CHAPTER 9

The Simulation of Large-Scale Neural
Networks

MATTHEW A. WILSON and JAMES M. BOWER

9.1 Introduction

Previous chapters have described techniques used to simulate the re-
sponses of single neurons in isolation to different patterns of inputs by
modeling their detailed biophysical structure. In the brain, it is the
anatomical and physiological characteristics of the complex neural cir-
cuits in which single neurons are embedded that determine the actual
pattern of inputs to a cell as well as the significance of the cell’s out-
put. As with single isolated cells, computer simulations can provide a
means to study the complex functional relationships between neurons
comprising such networks (see chapters 6, 7 and 8).

Traditionally, most models of brain circuitry have focused on sim-
ulating the macroscopic or “higher-order” functionality of systems of
simplified computational or neuronal units. In fact, the prevalence of
models of this type has made the modeling of neural networks, in gen-
eral, synonymous with an abstracted treatment of neural processing in
which the study of function takes precedence over the details of im-
plementation. Periodic attempts have been made over the last twenty
years to develop neural network models that are structurally more real-
istic (Pellionisz, Llinas, and Perkel 1977). However, we would argue that
only recently have technical developments made simulations of realistic,
large-scale neural networks truly practical. One of these technical devel-
opments is the rapid increase in affordable computational power, which
allows the simulation of models with considerable complexity. Equally
important for this kind of modeling is the increasing sophistication of
neurophysiological and neuroanatomical techniques, which has resulted
in an explosive growth in the availability of structural details on which
this type of modeling relies.

In this chapter we will consider the construction and simulation of
neural network models that are fundamentally based on the anatomical
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structure and physiological characteristics of actual biological networks.
We have found, through our own modeling efforts, that this “structural”
approach to modeling has several distinct advantages over strictly ab-
stract treatments (Wilson and Bower 1988). First, biological realism al-
lows known neuroanatomical and neurophysiological data to be used to
constrain the values of many model parameters. This limits the param-
. eter space of a model that needs to be explored to tune and characterize
the behavior of complex network models. Second, biologically accurate
simulations can more readily generate neuronal-like outputs compara-
ble to data from actual physiological experiments. This increases the
likelihood that predictions of the models will be relevant and testable.
For example, our models generate intracellular membrane potentials,
single-spike output, and extracellular field potentials (fig. 9.7; Wilson
and Bower, 1980). And finally, models closely based on the structural
properties of biological networks force functional hypotheses to fit within
the physical constraints imposed by the actual biological system. In this
way insights provided by this type of detailed modeling provide direc-
tions for more abstracted studies while at the same time assuring their
relevance to actual network properties (Wilson and Bower 1988).

While structural simulations can provide a means to study the func-
tional properties of complex networks, they are also potentially valuable
to experimental neurobiology. In particular, simulations that are based
on a biological system often highlight undescribed but important fea-
tures of the modeled networks and thus can suggest important network
or cellular parameters to characterize experimentally. This experimen-
tal/modeling interaction is especially important given the powerful ex-
perimental tools that are currently available to neurobiologists and the
wide range of data that they can generate. Thus, this type of structural
modeling provides a framework in which detailed experimental data can

be organized and interpreted, and biologically relevant theories of brain
function can be studied.

9.2 Network Modeling Considerations

Having stated the general advantages of structural neural network mod-
els, and made the claim that the revolution in computing power and
neurophysiological and neuroanatomical data has made them more ac-
cessible, it is important to point out explicitly that the process of mod-
eling still requires working within considerable limitations. In fact, even
with the tremendous increases in available computing power, no existing
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computer can practically simulate all that is known about large neural
networks, while at the same time no neural structure has yet been de-
scribed in all its structural detail. Even in so-called simpler inverteprate
networks, experimentalists are well aware that a vast amount of infor-
mation relevant to function must still be extracted, yet modelers are
still forced to simplify their networks for simulation purposes (see chap-
ters 6 and 7). The main body of this chapter outlines our approach to
these issues by describing a model of the piriform (olfactory) cortex in
some detail. However, we will first consider more specifically some of the
general technical factors involved in designing and implementing such a
model given these limitations.

Faced with both incomplete information about the networks to'be
modeled and insufficient computing power to incorporate all informap().n
that is currently known, the major task in simulating large-s?ale, Feahstlc
networks is determining the appropriate modeling a.pproxlmat.xons.' In
most cases the basic test of the appropriateness of these approxuna!;lons
in structural models will be whether the simulated network can replicate
fundamental (and measurable) behavior of the actual.systen}. Qf course,
as the sophistication of the questions asked with a simulation increases
so does the necessary complexity of the model. As such, the process
of network modeling can be seen as a bootstrap operation th.a.t ideally
goes hand in hand with experimental work. To discus's t!ns gener‘al
relationship between model complexity and simulation ob Jectxve§ we _w111
consider two levels of structural organization at which approximations
are often made, the cellular level and the network level.

9.2.1 Cellular Complexity

In modeling single cells, there are several types of structural details
to consider. There is spatial/cellular structure, which includes char-
acteristics such as dimension, extent, and location of cell bodies, den-
drites, axons, and spines. Then there is biophysical/subcellular st.ruc-
ture with membranes, channels, receptors, and their voltage- and time-
dependent characteristics including channel conductafxces,. me.emb'rane: re-
sistance and capacitance, the nature of receptor binding, ionic diffusion,
and buffering. Previous chapters have shown that these features can
be modeled in some detail if that is the primary objective. Howew{er,
the network modeler must determine the relative benefit of including
such details given the computational cost. Again, it is the .n.a.ture of
the questions asked that determines which details are mos? critical. For
example, in our simulations of the piriform cortex the spike output of
a cell is not modeled using a complete Hodgkin-Huxley model for ac-
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tion potentials; instead, a simple threshold criterion is applied to the
membrane potential to generate discrete spike events. The occurrence
of these spikes is indicated with a spike waveform “pasted” onto the
actual membrane potential at the appropriate time. In this case, the
details of spike generation are sacrificed for the sake of computational
efficiency. As another example, if the details of dendritic interactions
are significant to the question being asked in the model, then the use of
an explicit multicompartmental model of individual cells and their den-
dritic regions is indicated (Koch, Poggio, and Torre 1982, 1983). If the
nonlinearities of dendritic interaction are not of great significance to the
particular response or network property of interest, then a simplified
single-compartmental model of a cell might be sufficient (as in chap-
ter 6). In other cases the type of physiological responses the simulation
is expected to generate dictates the level of neuronal complexity. For
example, in our model, data such as field potentials and current source
density measurements require information about the spatial distribution
of membrane currents in the simulated cortex to be calculated using a
distributed model of the cell and its processes (see below).

9.2.2 Network Scale

At the network level a primary design consideration is one of scale. This
is clearly seen in our model of piriform cortex where on the order of 103
cells represent a cortex that actually contains over 106 cells. Several ba-
sic approaches can be taken to deal with this problem. First, a modeler
can reduce the scope of the model to include only a restricted portion of
the actual structure. In this way a small region of the cortex can be sim-
ulated closer to its actual scale (see chapter 10). In this case the amount
of cortical area simulated is restricted, but single-cell activity and local
interactions are more accurately represented. Obviously, this approach
is useful only if the primary aspects of the circuitry involved in the par-
ticular response being studied are preserved in this localized model, i.e.,
there are few relevant longer-range interactions. The second approach
involves using sparse samples of single cells over a broad cortical area.
This reduces the spatial resolution of simulated activity but allows the
study of cortical phenomena that require nonlocal interactions. How-
ever, using cells as subsamples of a larger cortical area introduces the
problem of compensation for the activity of cells not included in the
simulation. This problem can be approached in several ways. For exam-
ple, single modeled cells can represent the average response of a group
of cells. The output of modeled “cells” in this case would consist of a
continuous estimate of spatially averaged activity over a region of the ac-
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tual network. This is roughly equivalent to using a rate-encoded output
as is commonly done in more abstracted network simulations (Hopfield
1984; Hinton, McClelland, and Rumelhart 1986). An alternate represen-
tation preserves the single-spike nature of actual single-cell output. In
this case the properties of single modeled cells are designed to resemble
actual single cells as closely as possible, but synaptic strengths are ad-
jisted to compensate for missing neurons. This is the appx:oach that we
have taken with our simulations as described in more detail below. The
use of the single-spike output representation versus the spatial-av.lerage
representation can be somewhat quantified. Appendix 9.l?_descr1bes a
measure based on an estimate of the connection probability between
cells within different regions. In this case, the criterion used to select
one representation over another is the preservation of t'he average oOr ex-
pected one-to-one connection characteristics between simulated cells. A
detailed discussion of this issue with sample calculations related to the
piriform cortex model can be found in Appendix 9.D.

9.3 Piriform Cortex and Model Structure

In the remainder of this chapter we will elaborate on the general issues
outlined above by describing in detail the techniques that we have em-
ployed in carrying out structural simulations of olfactory cortex. How-
ever, because this is a structural model it will first be necessary to pla.ce
the model in context by giving a general background description of pir-
iform cortex. A more detailed description of this cortex can be found in
Shepherd (1979) or Haberly (1985). The reader should also note that
the intention of this chapter is to describe how the cortex is simulated
and not to discuss the simulation results or conclusions themselves.

9.3.1 General Cortical Features

Piriform (olfactory) cortex is the primary olfactory cerebral cortical
structure in all mammals. This structure is the focus of our f!?odel-
ing efforts because of its well-defined organization, the ava.ilablhty.of
physiological data, and its presumed capacity for memory and associa-
tive functions (Haberly 1985). The afferent sensory input to the mef)rm
cortex is from the olfactory bulb, which itself receives direct projections
from olfactory receptors. This cerebral cortical area is, therefore, un-
usually close to the sensory periphery, being just one structure removed.
Bulbar input to the cortex is delivered via a fiber bundle known as
the lateral offactory tract (LOT). This fiber tract appears to make dis-
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tributed, nontopographic, excitatory connections with cortical neurons
across the extent of the cortex (figs. 9.2, 9.3). This input arrives along
the edge of the cortex and projects acroes its surface in a lateral fashion
to a superficial layer (Devor 1976).

In addition to the afferent input connections from the olfactory bulb,
there is also an extensive set of connections among neurons intrinsic
tosthe cortex (figs. 9.2, 9.3). For example, the so-called association
fiber system arising from the principal cortical cells, the pyramidal cells,
makes sparse, distributed excitatory connections with other pyramidal
cells across the cortex. There are also intrinsic inhibitory feedforward
and feedback connections within the cortex mediated by two types of
inhibitory interneurons with different properties. Pyramidal cell axons
constitute the primary output of the piriform cortex and project to lim-
bic structures such as entorhinal cortex (Haberly and Price 1978; Luskin
and Price 1983a,b) whose neurons, in turn, project to the hippocampus.
As such, piriform cortex has close ties to both the sensory periphery
and to deeply buried forebrain structures of considerable current inter-
est in neurobiology due to their postulated roles in learning and memory
(Tanabe, lino, and Takagi 1975; Devor 1977, Eichenbaum, Shedlack, and
Eckmann 1980).

9.3.2 Neuronal Types

Pyramidal cells are the principal cell type in piriform cortex, and are be-
lieved to be exclusively excitatory (Haberly and Price 1978; Haberly and
Bower 1984). There are also several populations of nonpyramidal cells or
interneurons that can be distinguished on anatomical grounds (Haberly
1983; Haberly and Feig 1983). These neurons appear to be GABAergic
and seem to mediate both feedback and feedforward inhibitory effects
(see below). Our model is based on a single population of pyramidal cells
plus two populations of inhibitory interneurons responsible for feedfor-
ward and feedback inhibitory influences (fig. 9.2). The model represents
neurons across the full extent of the actual cortex (approximately 10
mm x 6 mm). In the simulation described here, we have modeled 1,500
cells of each type (50 cells x 30 cells) for a total of 4,500 cortical cells
(fig. 9.3). The model also includes 100 cells representing the input to
the cortex from the olfactory bulb.

9.3.3 Cortical Lamination

Piriform cortex, like all of the cerebral cortex, is a laminar structure
that can be subdivided into layers based upon the segregation of differ-
ent inputs and cell types. Piriform cortex, however, is composed of three
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(A) The upper diagram shows characteristics of the afferent input to the cortex. The
main lateral olfactory input tract (LOT) is seen at the lower edge of the diagram
with bulbar input arriving from the left. The spread of activation following LOT
stimulation is indicated by contours showing the location of the afferent wavefront
at three successive times. The lower diagram shows the pattern of association fiber
interconnection between a single pyramidal cell and pyramidal cells located rostral
and caudal to it. The spread of activation is seen to be slower in the caudal than
the rostral direction due to the difference in propagation velocities of the two types
of association fibers. (B) A three-dimensional schematic diagram of the .the. thnee
major cell types included in the model of piriform cortex—feedforward mlnl:n&ory
interneurons, pyramidal cells, and inhibitory feedback interneurons. The grid in the
upper right shows the scale of the model consisting of 1500 cells (50x30) of each
type. Each grid site corresponds to the location of a modeled cell The shaded
regions indicate the regions of influence of the two types of inhibitory interneurons
on pyramidal cells.
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principal layers as compared with the six layers of neocortical structures.
The most superficial layer (layer I) contains afferent axons that originate
from mitral cells in the olfactory bulb as well as association axons arising
from other pyramidal cells within the piriform cortex. Both fiber systems
terminate on apical dendrites of pyramidal cells that extend through this
layer. Based on these terminations, layer I can be further subdivided
into the surface region where afferent fibers terminate (layer Ia) and the
deeper regions containing terminations of the association fibers (layer
Ib). There is evidence that layer Ib is further subdivided into a superfi-
cial region containing the terminations of caudally directed association
fibers and a deeper region containing rostrally directed association fiber
terminations (Haberly and Price 1977; Haberly and Bower 1984). Below
Inyer I, the deeper layer I1 consists of densely packed cell bodies of both
pyramidal cells and interneurons. Layer III contains basal dendrites of
layer II pyramidal cells as well as cell bodies of deep pyramidal cells
and other interneurons (fig. 9.3). Local connections between pyramidal
cells terminate on basal dendrites in layer III. In the current model, only
layer II pyramidal cells are simulated. The laminar pattern described
serves as the basis of the compartmental model of the pyramidal cell
in which distinct compartments correspond to laminar regions receiving
particular types of input (see figs. 9.4, 9.5, 9.6, and Appendix 9.A).

9.3.4 Network Connections

Afferent Sensory Pathways As mentioned above, primary affer-
ent input enters piriform cortex via the lateral olfactory tract projec-
tion from mitral cells of the olfactory bulb (fig. 9.3). Present evidence
suggests that this projection is exclusively excitatory (Biedenbach and
Stevens 1969a,b; Haberly 1973a; Haberly and Bower 1984) and ex-
tremely diffuse or nontopographic. These afferent fibers make excitatory
synaptic connections with pyramidal cells and feedforward interneurons
in layer Ia (Haberly 1985). This afferent input to the cortex is modeled as
a set of independent fibers that make sparse connections with pyramidal
cells and inhibitory interneurons. The actual degree of interconnection
is varied according to the experimental paradigm being simulated. For
example in some simulations we seek to reproduce physiological data
obtained with shock stimulation of the afferent input system. Under
these conditions of massive, synchronous afferent activation, the input
to the cortex is represented as a bundle of afferent fibers that make ex-
citatory synaptic connections with all pyramidal cells and feedforward
interneurons in the cortex (Appendix 9.D). In other simulations where
the intention is to replicate patterns of activity seen with more natural
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stimuli, we treat the afferent inputs independently and connect them
more sparsely (Wilson and Bower 1988).

In both the actual cortex and the model, conduction velocities along
axons are finite and vary with the axonal type (Haberly 1978). Signals
travel along the main input tract from rostral to caudal, and are dis-
tributed across the cortex via many small collaterals (Devor 1976). In
the model, signals proceed along the main fiber tract towards caudal
cortex at a speed of 7.0 m/s. Collaterals leave the main fiber tract at
a 45° angle and travel across the cortex at a speed of 1.8 m/s (Haberly
1973b).

In the actual cortex there is a diminution of afferent input to pyrami-
dal cells moving from rostral to caudal that is reflected anatomically in
the number of synaptic terminals (Price 1973; Schwob and Price 1978),
and physiologically in the amplitude of shock-evoked potentials medi-
ated by the afferent system (Haberly 1973b). To simulate this effect
in the model, the strength of synaptic input due to afferent signals is
exponentially attenuated with increased distance from the rostral site of
stimulation (see w,atic in eq. 9.5).

Association Circuitry In addition to the input connections from the
olfactory bulb, there is also an extensive set of connections between the
neurons intrinsic to the cortex (figs. 9.2, 9.3, 9.4). A principal com-
ponent in these connections is the association fiber system that arises
from pyramidal cells and makes sparse, distributed excitatory connec-
tions with other pyramidal cells all across the cortex (Biedenbach and
Stevens 1969; Haberly and Bower 1984; Bower and Haberly 1986). The
fibers appear to spread out radially from the originating cell and travel
rostrally at a speed of 1.0 m/s, and caudally at a speed of 0.5 m/s
(Haberly 1973b; Haberly 1978) making local connections on bt.ual den-
drites of other pyramidal cells and distant connections on apical den-
drites. In the model, fibers originating from pyramidal cells follow the
same pattern of interconnectivity and signals are propagated along each
fiber with the corresponding delays (eq. 9.2). In the model, as a con-
sequence of simulation scaling considerations (see section 9.2.2 and Ap-
pendix 9.D), association fiber interconnectivity is greatly increased as
compared to that of the actual cortex.

The effect of monosynaptic association fiber input to a simulated cell
is strictly excitatory. In the model, there is an attenuation over dist.ance
of the strength of synaptic input to other pyramidal cells reflecting a
presumed decrease in a particular cell’s influence with distance. .The
attenuation is consistent with the fall off in numbers of axon terminals
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Simpliﬁec'l diagram of the local circuitry contained in the model of piriform cortex.
The cell in the center represents a pyramidal cell, which is the primary excitatory
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to the pyramidal and inhibitory cells indicate the location of synaptic connections.
Darkened connections are inhibitory while lightened connections are excitatory. Ar-
rows indicate the direction of propagation of signals originating from the various cell
types, as well as the distance these fibers travel.
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in local axon collaterals at greater distances from the originating neuron
(Haberly and Bower 1982; Haberly and Presto 1986) and is modeled
with an exponential function (see eq. 9.7). Rostrally and caudally di-
rected association fibers have unique spatial attenuation constants. The
level of attenuation asymptotically approaches a minimum value for each
direction, consistent with physiological stirdies of association fiber sys-
téms in deafferented piriform cortex (L. Haberly, unpublished). In the
model, the local region of excitation surrounding the cell, which termi-
nates on the basal dendrites of its neighbors, has a radius of 2 mm. This
value is an approximation since the actual value is not precisely known.
Beyond this radius, connections are made onto apical dendrites. In the
model, a pyramidal cell has no excitatory connection to itself (autapse),
consistent with anatomical data (Haberly and Presto 1986).

Inhibitory Circuitry There is good evidence for two types:of inhibi-
tion in piriform cortex, both of which are incorporated into the model. A
well-documented Cl- mediated feedback inhibition is thought to be gen-
erated by local interneurons that receive input primarily from local pyra-
midal cell association fibers as well as some afferent fibers (Biedenbach
and Stevens 1969a,b; Haberly 1973a; Satou, Mori, Tazawa, and Takagi
1982; Haberly and Bower 1984; Tseng and Haberly 1986). The out-
puts of these inhibitory interneurons feed back to nearby pyramidal cells
where significant conductance increases suggest a current shunting in-
hibitory mechanism (Scholfield 1978; Satou et al. 1982; Haberly and
Bower 1984; Tseng and Haberly 1986). In the model these interneurons
make inhibitory connections with the group of nearby pyramidal cells
that lie within a 2 mm radius (again an estimate) where they activate a
significant conductance increase to C1~ at the level of the cell body (see
below).

In addition to this shunting type inhibition, in the actual cortex a K+
mediated inhibition appears to be generated by local inhibitory interneu-
rons receiving primarily direct afferent input from the LOT as well as
some associational input from pyramidal cells (Satou et al. 1982; Tseng
and Haberly 1986). The outputs of these interneurons generate a long-
latency, long-duration hyperpolarizing inhibitory potential in nearby
pyramidal cells. Available evidence (Galvan, Grafe, and Bruggencate
1982; Satou et al. 1982; Tseng and Haberly 1986) suggests that this po-
tential has a modest associated conductance increase and therefore may
exert its inhibitory effect primarily via membrane hyperpolarization. In
the model this hyperpolarizing inhibition is activated on the apical den-



304 Chapter 9

drites of pyramidal cells by inhibitory neurons with both feedforward
and feedback input.

9.3.5 Membrane Properties of Neurons and Synaptic Inputs

Channel Types In the model each population of neurons consists
of single cells whose modeled membranes include synaptically activated
ionic channels obeying simple channel kinetics and having a membrane
capacitance and resistance (figs. 9.5, 9.6). The parameters that describe
these properties have all been adjusted to replicate the temporal charac-
teristics of transmembrane potentials found with intracellular recording
using both in vivo (Haberly and Bower 1984) and in vitro (Haberly and
Bower 1984) experimental preparations.

The membranes of modeled neurons include three types of ionic chan-
nels (table 9.1). The first type of channel is a modest-conductance
sodium ion channel (Gpear = 50 nS). This channel is activated by
excitatory afferent and association fiber synapses, with an ‘equilibrium
potential of 100 mV above the average firing threshold of the cell (Eng =
55 mV). In this channel the time to onset of the conductance change
following the arrival of a presynaptic action potential is 800 psec, or a
single synaptic delay. The duration of the change is 10 msec.

The second type of synaptically activated channel is a high-conduc-
tance, Cl™ mediated type. This channel is activated by inhibitory
synapses from feedback interneurons and exerts a powerful current-
shunting effect (Gp.ar = 200 nS) on the membrane that drives it to
a potential 20 mV’ below the average firing threshold (E¢c; = —65 mV).
In this channel the time to onset of the conductance change following
the arrival of a presynaptic action potential is again a single synaptic
delay. The duration of the change is 20-60 msec.

The third type of synaptically activated channel is a modest-conduc-
tance (Gpear = 5 nS), K* mediated type. This channel is activated by
the inhibitory synapses of feedforward interneurons, with an equilibrium
potential 45 mV below the average firing threshold (Ex = —90 mV).
The time course of the conductance change induced in this channel is
characterized by a long latency to activation following the arrival of a
presynaptic action potential (30-50 msec) and a long duration (100-
600 msec). |

Cellular Structure The two types of inhibitory neurons are each
modeled as single compartments, while two models of the excitatory
pyramidal cells are used alternately during simulations. A simplified
single-compartment pyramidal cell model (fig. 9.5) is used during large-

Neural Network Simulations 305

"Na :
/
afferent < M)\/\;
Ex | %
feedforward LA AN
inhibition < r* VXA

Na INa
caudally g
directed T “Na Ena  rostrally

association N ~_directed

Na INa /\/(\\/\—l }ﬂb association
local ] /{/\/ g
association < W Cl Eei feedback

FD inhibition

spike output

& J
J v
r § threshold
m | SN

S

Figure 9.5

Thge circuit representation of a single-compartment pyramidal cell used in the m?de‘l.
Symaptic inputs arrive at channels containing a variable conductance g, and an ionic
equilibrium potential E. The cell body is represented by a membrane resistance and
a membrane capacitance. Spike events are generated when the potential across the
membrane exceeds the threshold of the cell. These spike events are then propagated
to other cells along delay line axons.
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The circuit representation of a multicompartmental pyramidal cell used in the model.
There are five compartments, each containing a membrane resistance, membrane
capacitance, and resting potential, as well as one or more synaptically activated
conductances.
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scale simulations to establish the macroscopic cortical behavior. A more
detailed five-compartment model (fig. 9.6) is then used to generate the
spatial distributions of current flow within a single neuron using patterns
of inputs generated by the large-scale model. These current distributions
are needed for the calculation of extracellular field potentials (see Ap-
pendix 9.B).

" Asdiscussed in general above, this approach reflects a compromise be-
tween the number versus complexity of the neuronal elements simulated,
In using the single-compartment model during network simulations it is
assumed that the spatial interactions of current flow within the den-
dritic tree of the neurons are not significant to the responses being mod-
eled. While this assumption must be made with caution, comparison of
somatic membrane potentials generated by both the single- and multi-
compartmental approaches show good agreement with real experiments.
Therefore, this simplification may be appropriate as an initial approxi-
mation, in order to study basic cortical phenomena. However, synaptic
events occurring in the dendritic tree can impose significant nonlineari-
ties on the integration of currents at the somatic level (Koch et al. 1983).
Network simulations that include explicit dendritic structure will allow
more detailed study of the effects of patterned dendritic activation on
cellular activity. This is particularly important in exploring the more
complex questions concerning computation within the network.

9.4 Specific Network Implementation

We will now consider the mathematical details of the implementation
of the model of piriform cortex. While the network being considered
represents a specific region of cerebral cortex, the general mathematical
formulation is actually quite generic. In fact, it has served as the basis
for the development of a general-purpose network simulation software
package, which is capable of simulating a wide range of cortical as well as
noncortical network structures. This software is described briefly in the
last section of this chapter. This simulation has also served as a model
for studying the general question of how neural network simulations can
be implemented on parallel computers as discussed in chapter 12.

9.4.1 Neuronal Output and Transmission Delays

The output of each modeled cell § consists of an all-or-none action po-
tential S; with unit amplitude that is generated when the membrane
potential V; of the cell crosses a threshold 7; and the cell has not fired
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for a refractory period t,. The thresholds for each cell have a normal
distribution with a mean of —45 mV and a variance of 5 mV. The
resting membrane potentials are set uniformly at —70 mV.

0 otherwise

This output S; propagates along fiber ¢ to neurons j with a delay
ty(ijq)- The propagation delay from cell i to cell § along fiber ¢ is

Li:
to(ijq) = u—;] (9.2)

where L;; is the the radial distance from the originating neuron i to
the target neuron j, and v, is the velocity along the fiber type ¢ that
connects them.

There is an additional latency term te(ijq) that represents the delay
incurred at the synaptic junction. This corresponds to the time lag
between the arrival of the presynaptic event and the generation of .a
postsynaptic response, nominally 800 usec. Therefore the total time
delay between generation of an action potential in the source cell and
the generation of a postsynaptic event in the destination cell is

U(iie) = ttije) + tetijo) A (93)
9.4.2 Channel Conductance

When an action potential arrives at a destination cell it triggers a con-
ductance change in a particular ionic channel described by the charac-
teristic function G(t) (see Appendix 9.C for the forms of this function).
As already discussed, each class of ionic channel has a distinct set of
parameters governing the time course, amplitude, and waveform of the
conductance function (table 9.1). Therefore, the net channel conduc-
tance due to a single synaptic input §(t) is a function of presynaptic
activation described by the function S(t), and postsynaptic activation
described by G(%).

Since the characteristic postsynaptic conductance waveform G(t) can
have a time course longer than that of the presynaptic action potential,
the influence of the discrete action potential event must be extended
over the equivalent postsynaptic period. This effect can be described as
the convolution of presynaptic events S(t) with the postsynaptic con-
ductance waveform G(t). The net conductance in channel  of cell 5 due
to input from cell { along fiber ¢ is
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N t=te(ije)
9(B)ijeg = ./o ng())Sg(t o tt(.-j,))dz\ (9.4)

where #4(;;4) is the total delay time for presynaptic events Si(t) to reach
cell j along fiber ¢. This function describes the synaptic transformation
for spike activity across a single connection. The implementation of this
synaptic transformation is discussed in Appendix 9.C and in section
9.7.3.

9.4.3 Synaptic Connections

In many simulations, especially those exploring possible learning mecha-
nisms (Wilson and Bower 1988), it is important to be able to change the
strengths of individual synaptic connections as a consequence of network
activity. These synaptic strengths are specified by a weight term ;j, in
the basic synaptic transformation function, which describes the strength
of connection between cell i and cell j along fiber ¢.

Physiological experiments in piriform cortex suggest that synaptic ef-
fects on postsynaptic cells vary in an activity-dependent manner both in
the short term (Bower and Haberly 1985) and in the long term (Bower
and Rao 1986). In the model the effects of variable synaptic efficacy are
simulated using a synaptic weight term of the form
Bisglt) = wife Fupgy e 1) . (99)
where w?***¢ does not vary during a simulation and corresponds to the
static distribution of synaptic terminals, and w'e™e¥¢ is in general, a
function of presynaptic activation S, postsynaptic state V, and time ¢.
Since these weights modulate the amplitude of the postsynaptic conduc-
tance they must be non-negative.

The resulting conductance change induced by the activation of a single
synapse is given by

t=t(ise) ‘
(t)igig = /0 Gis(NSilt = X =ty ijq (A (9.6)

This results in the weight applied in a “postsynaptic” fashion with
‘the peak amplitude of the conductance continually varying at each time
step.

A slightly modified form results in a “presynaptic” weighting in which
the peak amplitude of the conductance is set at the time of arrival of
the presynaptic signal S and remains at that value for its duration.

t~t4(ijq)
Gijg(t) = /0 Gir(A)Si(t = A — ty(ijg) Wijg(t — A — tyiqp)dA (9.7)
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9.4.4 Single-Cell Integration

The total conductance change induced in channel k of cell j is calculated
by summing over all synaptic inputs to that channel.

Nogits MIibers(s)

gir(t)= ) Y Gk (9.8)

=1 ¢=1

The membrane potential V for a single compartment (cell) j with n,
channels is computed by integrating

dV; 1 5

1= [Ek - Vj(t)]g)k(t) + Is'nject (99)

dt Cm
k=0

where Iinjecs takes into account any explicit current injection into the

compartment and E; is the equilibrium potential for channel type k.

(See Appendix 9.A for the multicompartmental formulation.)

9.5 Setting Model Parameters

The majority of parameters in the model, such as axonal conduction ve-
locities, time delays, the general properties of neuronal integration, and
the major intrinsic neuronal connections, are estimated from anatomi-
cal and physiological measurements made within the actual cortex as de-
scribed above (table 9.1). The weight term associated with each synapse
is one of the primary variables subject to adjustment in the model. De-
termining actual values for synaptic weights in a cortical network as
complex as piriform is an extremely difficult task. However, given that
these weights modify conductance amplitude, modifying weights affects
both the amplitude and time constants of membrane potentials. There-
fore, actual experimental measurements of these factors can serve to
constrain the operational range of weights. The second significant model
variable not strongly constrained by experimental data is the pattern of
specific cell-to-cell connections. In this case, experimentalists may never
know the full matrix of interconnectivity for large-scale neural networks
like piriform cortex. In the model, we constrain connectivity based on
general connectivity patterns seen using anatomical and physiological
techniques. However, it is an implicit assumption in this work that spe-
cific replication of actual connection patterns will not be necessary to
derive functional information from these models.

~
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9.6 Generation of Physiological Responses

Overall, our modeling of piriform cortex has proceeded in two stages.
Our first objective was to replicate known cortical responses to var-
ious stimulation conditions (figs. 9.7, 9.8; Wilson and Bower 1988).
Once this was accomplished we then proceeded to explore the possi-
ble functional capacities of this model (Wilson and Bower 1988). In
both stages, to allow evaluation of simulated results, two neuronal out-
put forms are generated by the simulation. First, time-varying values of
membrane potential in modeled neurons are generated and directly com-
pared with in vivo and in vitro intracellular recordings (fig. 9.7). Note
again that the actual spike waveforms were not explicitly calculated but
were “pasted” onto the actual membrane potential at the times corre-
sponding to simulated spike output. Second, the simulations generate
extracellular field potentials taken at discrete locations within the simu-
lated cortex (fig. 9.7). This data is important for piriform cortex because
of the wealth of field potential results available in both anesthetized and
unanesthetized behaving animals (Freeman 1968, 1979a,b; Gault 1963,
1965). Field potential responses (evoked potentials, EEGs) are calcu-
lated by using a compartmental model of a pyramidal cell to establish
the depth distribution of membrane currents given the pattern of input
conductance changes generated by network simulation (see fig. 9.8 and
Appendix 9.B). As mentioned above, further discussion of these results
is beyond the scope of this chapter. The model has also allowed us to
look at the spatial distribution of network activity (fig. 9.8).

9.7 Technical Implementation Issues

While the above discussion details the mathematical structure of the
piriform cortex model, the computer simulation of this type of model
raises specific technical implementation . In this section we will address
several of these.

9.7.1 Integration Technique

Simulation of these models requires the numerical solution of systems of
differential equations that describe the state of neurons as a function of
time and space. These numerical techniques describe how one advances
the state variables of the simulation (e.g., membrane potential) from
time i to time i +1 through integration of the differential equations that
describe the system. As discussed in Chapter 13, the primary factors
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Figure 9.7

Upper right: Actual intracellular response recorded invitro (Bower and Haberly
1985) in response to paired shock stimuli applied to the LOT. The membrane poten-
tial of the cell was artificially depolarized to enhance the inhibitory hyperpolarization.
Upper left: Simulated response under similar conditions. Middle right: Actual evoked
potential response recorded invivo (Haberly and Bower 1984) in response to a single
shock of the afferent LOT. Middle left: The simulated evoked potential contains the
basic components of the actual data. Lower right: Actual EEG recorded from pir-
iform cortex (Freeman 1960) consisting of a fast oscillatory component (30-80 Hz)
modulated by a slower (3-8 Hz) component. Lower left: Simulated EEG with fast
oscillations produced by alternating activation of excitatory and feedback inhibitory
processes. The slow component coincides with the activation of the long-duration
feedforward inhibitory process.
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Figure 9.8

Thiee successive snapshots taken of the membrane potential of all simulated pyrami-
dal cells following a shock stimulus applied to the afferent LOT. LOT input enters in
the lower left corner of each frame. Activity is seen to propagate from rostral cortex
to caudal cortex in a wave-like fashion. In frame 1 the activity is carried primarily
along the fast, principal afferent fibers. By frame 3 the principal direction of the
wavefront has changed as afferent input weakens and pyramidal cell epike activity
begins propagating along the slower association fibers. (See fig. 9.3.)
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that must be considered in selecting a particular technique are efficiency,
accuracy, and stability. Efficiency refers to the amount of computation
required to perform the integration. Accuracy reflects the degree to
which solutions obtained match actual solutions. Stability is the behav-
ior of the solution as time progresses. A system is convergently stable ifit
converges to a finite solution. However, methods that are stable are not
necessarily accurate. Because the proper use of integration techniques
is extremely important in these types of simulations, we have included
a brief discussion of our results using several different techniques. For
a thorough treatment of these methods refer to Chapter 13 as well as
Press, Flannery, Teukolsky, and Vetterling (1986) or Smith (1985).

Large-scale networks can generally be treated as loosely coupled sys-
tems of ordinary differential equations that do not need to be solved
simultaneously. In other words, evaluation of the state of any neuron in
the system requires only past state information from other neurons and
therefore can be solved independently for each neuron at every time step.
These types of equations can typically be solved using simple numerical
integration techniques. Two general categories of integration techniques
will be discussed-—explicit and implicit. In the following equations At
refers to integration step size, y; refers to the state variable at time i, and
dy;/dt is the time derivative of y evaluated at time i. For our purposes
the state variable will typically be the membrane potential.

Explicit Techniques Explicit techniques solve for the state at dis-
crete time ¢ + 1 using derivatives evaluated at or before i. They are
referred to as explicit because the new state is based on the known
history of the system. Explicit techniques include forward Euler and
Adams/Bashforth multi-step.

Forward Euler.
dy;

Yit1 = yi + At—~ 7t

Euler is the least accurate with marginal stability.

(9.10)

Adams-Bashforth: the following is the two-step Adams-Bashforth algo-
rithm.

dw _ dyia dyi-1,

Yirr =Y+ (3 7t (9.11)

The Adams-Bashforth methods are more accurate but are also some-
what unstable.

Neural Network Simulations 315

Ezponential: assuming a first-order form for the state equations with
constant coefficients A and B over the interval At

Y _By+a : (912)

we can directly integrate the differential equation and obtain the solu-
tion. Through experimentation with our model, we have found that this
technique has good stability and accuracy characteristics when used to
solve membrane equations (MacGregor 1987).

A
Yier = pie” P8+ Z(1 - e PAY) (9.13)

For example, given the membrane equation 9.9

dv Nchannals
- = ;[ Z (Ex - V)G +1]
1
A= ;23.0. +1 (9.15)
B= —ZG;, (9.16)

Implicit Techniques Another class of numerical integration schemes
are the implicit techniques that solve for the state at time ¢ + 1 using
the derivative evaluated at ¢ + 1. Common implicit techniques include
Gear second-order and trapezoidal integration.

Gear
_4 1 2, ,d¥is1
Vier = g¥i = g¥i-1+ 3At o (9.17)
Trapezoidal:
) At dyiyy | dys
vinn = wt (== + -I) (9.18)
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Comparison Overall, the explicit exponential and the implicit trape-
zoidal technique were found to be 'the best integration algorithms for
solving neuronal membrane equations in terms of efficiency, stability,
and accuracy.

9.7.2 Step Size

Several factors are involved in selecting the simulation step size At. One
consideration is the maximum integration step size that can be used to
update the neuronal state variables. This can be affected by the nu-
merical algorithm used as well as the conditions being simulated. As
a general rule the integration time step should be less than 1/5 of the
fastest time constant of interest to minimize integration errors. In prac-
tice, lower-order integration techniques such as forward Euler require
substantially smaller time steps.

The characteristics of the conductance waveform G(t) will have a
strong influence on the errors introduced during integration and there-
fore on the step size selected. Sudden or high amplitude conductance
changes can result in rapid changes in the transmembrane current
{eq. 9.9), which must be integrated with small step sizes to minimize
errors. Another consideration in step size selection is the minimum
propagation delay between elements. The step size chosen should not
be made larger than this quantity if accurate intercell propagation tim-
ings are to be preserved. In general the maximum error in intercell
propagation times will be equivalent to one-half the step size selected,
and therefore the maximal timing error between events arriving at a cell
from different sources will be equivalent to the step size. In cases where
there is a large discrepancy between the step size dictated by integration
and by intercell delay an approach involving multiple step sizes may be
appropriate.

9.7.3 Implementation of the Synaptic Transformation

The transformation of neuronal output (spikes) to dendritic input (con-
ductance) can be described as a convolution of the incoming spike signal
with a characteristic conductance waveform. Two basic techniques can
be used to perform this operation.

Explicit Convolution Two approaches can be taken to directly im-
plement the convolution described in eq. 9.4. In both cases a history
of spike signals S(¢) must be maintained for each cell. To reduce com-
putation time, we restrict the interval over which incoming spikes are
convolved with the channel conductance waveforms G(t) to t4. The
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Figure 9.9

A schematic representation of the convolution operation used to transform spike
output S(t) into synaptic conductance change j(t) (eq. 9.4). (A) shows the spike
history of a single cell being mapped onto a synaptic target at time ¢; using the
conductance waveform G(t). The total conductance change induced by the source
cell is computed as ﬁ(tl) = G(/\1)S(¢1 -1 - fg)-l-G(Az - f:)S(h .V t.) + G(/\a -
t:)S(t1 — A3 — t;). (B) shows the same mapping at a later time t3. The time between
the leading edge of the conductance waveform G and the current time i3 remains
constant (total delay ¢, eq. 9.3) while the spikes contained within the convolution
interval ¢4 change. The total conductance change induced by the source cell at the
new time t; is. computed as §(t2) = G(M2)S(t2 — A2 — t¢) + G(A3 — t)S(t2 — As —
te) + G(As — t:)S(ta — Ay — t4).
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length of time over which history must be maintained is given by ¢; +¢4.
The t; factor is required to implement propagation delay. This results
in a modified expression for the conductance

t4(n)
g‘jkg(t) = [) G,;(A)Sg(t - - tg(gjq))dA (9.19)

Assuming that the conductance waveform function G(t) is only a func-
tion-of time, the convolution with the discrete signal S(t) can be precal-
culated over the interval [0,t4] and stored at the destination site. Since
the time spent communicating information between cells is a signifi-
cant computational overhead, this approach can potentially reduce the
amount of computation at the cost of storage proportional to t4/At per
synaptic target. A

An alternate approach involves evaluating eq. 9.17 at each point within
the interval {4 in step with the simulation. This requires no additional
storage but adds additional communication proportional to ts/Af since
the term S(t) (the signal sent between neurons) must be accessed at
each step.

Second-Order System A second approach uses a time differential
representation of the conductance waveform. The conductance is mod-
eled as a damped oscillator that has an impulse response of the form
shown in egs. 9.33 and 9.36. The impulse is provided by the spike input
S(t). In this case the value of the conductance is computed using cur-
rent state information and explicit convolution is not necessary. This
reduces the amount of history that must be maintained from ¢; + ¢4 to
t;. See Appendix 9.C for the implementation details.

Comparison The advantage of explicit convolution is that arbitrary
conductance waveforms are easily implemented. The disadvantage is
that there is either a storage or computational overhead that is on the
order of the number of synaptic connections. The second-order or dif-
ferential representation typically requires less computation and storage
but implementation of arbitrary conductance functions is not straight-
forward. See Appendix 9.C for detailed comparisons.

9.7.4 Computational Requirements

The simulations of piriform cortex described were carried out on a Sun
Microsystems 3/260 model microcomputer equipped with 32 Mbytes of
memory and a floating point accelerator. These simulations of 4,500 cells
(1,500 of each type) ran at a nominal rate of approximately 10 cpu sec

Neural Network Simulations 319

per step. With a step size of 0.1 msec the average time for a 200 msec
simulation was 300 cpu min. Using explicit convolution to compute the
conductance, over 90% of the computation involved the distribution of
information between elements, with the remaining time spent updating
the states of individual elements. The overall computation time was very

;sensitive to fluctuations in activity level. Using the second-order rep-

resentation, the computation was more evenly balanced between spike
distribution (60%) and state update (40%) with less sensitivity to fluctu-
ations in activity. The memory required for these simulations exceeded
24 Mbytes primarily due to storage of synaptic connections. This scale
of simulation was operating at the upper limits of the computing re-
sources available. As would be expected, simulations that are on the
scale of hundreds of elements operate at a considerably faster rate and
utilize more modest amounts of memory. For example, equivalent sim-
ulations using 300 cells (100 of each type) ran at a rate of 0.05 cpu sec
per step. The average time for a 200 msec simulation was 1.5 cpu min
and the memory required for this scale of simulation was approximately
2 Mbytes. Thus implementation of this type of simulation on the scale
of hundreds of cells is quite feasible even on currently available PC class
machines.

9.7.5 Storage Considerations

A problem in using individually specified synaptic weights and delays is
that their number can expand as the square of the number of neurons
in the simulation. This overhead in storage can limit the size of the net-
work. An alternative representation for synaptic connections can be used
if uniqueness of individual synapses is not critical. This representation
takes the form of connection rules that describe how a representative cell
connects with other cells using coordinates relative to the representative
cell. The information stored in this source-relative connection scheme
is both a delay and synaptic weight term. In this way a representative
connection pattern takes up an amount of space proportional to that
required by connections from a single cell.

9.8 The Simulator

Instructed by the model of piriform cortex just described, we have been
developing a general-purpose simulation tool that allows the construc-
tion of arbitrary neuronal simulations. This effort was motivated by
several factors. First, we believe that powerful but flexible simulation
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software will increase the likelihood that neurobiologists will build struc-
tural models of their systems. Second, we hope that the availability of
a standard for simulations of this type would provide a means for ex-
change of modeling data and results and therefore accelerate progress
in understanding these exceedingly complex neuronal structures. Third,
we believe that a critical issue for the acceptance of simulations as a
tool in neurobiology is the degree to which simulation results can be
replicated. The availability of standard simulation software makes this
much easier to accomplish. Fourth, while any neural network simulation
designed with a particular network in mind can be optimized for maxi-
mum efficiency, a tremendous time investment is required to build such a
system. In the process of designing the simulator we have found that the
principal features of most neuronal networks are common enough that
a general network simulator is not only possible but also remarkably
efficient.

9.8.1 Overall Simulator Structure—in Brief

Within the network simulator GENESIS, components are constructed
out of basic building blocks called elements. In the most general sense,
an element is a structure that receives inputs, performs transformations
on these inputs, and generates outputs. Thus, an element can represent
a membrane compartment, a simple cell, or a complex dendritic struc-
ture. This is the principal source of the simulator’s generality. Once
constructed, these components can then be combined into networks that
have varied classes of interconnectivity, from graded signals sent with no
delay, to discrete signals that propagate with finite velocity. Single ele-
ments maintain lists of input and output transformation modules. The
simulator maintains a library of these modules that can be extended by
the user. This extendible modularity allows multiple-classes of transfor-
mations within an element. Since each element is a distinct functional
unit, homogeneous structure within a network is also not a limitation.
Elements are maintained in a hierarchical form allowing the simulation
of models at various levels of complexity and detail. Figure 9.10 shows a
block diagram of the simulator implementation of the model of piriform
cortex. .

The simulator shell environment allows interactive access to user-
expandable network specification functions and allows interactive run-
time specification and manipulation of model structures and parameters.
The graphical specification and display tools provide the means to con-
struct custom graphics interface environments for individual simulations.
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Schematic diagram showing the primary components of the single-cell model used in
the simulations of piriform cortex and their mathematical correlates. The structure
reflects the implementation of the model in the netwark simulator GENESIS.
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9.8.2 Parallel Implementation

The object-oriented nature of the simulator design allows the basic sim-
ulator components to be easily broken up into functional pieces. The
way in which these pieces can then be distributed across a parallel ar-
chitecture is discussed in chapter 12. An important point is that since
information is constrained to flow through simulator communication fa-
cilities, support for parallel architectures ¢an be provided in a transpar-
ent, controlled fashion while still allowing the flexibility of user-defined
functionality. The ability for the user to easily add varied functionality
to the basic simulator framework is a critical factor in the simulator
design.

9.8.3 Simulator Requirements

The simulator itself requires 300 K'bytes of memory. The optional graph-
ics module adds an additional 300 Kbytes. A moderately complex cell
requires from 500-1000 bytes with an additional 16 bytes for each con-
nection. Thus, a small fully connected network on the scale of 100 cells
uses approximately 200 Kbytes. The simulator runs under the Unix
operating system. The graphical specification and display facilities have
been written using the X windowing system for maximum portability.
The simulator runs on a number Unix-based systems including SUN3,
SUN4, SUN386i, and Masscomp computers. It is designed to be easily
portable to other Unix-based systems.

The address of Matthew Wilson and James Bower is Division of Biology
216-76, California Institute of Technology, Pasadena, California 91125.
Readers interested in further information on the simulator should send
requests via electronic mail to genesis@aurel.caltech.edu .
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Appendix 9.A: Multicompartmental Model

In the multicompartment implementation of the pyramidal cells, each
compartment consists of one or more synaptic input channels, a mem-
brane resistance r,,, and a membrane capacitance ¢, (fig. 9.6).

= Em 9.20
Tm = Tl (9-20)
cm = Cmprld (9.21)

where ! is the length of the dendritic segment, and d is its diameter. R
is the membrane resistivity and C,, is the capacitance per unit area.

As in the case of single-compartment neurons, each channel k consists
of a time-varying conductance g(t) in series with a voltage source Ej
representing the equilibrium potential of the ion associated with the
channel. However, in this case, each compartment is also coupled to
its adjacent compartment(s) with an axial resistance r,. This axial
resistance is divided in two and placed on either side of the lumped
membrane representation for a symmetric compartment.

_1[4R,! 9.22
Ta=3 [ wd? ] (022)
where R, is the axial resistivity. Therefore, the input to each com-
partment has two primary components, an axial and a transmembrane
current.

If we select a compartment and designate its two axial ends with +
and — then the total axial current into the compartment is given by

L=I7+1I} (9.23)

where the individual axial components from the two adjoining compart-
ments are calculated by -

- V=V _,‘____V'*—,V (9.24)
a = - ? a +
ra +ra ra +ra

V is the membrane potential of the compartment. V+~ is the mem-
brane potential of the compartment on the + and — side of the compart-
ment respectively and »J ~ is the axial resistance of that compartment.
I}~ is the current entering the compartment from the +— side. To sim-
plify notation the time-dependent variables V(t) and I(t) are written as
V and I.

The boundary conditions assume sealed ends with I}~ = 0. This can
be extended to a branching structure using
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N*+- PR ' Nt- '
I} V2=V . : 9.25
.j_;l 7_—— L-l +r E 7“_‘_—_. ( )

where N+~ is the number of compartments adjoining the + and - side
of the compartment respectively.! With N+~ = 1 this simplifies to
eq. 9.20, which applies a dendritic cable.

The ohmic portion of the transmembrané current is given by

I, = Erat =V + Mfm( Ex = V)gi(t) (9.26)
" T'm k=0

The first term represents the passive leakage component with resting
potential E,.,; and leakage resistance r,,. The summation term gives
the input through synaptically activated conductances g;(t). These con-
ductances are activated by the arrival of presynaptic signals.

The membrane potential V' of each compartment is calculated by in-
tegrating the current across the membrane capacitance. The differential
change in membrane potential with time is given by

av 1 :
W = -c:(Ia + Im) (927)

Appendix 9.B: Field Potentials

Field potentials are generated when membrane currents generated by
neurons pass through the extracellular space. These currents can be set
up both by active output processes such as action potentials, as well as
by input processes such as synaptic currents. The field potential at any
point will be composed of the linear superposition of fields generated by
current sources (current from the intracellular space to the extracellular
space) and sinks (current from the extracellular space into the intracel-
lular space) distributed along multiple cells. In the following discussion
the term “current source” will be used to refer to both sources and sinks.

The value of the field potential depends on the extracellular resistivity,
the location and amplitude of the current sources, and the location of the

1 Note that this formulation is identical to that for asymmetric compartments with
the addition of the right-hand denominator term. Thus the symmetric compartment
requires slightly more computation than its asymmetric counterpart but is a more
accurate representation of neurons consisting of smaller numbers of compartments.
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recording electrode relative to the current sources. For example, when
the recording electrode is approximately equidistant from a large number
of current sources it will measure the spatially averaged field produced
by these sources. This corresponds to an electrode placed on the cortical
surface measuring the fields generated by a sheet of neurons beneath it
as in the EEG). As a separate example, an electrode placed very close to
a smaller number of current sources would preferentially record the fields
generated by those sources. This corresponds to a microelectode placed
close to the spike-generating mechanism of a single cell to measure its
isolated spike output (as in extracellular single-unit recording).

The exact contributions to the field potential by neuronal activity
depend largely on the geometry of single cells and network circuitry, as
well as the spatial and temporal patterns of activity both within a cell
(e.g., sequence of dendritic activation), and among groups of cells (e.g.,

" synchrony of firing).

Consider the multicompartmental model used to generate the spa-
tial distributions of membrane currents. The model computes a single
transmembrane current I, intended to represent the “lumped” current
across a section of membrane. If we assign each compartment an z,y, 2
coordinate, we can treat each lumped transmembrane current I, as a
point current source located at those coordinates.

For point current sources distributed in a linear noncapacitive medium
we have (Nunez 1981)

Ncells Neompariments

=R 3T el (029)

j=1 k=1 Tik
where
rie = (@ = 2a)? + = i) + (2 - )] (9.29)

The coordinates (', y', z’) give the location of the recording site. The
coordinates (z/*, y#*, 27*) give the coordinates of the compartment k in
cell j. rjy is the distance from compartment k in cell j to the recording
site. Im(jr) is the transmembrane current in compartment k of cell j.
R, gives the extracellular resistivity per unit distance assuming a homo-
geneous extracellular medium (constant resistivity). Vy is an estimate
of the extracellular field potential at (z’,y', 2').

Thus, in order to compute an estimate of the field potential the total
transmembrane current for each compartment in each cell is summed
according to the ‘inverse distance of the current source (compartment)
from the simulated recording site.
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G(t) = Ate’V®
Ate

Figure 9.11
Waveform of the alpha function (eq. 9.33)

Appendix 9.C: Synaptic Transformation

Synaptic Convolution Operation

Truncating the conductance function G(t) after time ¢4 as in eq. 9.19
can introduce rapid changes in transmembrane current. These fast tran-
sients can induce numerical instability in the integration of the mem-
brane potential. Several methods can be used to avoid this problem.
One technique is to extend the integration interval t4 such that it is
many time constants 7 in duration. This approach minimizes the dis-
continuities at the expense of increased computation. Another approach
involves modifying the conductance function o eliminate discontinuities.
One modification of the conductance function uses a quarter-period of
a cosine function applied after the peak of G(t) to force it smoothly
to zero after the desired duration ¢4. In this way the peak amplitude,
peak latency, and rise time of the original conductance function G(t) are
preserved while discontinuities at time t4 are eliminated.

&(t) = G(1) [(1 — Ut = tpeak)) + U(t = tpeas)cos [g(-(t‘;}‘{ﬁ)ﬂ](s.so)

where ¢, is the time to peak of the conductance function and U(t) is
the unit step function.
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Second-order Synaptic Transformation

The general second-order form of the differential transformation equa-
tion is

G + oG + G = z(t) (9.31)
a=0t72 51 (9.32)
T2 72

The impulse response of this system (z(t) = §(¢)) with initial condi-
tions of G(0) = 0 has two basic forms.

Alpha function Under the condition where 1 =12 = 7,

G(t)y=te " (9.33)
The time to peak of this form is

tpeak =T (9:349)
and the peak value at that time is

Gpeak = re! (9.35)

Dual exponential For 7 # 7,

G(t) - 72 (e—t/n - c—t/f,) (9.36)
n—m7
The time to peak is given by

1732
1 — T2

-
tpeak = ln(;:-) (9.37)

and the peak value at that time is

r

Gpeat = -—zﬁ(c"’“"/"‘ — e~ treer/T) (9.38)

Practical implementation The objective is to solve the second-
order equation for G(t) at each time step ¢ and then solve for the net
conductance change §(t). The second-order system can be described by
two first-order equations.
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) |
i=—z4 z(t) (9.39)
. -1
G="-G+z (9.40)
T2

In our case z(t) = S(t — ¢;). If “presynaptic” weighting is included
this becomes 2(t) = S(t — t;)w(?).

These equations can be numerically integrated to yield G(¢) using
the techniques mentioned in section 9.7.1. The net conductance is then
calculated by

§(t) = éﬂLG(i) (0.41)
peak

or with “postsynaptic” weighting

i(t) = 2= G(tu(t) (9.42)
peak

where g, is the desired peak conductance value.

The following equations describe one method for advancing the solu-
tion to G(t) from time ¢ to time t + At. If spikes are considered to take
the form of impulse functions then z(t) = S(t - t;)/At, where S(t —¢t,)
is the amplitude of a spike that occurred at time ¢t — ¢;. The variable z
can then be evaluated as

Zpar = zeedYT 4 S(tA_; b (1 — ed4/m) (9.43)

and the conductance G is given by
GH»A! = G‘CA'/f’ + 2;1’2(1 - CA‘/") (944)
The net conductance is then obtained as in eqs. 9.41 or 9.42.

Comparisons

We can compare the computational overhead associated with various
implementations of the synaptic transformation by calculating estimated
simulation time.

N,, = the number of spikes in the interval ¢ (total simulation time)
N,yn = number of synaptic connections ‘
N,¢ = number of time steps in the interval t; (convolution interval)
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N; = number of time steps in the interval ¢

N:» = number of channels or synaptic targets

T, = computation per step for communication (spike propagation)
T, = computation per step for second-order conductance calculation
T, = computation per step for convolution conductance calculation
N, st = t‘/ At

W, 1= t/ At

In the main text, three methods for performing the synaptic transfor-
mation are described. The first is explicit convolution using precalcula-
tion of the conductance waveform with storage. The second is explicit
convolution involving no storage. The third is the differential or second-
order method.

The method of convolution with precalculation requires an amount of
computation proportional to

T;:omputation = N:yanpT:: + NtynanNatT; (9'45)

with additional storage proportional to N, ,N,;.
For explicit convolution without storage we have

Tcompuiation = N:ynNopNﬂTc + N:ynNaletTg (9'46)

We can see that there is an additional factor of N,; in the first term
(communication) while the second terms (calculation) are equivalent.
For the differential representation we have

Tcomputatc'on = N:ynNopTc + N N.T, (9'47)

In this formulation we see that the first term is as efficient as the
convolution with precalculation without the storage overhead. The sec-
ond term can be compared with the explicit convolution methods by
looking at the factors N,y versus N,,, and N; versus N,;N,p. Typi-
cally the number of synaptic targets or channels will be much less than
the number of synapses N,,,. Additionally, factor N; will be smaller
than N, N, if there is overlap of the conductance intervals. Therefore,
in general, the differential representation will be more computationally
efficient than either of the explicit convolution methods.

As a sample calculation, we will examine a simulation of 100 cells each
containing 5 synaptically activated channels. The simulation duration is
200 msec with At = 1 msec. All synaptic conductances have duration
of 10 msec.
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Nsyn 10000 synapses N.p 500 channels
Nst 10 steps Ny 200 steps
Te 0.02 msec/synapse T, 0.1 msec/channel
Ty 0.005 msec/synapse
for N,, = 20
communication  caleulation tobal o
it A g 10 goc 14 sec
Tz A0 ge 10 e Sl s
Ty 4 g 10 sec 14 mec
for N,p, = 100
calculation  total
Ti  20sec 50 sec 70 sec
T2 200 sec 50 sec 250 sec
Ts 20 sec 10 sec 30 sec

for N,, = 100 and At = 0.1, which gives N,, = 100, and N; = 2000.

COMMIINICatinn \..'L:'-'IT."'J::-l.'l total
e 20 pec 5 e B gers

Iy 2000 ser S0 sec 2H00 g
Ta 20 8ec 1000 s 120 sec

where T) is the computation time required for convolution with pre

caleulation, Ty is for explicit convolution, and Ty is for the differential

representilhion,

Appendix 9.D: Sample Calculation for
Evaluation of Output Representation

In the following discussion the term “source” will refer to cells which are
generating output while “target” will refer to cells receiving input.

N; = the number of simulated cells in the source region

N; = the actual number of cells in the source region to be simulated

N = the actual number of cells in the target region to be simulated

N: = the number of connections on a target cell from cells in the
source region of the actual network

What we wish to obtain is a simple measure of the appropriateness
of the single-spike representation versus the spatially averaged output
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representation as discussed in the main text. This measure is based on
an estimation of the number of connections between a cell in the target
region and cells within the representative source region.

The total number of connections made in the target region is given by

N
T,= 3 N.() (9.48)
A

In the case of uniformly distributed connections 7, = NN}
* The number of connections made per source cell is

_ NN

= 9.49

The number of cells in the representative source region is

N

Nr=ﬁ'7

(9.50)

The estimated number of cells in the source region that project to a
single target cell is given by

V—C‘N'_&
B T 7

(9.51)

The measure of output representation can be summarized as

N, > spatial average approximation with N, discrete levels
" N, < | single-cell approximation with connection sparsity equal to

Np
Therefore, for valid single-spike approximation of cell output
N} > N, (9.52)

For example, in the simulations of piriform cortex, looking at connec-
tivity between cells within the cortex we have N = N, = 103, giving
Np = 1 Thus the scale of the piriform cortex simulations lies at the tran-
sition point between fully connected single-cell output and discrete-level
spatial average output.

For small N, the spatial average technique provides an estimate that
is more sensitive, in a relative sense, to variability in output levels given
variability in input levels. The continuous approximation for the output
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level will be a function of N,. As N, increases the resolution or number
of discrete levels that the averaged output can take increases, making
a continuous or at least a higher resolution output desirable. Single-
cell input and output parameters must take into account the continuous
nature of the output. We will assume that the effect of the averaged
output will be to’activate a synaptic conductance change in the target
cell consistent with the single-spike effect. The instantaneous value of
conductance should reflect the expected value of the conductance given
input from multiple sources. If the components of the input are assumed
to be independent in time, then the expected value is simply the sum
of the mean value of the individual conductance waveforms. This al-
lows the conductance to be represented as a function of input amplitude
alone. The assumption of independence is clearly a major simplification.
The presence of local excitatoty and inhibitory connectivity would indi-
cate that cells in a region are not independent but are influenced by the
structure of local circuitry. Yet both the single-spike and spatial-average
approaches make implicit assumptions concerning the significance of lo-
cal variability in the output of a region of cells. Unfortunately this issue
cannot be resolved without increases in simulation size or complexity of
local transformations, both of which require a deeper understanding of
the structure and function of local circuitry.

Synchronous coactivation of cells within a source region reduces the
independence of output activity. This has the effect of reducing the
number of independent connections N, on the target cells, thereby re-
ducing the single-spike criterion N,. In the extreme case of complete
coactivation, which is the approximate effect of commonly used shock
stimulation, N, = 1 and the input can be safely reduced to a single fiber
that has single-valued spike output.
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Table 9.1: Model parameters for piriform cortex

te absolute refractary period 10 maeec
te synaptic delay 0.8 msec
tirn feedforward inhibitory delay 80 masec
TNa excitatory conductance time constant 3 msec
TCI feedback inhibitory conductance time constant 10 msec

- feedforward inhibitory conductance time constant 50 maec
Gpeak(Na) Peak excitatory conductance 50 nS
Gpuk(Cl) peak feedback inhibitory conductance 200 nS
Gpeak(K) peak feedforward inhibitory conductance 5nS
m membrane leakage resistance 100 MQ
‘cm membrane capacitance 100 pF
Epna excitatory equilibrium potential $5 mV
Ect feedback inhibitory equilibrium potential -85 mV
Ex feedforward inhibitory equilibrium potential -90 mV
Em resting membrane potential -90 mV
vior main afferent LOT velocity Tmfs
Veol afferent collateral velocity 1.6m/s
Vros rostrally directed velocity 1.0 m/s
Veau caudally directed velocity 0.5 m/s
Vinh inhibitory velocity 1.0m/s

Multicompartmental pyramidal cell parameters

Cm membrane capacitance 1 pF/cm?

Ry, membrane resistance

2000 Qem?

R. extracellular resistance 50 Q/cm
R,  intracellular resistance 50 Qcm

Cellular dimensions

segment length (um) diameter (um)
apical Ia dendrites 100 1.5
superficial Ib dendrites 100 1.5
deep Ib dendrites 100 1.5
soma 30 ‘ 30

basal dendrites 200 1.5




