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Knowledge of the electrical conductivity properties of excitable
tissues is essential for relating the electromagnetic fields gener-
ated by the tissue to the underlying electrophysiological currents.
Efforts to characterize these endogenous currents from measure-
ments of the associated electromagnetic fields would significantly
benefit from the ability to measure the electrical conductivity
properties of the tissue noninvasively. Here, using an effective
medium approach, we show how the electrical conductivity tensor
of tissue can be quantitatively inferred from the water self-
diffusion tensor as measured by diffusion tensor magnetic reso-
nance imaging. The effective medium model indicates a strong
linear relationship between the conductivity and diffusion tensor
eigenvalues (respectively, s and d) in agreement with theoretical
bounds and experimental measurements presented here (syd '
0.844 6 0.0545 Szsymm3, r2 5 0.945). The extension to other
biological transport phenomena is also discussed.

Excitable tissues such as nerve and muscle mediate commu-
nication through electrical currents. These endogenous cur-

rents are capable of generating electromagnetic fields suffi-
ciently large to be measured outside of the body by using, for
example, electroymagnetoencephalography (EEGyMEG) in the
case of the brain or electroymagnetocardiography (ECGyMCG)
for the heart (1). The three-dimensional spatial distribution of
the underlying currents can be estimated from the measured
electromagnetic fields through a model-based inversion proce-
dure that, in combination with the measuring method, is referred
to as electromagnetic source imaging (ESI).

The modeling component in ESI, the so-called forward model,
requires solving the quasistatic Maxwell equations in a resistor
model of the anatomical region of interest—for example, the
head or sternum. The underlying current distribution can then be
estimated by analytical or numerical inversion of the forward
model. This method has been employed to localize the electro-
physiological generators associated with cardiac and neural
activity in various states of health and disease, but the accuracy
of the reconstructions depends sensitively on the accuracy of the
conductivity values assumed for the tissue. Modeling studies
have shown, for example, that the external electromagnetic
fields, specifically the local field potentials measured by elec-
troencephalographyycardiography (and, to a lesser extent, the
magnetic field recorded by magnetoencephalographyy
cardiography), are highly sensitive to the electrical conductivity
inhomogeneity and anisotropy of tissue (2–7). Hence, the lack of
knowledge regarding the true electrical conductivity of the tissue
can result in significant mischaracterization of the underlying
currents.

Efforts to develop an imaging modality to quantitatively
measure the electrical conductivity of tissue noninvasively have
largely been thwarted by anatomical and biophysical barriers: the
organ of interest can be shielded by highly resistive barriers such
as the bony tissue of the skull, and the tissue can exhibit
significant reactance, anisotropy, and microstructural heteroge-
neity. The difficulties associated with imaging biological con-
ductivity in vivo can be appreciated by considering the limita-

tions of electrical impedance tomography (8): the technique
exhibits poor spatial resolution past resistive interfaces, partic-
ularly at the low frequencies of physiological interest; contains an
ill-posed inverse problem; and requires delivering current to the
tissue. Other methods suffer from additional shortcomings:
magnetic resonance Hall effect imaging (9) relies on propagation
of ultrasound into the tissue, and is not quantitative; and
magnetic resonance current density imaging requires applying
external currents sufficiently large to produce magnetic field
contrast visible by MRI (10).

We have previously proposed that the electrical conductivity
tensor of tissue can be quantitatively inferred from the water
self-diffusion tensor as measured by diffusion tensor magnetic
resonance imaging (DTI) (12, 13).i DTI employs an pulsed-
gradient spin echo to measure the self-diffusion tensor of water
in the tissue (13). The hypothesized relationship between elec-
trical conductivity and water self-diffusion in tissue is prompted
by the observation that, although there is no fundamental
relationship between the two transport modes in free solution,
in a structured medium such as tissue the two processes are
related through mutual respect for the boundary conditions
imposed by the tissue geometry. The possibility of a connection
between the conductivity and diffusion tensors can be further
motivated by reports that the two tensors exhibit comparable
anisotropy (on the order of ten) in cerebral white matter (14, 15).

Connections between phenomenologically distinct transport
processes, so-called ‘‘cross-property’’ relations, have been de-
rived, either exactly or in the form of bounds, for a broad range
of transport and mechanical properties (16–18) of porous media,
yet the framework has not been applied widely to biological
tissues. Previously, we have studied the conductivity–diffusion
cross-property in brain tissue by using Monte Carlo simulations
and a self-consistent effective medium approximation (12, 19),i
but an exact formulation remained open. Here, using an effective
medium framework, we derive a rigorous relationship between
the conductivity and diffusion tensors without the need for any
assumptions on the tissue geometry, and employing a few limited
assumptions on the cell membrane properties. Significantly, the
model indicates a strong linear relationship between the con-
ductivity and diffusion tensor eigenvalues, in agreement with
theoretical bounds and experimental measurements reported
here.

Model
The relationship between a general transport tensor—for exam-
ple, the conductivity or diffusion tensor—and the underlying
microstructure of the medium can be obtained from a pertur-
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bation expansion in the statistical correlations of the microstruc-
ture. Originally developed by Brown for two-phase isotropic
media (20, 21) and later extended to two-phase anisotropic
media by Sen and Torquato (22), the statistical correlation
expansion, also referred to as a contrast moment expansion,
provides a framework for relating distinct transport tensors
through the statistics of the medium microstructure. The two-
phase model consisting of an inclusion phase embedded in a host
phase is particularly amenable to describing biological tissues
because the extracellular space can be taken as the host phase
and the intracellular space as the inclusion phase.

To derive the cross-property relation between the conductivity
and diffusion tensors in brain tissue, the approach we adopt here
is to estimate the statistical moments of the microstructure from
the observed diffusion tensor, and then derive the conductivity
tensor from the estimated moments. We assume in the following
that the cell membrane is freely permeable to water and imper-
meable to charge-carriers on the experimental time scale ('50
ms). Following Sen and Torquato (22), the effective transport
tensor L, denoting either the effective electrical conductivity
tensor s or the diffusion tensor D, for a two-phase anisotropic
medium of arbitrary topology is given by

~fib~li, le!!
2B 2 1~L, leU! 5 fib~li, le! 2 O

n 5 2

`

An
~i!bn~li, le!,

[1]

where fi is the inclusion (intracellular) volume fraction, U is the
identity tensor, and li and le are, respectively, the inclusion
(intracellular) and host medium (extracellular) transport coef-
ficients; for example, in the case of diffusion di is the intracellular
diffusion coefficient and de is the extracellular diffusion coeffi-
cient. Similarly, si is the intracellular conductivity value and se

is the extracellular conductivity. The dimensionless contrast
factors b and B are defined as

b~x, y! 5
x 2 y

x 1 2y
[2]

and

B~X, Y! 5 ~X 1 2Y! 2 1~X 2 Y!. [3]

The rank-2 tensors An
(i) contain the microstructure information

and are defined as integrals over the n-point probability func-
tions Sn

i , which give the probability of finding n points within the
inclusion (intracellular) phase. Exact expressions for An

(i) are
available in ref. 22.

By setting A1
(i) 5 2fiU, the first term on the right-hand side

of Eq. 1 can be embedded in the sum to give

~fibl!2B 2 1~L, leU! 5 2 O
n 5 1

`

An
~i!bl

n, [4]

where we have defined bl 5 b(li, le). The sum in the right-hand
side of the above equation can be made implicit by defining the
concatenation C(i) 5 (A1

(i)uA2
(i)u. . .), and, similarly, Gl 5

(blUubl
2Uu. . .)T. Eq. 4 then becomes

~fibl!2B 2 1~L, leU! 5 2C~i!Gl. [5]

We can obtain a least-squares estimate Ĉ(i) for C(i) based on the
observed diffusion tensor D by identifying L with D in Eq. 5 and

then multiplying from the right by the right-handed Moore–
Penrose pseudoinverse Gd

1 5 Gd
T(GdGd

T)21** yielding

Ĉ~i! 5 2~fibd!
2B 2 1~D, deU!Gd

1 . [6]

Identifying L in Eq. 5 with s and equating Ĉ(i) and C(i) gives

bs
2 B 2 1~s, seU! 5 bd

2B 2 1~D, deU!Gd
1 Gs. [7]

Solving algebraically for Gd
1Gs we obtain

Gd
1 Gs 5

bs

bd
S bd

2 2 1
bdbs 2 1DU. [8]

Finally, solving for s yields

s 5 seB 2 1~F, U!, [9]

where

F 5
bd

bs
S bd

2 2 1
bdbs 2 1DB 2 1~D, deU!. [10]

The two equations above relate the conductivity and diffusion
tensors solely in terms of the intra- and extracellular transport
coefficients, independently of the microstructural statistics An

(i)

and the cell volume fraction fi. We also observe that the above
relationship implies that the conductivity and diffusion tensors
share the same eigenvectors. Note that we have not made any
assumptions yet on the type of transport tensors involved so that
Eq. 10 applies generally to the broader class of transport tensors
including hydraulic permeability, acoustic conductivity, etc.

The equivalence between the conductivity and diffusion ten-
sor eigenvectors allows us to express the cross-property relation
solely in terms of the conductivity and diffusion tensor eigen-
values, respectively, sn, and dn, which we do in the following. The
cross-property relation can be simplified by noting that at the
quasistatic frequencies of physiological interest (,1 kHz) (23)
the intracellular space is effectively shielded by the high resis-
tivity of the cell membrane. The intracellular conductivity can
therefore be taken as negligible. Substituting si 5 0 into Eqs. 9
and 10 gives

sn 5 seF1 1
3~dn 2 de!~bd 1 2!

dn~4bd
3 2 5bd 2 2! 1 de~8bd

3 2 7bd 1 2!G .

[11]

The above equation indicates a fractional linear relationship
between the conductivity and diffusion tensor eigenvalues. The
relationship is highly linear, however, because de(8bd

3 2 7bd 1
2) will tend to be much larger than dn(4bd

3 2 5bd 2 2),
particularly for small intracellular diffusion values. We can
obtain an explicit linear approximation to Eq. 11 by taking a
series expansion in the intracellular diffusion

sn 5
se

de
FdnS di

3de
1 1D 1

dn
2di

3de
2 2

2
3

diG 1 O~di
2!. [12]

Note that both the linear approximation (Eq. 12) and the exact
fractional linear relationship given by Eq. 11 satisfy the necessary
conditions sn } se and snyse3 dnyde as di3 0, with the latter
limit providing the upper-bound snyse # dnyde. For the sake of

**The need to take the pseudo-, as opposed to the canonical, inverse highlights the point
that different geometries can give rise to the same effective transport. For example, a
suspension of spheres may have the same bulk diffusion as, but a different conductivity
from, a matrix of randomly oriented cylinders with a different suspension volume
fraction. The geometric degeneracy can be ameliorated to some degree by regulariza-
tion of the pseudoinverse to respect the available theoretical bounds.
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interest, this bound can be compared to the Milton bound
between the bulk elastic modulus K and conductivity KyKe #
syse of an isotropic material (24).

We can test the feasibility of the conductivity–diffusion cross-
property relation predicted by Eq. 11 by comparing the rela-
tionship to the variational Hashin–Shtrikman (HS) bounds (25),
which are the tightest bounds possible without taking into
consideration any specific geometric properties of the tissue
medium.†† The HS bounds are specifically

li@le 1 li 1 fe~le 2 li!#

le@le~1 2 fe! 1 li~1 1 fe!#
#

l

le
#

2~le 1 li!

le~2 2 fe! 1 life
2 1.

[13]

Identifying l with d and s and eliminating fe we obtain the
following greatest and least upper bounds on the conductivity
eigenvalue, respectively, sgu and slu, in terms of the diffusion
eigenvalue

sgu 5
se~di 2 dn!~de 1 di!

di~3dn 1 di! 2 de~dn 1 3di!
[14]

slu 5
sede~dn 2 di!

de
2 2 dndi

. [15]

Comparison of the above bounds with the predictions from the
cross-property relation shows that the cross-property relation
holds up even to intermediate values of intracellular diffusion
(Fig. 1). To experimentally test the cross-property relation,
particularly the prediction of strong linearity made by Eq. 12,
diffusion tensor measurements were obtained and compared to
reported invasive conductivity measurements in corresponding
anatomical regions.

Methods
Axial, balanced echo (26) diffusion tensor measurements of four
subjects were taken at 1.5 T (GE Signa) with TRyTEyt 5
3000y93y30 ms, b 5 577.3 symm2, 16 averages. Thirty-eight
slices were obtained with a 40 3 20 cm2 field-of-view (256 3 128)

giving 1.56 3 1.56 3 3 mm3 voxels. The diffusion gradient (g 5
14.14 mTym) was applied in the directions of the six nonopposed
edge-centers of a cube in k-space as described elsewhere (27).

The diffusion values were sampled in cortex, the parasagital
sulcus, the anterior internal capsule, subcortical white matter,
and the cerebellum. The locations were selected based on the
locations of reported invasive conductivity measurements (28–
32). The diffusion values were taken from either the frame or
eigenframe depending on the anatomical direction in which
the original invasive conductivity values were measured. If the
full conductivity tensor was not specified, then the directions
parallel and perpendicular to the fiber tract were taken to be,
respectively, the directions of the major and minor eigenvec-
tors. If the orientation of the conductivity measurement was
not specified for a gray matter location, then the average
eigenvalue of the diffusion tensor was used for comparison.
The conductivity values were obtained from various species,
but should still ref lect the overall trend in the conductivity–
diffusion relation.

Results
The full fractional linear relationship (Eq. 11) was fit to the
conductivity and diffusion data, as was a linear relationship of
the form sn 5 k(dn 2 d«) for comparison. The former yielded
se 5 1.52 6 0.251 Sym, de 5 2.04 6 0.506 mm2yms, and di 5
0.117 6 0.0972 mm2yms. The uncertainty in the estimates for
se and de was principally due to the strong linear behavior in
seyde. The linear fit yielded k 5 0.844 6 0.0545 Szsymm3 (P ,
1029) and d« 5 0.124 6 0.0540 mm2yms (P , 0.05) with r2 5
0.945. The linear relation provided a good approximation to
the conductivity and diffusion data and could not be distin-
guished from the full fractional linear model based on the
present data (Fig. 2). The linear relationship was used to
generate the conductivity tensor image of the brain shown in
Fig. 3.

††It is interesting to note as an aside that the tightness of the HS bounds at low fe explains
the experimentally observed conservation of the trace of the diffusion tensor in brain
tissue (14).

Fig. 1. Theoretical cross-property relationship between the conductivity and
diffusion tensor eigenvalues normalized by the corresponding extracellular
transport coefficient. The family of dotted curves gives the cross-property
relationship for values of, from left to right, diyde 5 {0.1, 0.3, 0.5, 0.7}. The
shaded regions indicate the greatest and least upper bounds predicted by the
Hashin-Shtrikman (HS) bounds (25).

Fig. 2. Experimental relationship between the conductivity and diffusion
tensor eigenvalues (mean 6 SEM). The conductivity values were obtained
from reported invasive measurements and the diffusion values from diffusion
tensor MRI in the corresponding anatomical regions. The solid line depicts the
linear fit, and the dashed lines the upper and lower confidence intervals on the
linear fit. The conductivity values were taken from the average over cortex
(dark blue circle, ref. 28; red circle, ref. 31), the average subcortical white
matter perpendicular to the tract (blue inverted triangle, ref. 28), somatosen-
sory cortex in three perpendicular directions (yellow circle, ref. 30), the
parasagital sulcus (light blue circle, ref. 29), the subcortical white matter
beneath the parasagital sulcus measured perpendicular to the tract (light blue
inverted triangle, ref. 29), the cerebellum parallel (green triangle) and per-
pendicular (green inverted triangle) to the dominant fiber orientation (32),
and the anterior internal capsule parallel (purple triangle) and perpendicular
(purple inverted triangle) to the tract (ref. 15).
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The conductivity data fell into three distinct clusters due to
the sampling of the conductivity values in gray matter (i) and
in white matter parallel (ii) and perpendicular (iii) to the fiber
tract. To determine whether the linear relation could describe
the behavior within these individual tissue classes, the linear
model was also evaluated within the individual classes. The
conductivity and diffusion values were not found to be signif-
icantly correlated (P . 0.05) within the tissue classes, indi-
cating that the observed linearity followed primarily from the
behavior across the tissue classes. It was not clear from the
limited data available if the variability within the tissue classes
was due to true disagreement with the model or experimental
uncertainties such as anatomical heterogeneity, transspecies
variability, and possible misspecification of the measurement
orientation.

Discussion
We have derived a rigorous cross-property relation between the
electrical conductivity and water self-diffusion tensors in brain
tissue by relating the two transport processes through the
statistical moments of the tissue microstructure. The cross-
property relationship was found to respect theoretical bounds for

a large range of intracellular diffusion values, and successfully
captured the salient experimental observations: (i) a strong
linear relation between the conductivity and diffusion eigenval-
ues, and (ii) a significant diffusion intercept at zero conductivity.
The persistence of diffusion at zero conductivity can be under-
stood by considering the following scenario. If the extracellular
volume fraction is less than the percolation threshold (i.e., the
extracellular space volume fraction at which the extracellular
space is no longer topologically connected) the conductivity will
vanish, but the diffusion will survive in the intracellular space
and the disconnected extracellular pores. The surviving diffu-
sivity at the percolation threshold will be on the order of the
diffusion values di and d« derived here. Interestingly, these values
are consistent with the ‘‘slow’’ diffusion component ds 5 0.168
mm2yms observed at short diffusion times (33), which has been
postulated to be the intracellular diffusion component. Further-
more, the value derived here for the extracellular conductivity is
consistent with reported measurements for the conductivity of
cerebrospinal f luid (s 5 1.79 Sym, ref. 34) and (s 5 1.54 Sym,
refs. 35 and 36).

The quantitative conductivity tensor maps provided by the
cross-property model promise to improve the accuracy of elec-
tromagnetic field modeling in tissue with application to a range
of bioelectromagnetic technologies including electroymagne-
toencephalography, electroymagnetocardiography, transcranial
magnetic stimulation, and cardiac defibrillation. The cross-
property framework will find particular application in the for-
ward model for electromagnetic source imaging (ESI) where the
empirical conductivity values will benefit both the accuracy and
resolution of the source estimates. In particular, the inclusion of
conductivity inhomoegeneities in the forward model will provide
a basis for distinguishing sources inside or outside of the
inhomogeneity.

The ability to quantify the currents based on the empirical
conductivity measurements will furthermore allow for fusion of
data from electric and magnetic imaging modalities. Because the
electric and magnetic fields are sensitive to different source
configurations and locations, the combination of modalities will
help to further resolve the true underlying current distribution
(11). Lastly, the cross-property framework is extendible to other
transport and mechanical properties of tissue including thermal
and acoustic conductivity, elastic stiffness, hydraulic permeabil-
ity, and photon diffusion.
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