Flavia Filimon, Systems Neuroscience 2008



Formants for one vowel

L: blurry time, good freq;  R: good freq, blurry time;

can see individual harmonics of can see individual time-resolved
taps of each opening and closing

vocal folds
of the vocal folds
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Formants for one vowel

Frequencies contained in the vocal
tract when a vowel is pronounced:

Vowel formant centers
Vowel IPA Formant f; Formant £,

g — U u  320Hz 800 Hz

o ’ o o 500Hz 1000 Hz

£ ~ " a a 700Hz 1150 Hz

Q = * a a 1000 Hz 1400 Hz
/g-‘;\ ¢ o 500Hz 1500 Hz

emphasized - y 'y 320Hz @ 1650 Hz
frequencies & & 700Hz 1800 Hz
(formants) e e 500Hz 2300 Hz
o i | 320Hz = 2500 Hz

time



Formants
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frequency

Formants
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Vowel formants and gender

depending on vocal tract size, vowel formants will be shifted
up or down (females have high-pitch voice, format bands are
shifted up — higher frequencies)

how do we still recognize a vowel spoken by different
speakers!?

— Suga (1988): perhaps combination-sensitive neurons in
human auditory cortex detect relative spacing between
formant bands, just like bats detect Doppler shift: F1
compared with F2

same “frequency ratio” F1: F2 despite upward/downward
shift



freq.2 (echo)

Formants vs. Doppler shift

bat CF/CF area

® similar auditory
area in humans!?

freq.1 (outgoing)

Flavia Filimon, Systems Neuroscience 2008



