
Cognitive Science 276 – Neuroimaging
Homework #2: Fourier Transform and Image Reconstruction

The goal of this homework is to learn learn basic concepts of 1-D and 2-D Fourier analyses in 
MATLAB, including forward and inverse Fourier transforms (FT) of signals in the spatial and frequency 
domains, amplitude and phase spectra, image reconstruction, artifacts, aliasing, ghosts. (Hint: matrix 
entries are identified by (row,column), which is up/down, then left/right, while pixels are conventionally 
identified by (x,y), which is left/right, then down/up).

1: 1-D FT. Plot the following 1-D functions and their amplitude spectra:
      f1(x) = 1.0*cos(3*2π*x),    f2(x) = 0.1*cos(13*2π*x),    and    f3(x) = f1(x) + f2(x)
Qualitatively describe the spectrum of the first two functions and then the spectrum of their sum.
Hint:
  step=1/256;             % [stuff after percent is comment]
  x=0:step:1-step;        % get 256 values of x from 0 to 1
  f1=cos(24*2*pi*x);      % f1 is a real vector with 24 cycles from 0-1
  FT_f1=fft(f1);          % fft() returns the fourier transform
  FT_f1s=fftshift(FT_f1); % fftshift displays zero freq in middle of graph
  plot(abs(FT_f1s));      % FT_f1 is complex vector; abs() gets element amplitudes

2: 1-D Inverse FT.  (this is a continuation of Problem 1). F1(f) is the spectrum of f1(x). Reconstruct a 
function f'1(x) from F1(f) using the inverse Fourier transform,  ifft(). Plot the real and imaginary parts, 
and the amplitude and phase of f'1(x). using real(), imag(), abs(), and angle(). Explain why the 
amplitude plot looks different than the real plot. The reconstructed phase and/or imaginary plots may be 
jagged; if so, explain why.

3: Display 2-D Image.  Download the 256x256 sagittal T1 brain image tiff from http://
www.cogsci.ucsd.edu/~sereno/276/t1sag.tiff (other uncompressed, grayscale tiffs work, too!) 
and convert it into a matrix with:  Im=double(imread('t1sag.tiff'));   Plot it with: colormap 
gray; imagesc(Im,[minIm maxIm]); axis square; Play with different numbers for minIm and 
maxIm (don't forget the brackets and use a space, not a comma). The function imagesc autoscales if you 
omit the [minIm maxIm] vector.

4: 2-D FT.  Compute the 2-D Fourier transform of image Im using FT=fftshift(fft2(Im)); fftshift() 
puts the zero spatial frequency in the middle for a matrix (2-D) as well as vector (1-D) (you can apply it 
to the image to see what it does). Then make four plots of FT (which is a 2-D matrix of complex 
numbers): first the real and imaginary components, and then the corresponding amplitude and phase 
components. Use the functions:  real(), imag(), abs(), angle() to extract the components and  
imagesc(Component,[minComponent maxComponent]); to plot them. You will have to experiment 
with the minimum and maximum values to make sense of the pictures. You can use the functions min() 
and max() (apply them twice to get one number out of a 2-D matrix!). Describe the resulting 
distributions in spatial frequency space (k-space).
Hint (image and its amplitude spectrum plotted on one page):
  figure;        % multiple plots on one figure
  Im = double(imread('t1sag.tiff'));
  FT = fftshift(fft2(Im));



  FT_Amp = abs(FT);
  minAmp = min(min(FT_Amp)); maxAmp = max(max(FT_Amp));
  colormap gray;
  subplot(1,2,1); imagesc(Im);                         axis square;title('Image');
  subplot(1,2,2); imagesc(FT_Amp,[minAmp 0.01*maxAmp]);axis square;title('K Ampl');

5: K-space Center.  Manipulate the amplitude of the center point of k-space: F(kx0,ky0), which in the 
present case can be referenced with FT(129,129) (N.B.: those coordinates assume fftshift() has first 
been applied). First triple the center point, reconstruct the images by using  ifft2(ifftshift()), plot 
the original and reconstructed amplitude image using the same maximums and minimums, and describe 
the result.  Then do the same reconstruction after zeroing the center k-space point.

6: Spikes in K-space.  An individual data point in K-space is sometimes mistakenly assigned a very 
large value (e.g., as a result of an electrical transient at the exact moment that the data point was being 
collected). Modify the following three K-space points by setting them to a large value (e.g., 107), one at 
a time:
    (a) FT(129+4, 129)  (ky=4, kx=0)
    (b) FT(129,     129+35) (ky=0, kx=35)
    (c) FT(129+4, 129+35) (ky=4, kx=35)
Reconstruct the images in each case using ifft2(ifftshift()) and plot and describe them.

7: Zero Portions of K-space. By setting portions of K-space to zero, certain ranges of spatial frequency 
will be removed when the image is reconstructed. Set the following regions of K-space to zero, 
reconstruct the images as above, then plot K-space (amplitude) and the reconstructed image in each 
case, and comment on the result:
    (a) set FT(ky, kx) = 0, where both kx and ky are between 129-32 and 129+32 (high pass)
    (b) set FT(ky, kx) = 0, except where kx and ky are between 129-32 and 129+32 (low pass)
    (c) set FT(ky, kx) = 0, when x is between 193 and 256 (zero right quarter of k-space)
Hint: One approach is to initialize a blank mask using ones() or zeros(), set ranges of the mask to 0 
or 1 using low:high syntax, apply mask to K-space with element-wise ('dot') operators (e.g., for 
multiplication:  .* ).

8: Subsample K-space.  If an image (or a time signal) is not sampled frequently enough, aliasing 
(wraparound) will occur in the frequency domain (that is, after a Fourier transform). This is also true 
when going from the frequency domain back to space (or time); that is, if K-space is not sampled 
frequently enough, aliasing will result in the image (or time) domain. Simulate this by zeroing every K-
space point whose x coordinate has an even number (zeroing even-numbered K-space lines). Comment 
on the effect of this undersampling after reconstructing the images with  ifft2(fftshift()).

9: Shift Alternate Lines of K-space.  When K-space data is collected during an EPI scan, the even and 
odd lines may not be properly aligned because of imperfections of the gradients. Simulate this by 
shifting even K-space lines to the left and the odd K-space lines to the right (different shifts in (a) and 
(b)):
    (a) set FT(kx, ky) = FT(kx-1, ky), when ky is odd and FT(kx+1, ky), when ky is even
    (b) set FT(kx, ky) = FT(kx-4, ky), when ky is odd and FT(kx+4, ky), when ky is even



Plot both K-space and reconstructed images for the above manipulations. How do the wraparound 
ghosts subtly differ from the ones generated in the previous problem?
Hint: watch limits so you don't go off the edge. Also, when shifting in a particular direction, say right, 
just leave the furthest left values alone.

10: Simulate B0 defect.  When K-space data is collected during an EPI scan in the presence  of local B0 
defects, the phase angle of the spins at that point in the image become distorted. Because of the small 
size of the phase-encode 'blips', this effect occurs mainly in the phase-encode direction. Model the effect 
of a 8x8 pixel B0 offset in the middle of the image by: (1) adding some phase (=multiplying by a 
complex exponential) to the data points there when calculating the Image->Signal using a slow Fourier 
transform (below) and then (2) reconstructing the image from the distorted data (use fast Fourier 
transform for this). Describe what occurs.
Hint1: An explicitly written out FT so you can modify the phase of individual terms in the Fourier sum:
  %%% slow 2D FT (square image) -- operating on 32x32 pix image takes about 1 min!
  n = length(Im);
  for ky=1:n; for kx=1:n
    ksum = 0;
    for y=1:n; for x=1:n
      term = Im(y,x) * exp(-i*2*pi*( (ky-1)*(y-1) + (kx-1)*(x-1) )/n);
      % modify phase of term here by multiplying by complex exp() before add to sum
      ksum = ksum + term;
    end; end
    FT(ky,kx) = ksum;
  end; end
  FT=fftshift(FT);

Hint2: Downsample 256x256 image first! The Fourier transform code above is easy to understand since 
it looks exactly like the equation, but it runs very slowly in the Matlab interpreter since it does not take 
advantage of Matlab matrix operations. Here is one way to downsample the image to 32x32:
  Im = Im(8:8:256,8:8:256);

Hint3: The phase errors accumulate over the course of the EPI readout, so take this critical factor into 
consideration when adding phase to terms (what happens if you add the same phase angle to each 
spatial frequency?).


