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From basic network principles to neural architecture: Emergence
of orientation columns*

(modular self-adaptive networks/visual system/feature-analyzing cells/orientation-selective cells)

RALPH LINSKER
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

Communicated by Richard L. Garwin, July 7, 1986

ABSTRACT Orientation-selective cells-cells that are se-
lectively responsive to bars and edges at particular orienta-
tions-are a salient feature of the architecture of mammalian
visual cortex. In the previous paper of this series, I showed that
such cells emerge spontaneously during the development of a
simple multilayered network having local but initially random
feedforward connections that mature, one layer at a time,
according to a simple development rule (of Hebb type). In this
paper, I show that, in the presence of lateral connections
between developing orientation cells, these cells self-organize
into banded patterns of cells of similar orientation. These
patterns are similar to the "orientation columns" found in
mammalian visual cortex. No orientation preference is speci-
fied to the system at any stage, none of the basic developmental
rules is specific to visual processing, and the results emerge
even in the absence of visual input to the system (as has been
observed in macaque monkey).

This series of papers explores, with reference to the mam-
malian visual system, the structures that emerge in a network
consisting of several layers of cells with connections of
initially random strength, which develop according to a
Hebb-type rule that "rewards" correlated activity of con-
nected cells. In papers 1 and 2 (1, 2), I showed the emergence
of spatial-opponent and orientation-selective cells in a lay-
ered system with parallel feedforward connections only and
with random spontaneous uncorrelated activity (no environ-
mental input) in the first layer.

In primate visual cortex, orientation-selective cells are
organized, prior to any visual experience, into banded
regions ("columns"), such that the preferred cell orientation
tends to vary monotonically, but with frequent breaks and
reversals, as one traverses these regions (3, 4). In this paper,
we will explore the self-organization of orientation-selective
cells that occurs when lateral connections between cells of
the orientation-selective cell-forming layer are added to the
purely feedforward network of papers 1 and 2. I will dem-
onstrate a resulting columnar organization that agrees with
the qualitative observations, and I will show why this
organization is irregular (exhibits breaks and reversals in
orientation sequence). The approach, and some of the early
results, were described in IBM Research Report RC11642,
January 1986 (R.L., unpublished). The present series of three
papers is, however, self-contained.
The System Through Layer F. To summarize the state of the

network through layer F, as derived in papers 1 and 2: There
is random spontaneous activity in layer A. The A-to-B
connections are all excitatory (1). The cells of layers C, D, E,
and F are approximately circularly symmetric spatial-op-
ponent cells (1, 2). The character of layers A-F affects
layer-G development only through a function QF(s) which

describes the correlation of signaling activities of a pair of F
cells as a function of the distance s between them. For the
present case, I have found that QF(s) is of "Mexican-hat"
form: positive for small s, negative (implying anticorrelation
of activities) for intermediate s, and near zero for large s (2).
Layer G in Absence of Lateral Connections. For this case,

it was shown (2) that there is a parameter regime for which
the cells of layer G mature to become "bilobed" cells, each
such cell having a bar-shaped excitatory central region that
extends to the periphery and is flanked by two inhibitory
lobes. These cells have approximate bilateral symmetry.
Each cell develops an arbitrary orientation that is indepen-
dent of its neighbors' orientations.
Let us choose the same illustrative parameter values used

in paper 2; namely, nEG = 0.5, rG/rF = 1.8, k1 = 0.6, k2 = -3
(see paper 2 for definitions). In the limit of a large number NG
of feedforward synaptic inputs to each G cell, random
variations in synaptic density (due to random synaptic
placement) become arbitrarily small. The mature cell mor-
phology can then be obtained by solving for the development
of the connection-strength values, on a polar grid having a
Gaussian density of sites (see Fig. la and paper 2). The
number of synapses lying within the grid box represented by
each site is the same for all sites in the large-NG limit.

In paper 2, I derived an essentially unique "energy" or
"objective function" corresponding to the ensemble-aver-
aged development equation and showed that the mature
states obtained by explicitly solving the development equa-
tion are the states having globally near-minimal values of this
energy function. I called such states "nearly Hebb-optimal"
(2) and calculated them using the method of simulated
annealing (5). Fig. la shows a symmetric bibbed cell that is
nearly Hebb-optimal for the parameter values given above. I
shall refer to this cell, when rotated counterclockwise
through angle 6, as the "standard cell" of orientation 6 (for
these parameter values).

Introduction of Lateral Connections. I now treat the devel-
opment of the same system, except that each G cell now
receives lateral inputs from a surrounding neighborhood of
other G cells, as well as the feedforward inputs from cells of
the predecessor layer F. Each of the lateral and feedforward
connections may in general be excitatory or inhibitory and
have initially random strength. The distribution of these
connections exhibits no directional preference. The cell-
response and development rules are the same as in papers 1
and 2 (1, 2). Because there is a new class of connections,
however, the mathematical form of these rules is slightly
different. (See Appendix for equations.)
Assume that each set of input activities from layer F [called

a "presentation" (1)] persists long enough so that a G cell is
still receiving a presentation from layer F at the same time
that it is receiving from other G cells their responses to the

*This is paper no. 3 in a series. Paper no. 2 is ref. 2.
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FIG. 1. (a) Arrangement of excitatory and in}
the arborization of inputs to a "bilobed" G c
Hebb-optimal, for parameters nEG = 0.5, rG/rF =
= -3. Site coordinates on the polar grid shown ai
0.1-7rn (n = 1, ..., 20) and with r given by z--ey
uniformly spaced values of z between 0 and 1 [z =
1, ..., 15]. [The outermost (n = 1) ring has r = 1.84
c values at their excitatory limit are denoted
inhibitory limit, by ovals. We refer to this as the"
the above parameter values. (b) The function QGI
vs. distance d = Idl (in units of rG) for = 0'
(north-south) displacements d. Values of 6' are 0'
(dotted curve), 540 (short-dashed curve), and
curve). (c) Same as b but for horizontal (east-west

same presentation. That is, ignore (for sim
"contamination" by input from a previous I
Development of Layer G with Lateral Con

describe the system's development here wit]
ence to the mathematical details, which are
Appendix. The development Eqs. 5-7 can be
general case in which F-to-G and G-to-G
developing simultaneously from initially rar
or inhibitory values. In this paper, howeve
specific cases-the first briefly, the second

First suppose that the F-to-G connection
the G-to-G connections have formed. Tho
becomes a bibbed cell of arbitrary orien
strength of each connection from one G
subsequently reaches its excitatory (or ix
depending upon whether the correlation bet
ities of the two G cells is greater (or less) th
specified value. The G-to-G connections thu
developmental role in this case.

The second case we consider is more inter
that the G-to-G connections mature to becon
before the F-to-G connections have devek
given G cell will affect its neighbors' develol
the Hebb-type rule-in such a way as to ten(
correlations between the activity of the give
activities of the neighboring G cells to wl
excitatory input via the lateral connections.
following Eq. 9.)
The direct solution of Eqs. 5-7, for an asst

thousand G cells (to reveal columnar organ
least several hundred inputs to each cell

principle but is computationally very demanding. Instead, I
shall show how to calculate the nearly Hebb-optimal config-
urations for such an assembly of cells.

METHODS

0-o°0 We first consider the system in the large-NG limit. Random
°0 deviations from rotationally symmetric synaptic density (due

to random synaptic placement) go to zero in this limit.
Therefore, the energy function (En in paper 2) for a G cell
indexed by n, in the absence of lateral connections (2), is
rotationally symmetric. [This does not mean that the lowest-
energy states are rotationally symmetric (2).] In particular,
the energy of a bibbed cell is independent of cell-axis
orientation.
The energy of a G cell varies with its morphology (the

arrangement of excitatory and inhibitory regions in its input
arborization). We focus here on the parameter regime for

L_ which approximately bilaterally symmetric bibbed cells are
of globally near-minimal energy. Cells of different morphol-
ogy [substantially asymmetric bibbed cells, trilobed cells (2),
etc.] have energies that are greater than the global minimum

3 4 by at least an amount of an order that we denote AEmorph.
In the presence of lateral connections, the energy of a G

cell acquires an additional, lateral-interaction component
iibitory regions in (see Appendix). This component is proportional to K, where
ell that is nearly K describes the relative contribution (e.g., the relative total
1.8, k, = 0.6, k2 number) of lateral vs. feedforward connections. The value of

re (r, ), with 4 = this lateral-interaction energy does vary with cell orientation.
Kp(-r2/r&), for 15 We are free to choose K small enough (e.g., lateral connec-
(n - 0.5)115, n tions sparse enough) so that the lateral-interaction energy is

by dots; at their small compared with AEmorph. Then the lateral interaction
standard cell" for will cause a particular orientation of bibbed cell to be favored
(6, a', d) of Eq. 9 at a given site (depending upon the orientations of the cell's0 and for vertical neighbors) but will not cause non-bilobed cells to become
(solid curve), 360 nearly Hebb-optimal (their energies will still lie above the
900 (long-dashed global minimum by at least AEmorph). Thus a nearly Hebb-

t) displacements d. optimal state of the entire assembly of G cells-a state of
near-minimal E value (see Appendix)-will be composed of

plicity) possible mature bibbed cells having a structured arrangement of
presentation. orientation preferences that we shall calculate explicitly.
nections. I shall In terms familiar from theoretical physics, the unperturbed
h minimal refer- (K = 0) energy function for the assembly of cells [E(°) in the
provided in the Appendix] is invariant under rotation of each cell (about its
used to treat the axis) through an arbitrary angle chosen independently for
connections are each cell. This invariance is broken by the lateral-interaction
idom excitatory terms. The latter terms do not, however, mix bibbed states
r, I discuss two (of near-minimal energy) with states having different mor-
in some detail. phology, provided the perturbation is sufficiently weak (K
Us mature before small).
en each G cell It suffices, therefore, to calculate nearly Hebb-optimal
tation, and the states of an assembly of cells, each of which is a mature
cell to another bibbed cell of arbitrary orientation. (Cells having other
nhibitory) limit, morphologies need not be considered.) To make this problem
tween the activ- tractable, we adopt the following Ansatz. (i) Represent layer
an a parameter- G by using a square grid. An arbitrary configuration is
is play a passive characterized by assigning a value of orientation angle to

each grid box. All cells within a given box share the same
resting. Suppose orientation. (We shall see that each iso-orientation region
ne all-excitatory indeed comprises many lattice sites,justifying the assignment
)ped. Then any of a single orientation to the cells at each site.) For practical
pment-through computational reasons, allow the orientation at each grid box
d to increase the to take on any often values, spaced every 18°. (ii) The lateral
n G cell and the interaction between any pair of cells is computed as if both
hich it provides cells were "standard cells" of the appropriate orientations,
(See Appendix located at their appropriate grid sites. (In other words, we

approximate the actual QG value, between two cells that are
tmbly of several each approximately bilaterally symmetric bibbed cells sim-
iization) with at ilar to that represented in Fig. la, by the value for two cells

is possible in that are each exactly bilaterally symmetric "standard cells."
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Analysis of the limits of validity of this approximation is
beyond the scope of this paper.)
The energy to be near-minimized (over all sets of grid-site

orientation assignments) is then E' of Eq. 8.
Before proceeding with this analysis, I comment on the

large-NG limit invoked above. As NG is decreased, random
variations in synaptic density give rise to a random rotation-
ally asymmetric component of the energy function for each
cell. When NG is too small, the orientation preference for
each cell is determined by this random component of the
energy, rather than by the lateral interaction terms (which are
of order K). Let us consider here the regime in which NG is
sufficiently large that this does not occur.

RESULTS
The QG Function for a Pair of Mature Bilobed Cells. To

avoid possible confusion, I emphasize that we are consider-
ing the case in which the excitatory lateral connections are
formed before the feedforward connection strengths develop.
The actual development process depends upon the interac-
tions (i.e., the values of the Q0 function) between pairs of G
cells as they mature. But by transforming the development
problem into a global near-optimization problem, we avoid
having to compute the details of the maturation process. The
only functions that need to be computed in order to find the
nearly Hebb-optimal states of the system are the QG values
between mature pairs of bibbed cells. This enormously
reduces the computational burden, at the cost of introducing
the above Ansatz.
The correlation between the activities of two "standard

cells"-mature cells of the type shown in Fig. la-depends
upon their orientations 9 and 9' and the displacement d of the
second cell position relative to the first. (We measure 9
counterclockwise from the vertical or y axis.) This correla-
tion function QG(9, 9', d) was calculated by use of Eq. 9 and
plotted in Fig. 1 b and c for 9 = 0° and for several values of
9', as a function of distance d = Idl along the y axis (Fig. lb)
or the x axis (Fig. ic). Rotating 9, 9', and the dvector through
the same angle leaves QG unchanged.

Fig. 1 b and c shows that to maximize the activity corre-
lation QG, a given "standard cell" X having a vertical
(north-south) axis (9 = 0°) will favor its northern and
southern neighbors (out to d = 2.3rG) and its eastern and
western near-neighbors (d < 0.5rG) to have 9' = 00 and its
eastern and western midrange neighbors (0.5rG s d < 1.5rG)
to have 9' = 90°.
Why does this happen? Consider the type of input presen-

tation that maximally stimulates cell X: it has (in the vicinity
of X) a vertical band of high activity, centered on X and
flanked by low-activity regions that overlie the inhibitory
lobes of cell X. The cells north and south of X are centered
on the high-activity band (for this presentation), and their
activity will be correlated maximally with that of X if they
have 9' = 0°. The cells east and west of X (at intermediate
distance) are centered on a low-activity flank. If they had 9'
= 0°, their activities would be anticorrelated with X. They are
therefore favored to be as unresponsive as possible to this
type of presentation and, hence, to have 9' = 90°. This shows
heuristically why the favored axis orientation choices implied
by Fig. 1 b and c arise. We emphasize that Fig. 1 b and c gives
the correct QG-which is based on an average over an entire
ensemble of presentations of random layer-A activity to the
system-and not just the result for a particular presentation.
But notice that the set of neighbor orientations favored by

our given cell X conflicts with the set favored by its midrange
neighbor to the east (or west): the latter is oriented at 90°and
favors its eastern and western near and midrange neighbors
(including cell X) to be oriented also at 900, not at 0°. That is,
Fig. 1 b and c shows that any given cell "wants" to be at the

center of a band of like-oriented cells, flanked by perpendic-
ularly oriented cells, with the long axis of the band being
aligned with the cell's own orientation.

Computation of Hebb-Optimal States. To see how this
contention is resolved, we explicitly compute arrangements
of G-cell orientations that are nearly Hebb-optimal; i.e., that
globally near-minimize the objective function E' (Eq. 8),
which is the arrangement-dependent portion of the total E.
We use the technique of simulated annealing (5). We start
with a random assignment of site orientations and carry out
a series of passes, each pass at a "temperature" T(5). During
each pass (i) each site x is considered in random sequence,
(ii) the energy E'(o) of the configuration is computed for each
of the ten possible orientation assignments Oat site x, and (iii)
the new orientation at site x is assigned to be Onew with
probability proportional to exp[-E'(Onew)/T]. The T value is
chosen to be large (compared with the differences between E'
values for different values of 9) initially and then is gradually
reduced until it reaches zero in the final passes.

Fig. 2 illustrates a nearly Hebb-optimal assembly of "stan-
dard cells." We find that cells of similar orientation are
organized into band-like regions. An "electrode" passing
tangentially across this layer will often, though not always,
measure a progression of orientation angles that is generally
monotonic but has breaks and reversals.

I have intentionally chosen do (see Fig. 2 legend) to lie in
a regime such that the midrange region (0.5rG < d < 1.5rG)
in Fig. ic contributes to E'. If do is too small (<<0.5rG, for
example), a solution with all G-cell orientations identical
would maximize Q0 for all pairs of G cells and would
therefore be favored.

Vortices and Fractures. To characterize further the quali-
tative structure of Fig. 2, let us define a positive (resp.,
negative) "half-vortex" as a point such that, as one traces a
small clockwise circular path around the point, the orienta-
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*: 0 0
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FIG. 2. A nearly Hebb-optimal solution for an array oforientation
cells. Each cell is "stained" according to its orientation preference
9 (measured counterclockwise from the vertical): 9-45° (dot); 45-81°
(small circle); 81-1170 (+); 117-1530 (x); 153-1890 (blank). Adjacent
grid positions are separated by distance 0.1493rG. The function p(d)
(see Eq. 8) is taken proportional to exp(-d2/dl) for do = 1.194rG (
8 grid positions). Array is 72 by 72 with periodic boundary condi-
tions. [Qualitatively similar patterns result if p(d) is constant out to,
for example, 11 grid positions and zero beyond that, or if an 80-by-80
array is used.]
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tion angle at the sites lying on this path rotates clockwise
(resp., counterclockwise) by 180°. Fig. 2 contains many
half-vortices, which are in general located wherever four or
all five types of orientation marker symbols meet near a single
point. In addition, as one proceeds around the boundary ofan
iso-orientation region, the half-vortices that one encounters
are generally of alternating (positive and negative) sign.
There are also occasional "fracture" lines across which the
orientations at two adjacent sites differ substantially. In Fig.
2 a fracture is indicated by the abutment of two regions whose
marker symbols (e.g., dot and +) correspond to orientation
angles differing by at least 360. A break in orientation
sequence is recorded when an electrode track passes through
such a fracture.

DISCUSSION

The Hebb-optimal arrangements of orientation cells in layer
G, in the presence of excitatory G-to-G connections, consist
of bands of cells of the same or similar orientation. The
generally monotonic progression of cell orientation-with
frequent breaks and reversals-as one traverses the layer,
agrees qualitatively with the observations in primates (3, 4).

Blasdel and Salama (8) have recently presented an analysis
of experimental data that leads them to a picture of orienta-
tion columns in macaque monkey (see figures 5a and 6a of
ref. 8). These figures are strikingly similar to the theoretical
results presented here (Fig. 2) and in IBM Research Report
RC11642, January 1986 (R.L., unpublished). In particular,
the features I have identified as half-vortices of alternating
positive and negative sign (see previous section), as well as
fracture lines (figure 6c of ref. 8), are prominent features of
their orientation maps.
How Excitatory Lateral Connections Yield "Columnar"

Organization. It may be surprising that excitatory lateral
connections give the progression of preferred orientations
that I have demonstrated. One tends to think of a "Mexican-
hat" form of interaction within the developing layer-excita-
tory at short range and inhibitory at midrange-as inducing
the assignment of different "labels" (e.g., orientations) to
different groups of cells (6). What I have shown is that
like-orientation G cells, displaced by an intermediate dis-
tance in the direction perpendicular to their orientation axes,
have anticorrelated firing activities. (This is because QF is of
Mexican-hat form, which in turn is because layers C-F are
composed of opponent cells.) An excitatory G-to-G cell
interaction tends to maximize activity correlations and,
hence, to prevent two such G cells from having parallel
orientations. At the "label" level of discussion, there thus
appears to be a kind of "lateral inhibition" between like
labels at intermediate distance, but this results from an
excitatory interaction at the level of the physical G-to-G
connections in our system. This by no means implies that
inhibitory feedback or lateral connections have no important
role in developing systems.
Comparison with an Earlier Model of Orientation "Col-

umn" Formation. Swindale (6) studied the problem in which
one is given an assembly of cells that are to be assigned a label
representing orientation preference and an ad hoc interaction
that favors like label assignment to near-neighbor cells and
unlike assignment to pairs of cells having intermediate
separation, regardless of direction. No mechanism for such
an interaction was implied, nor was the question addressed of
how orientation cells might develop. Cells having similar
labels were found to become organized into bands, with these
bands themselves lying at a variety of apparently random
orientations.
For comparison with the results of ref. 6, I have repeated

my analysis using, instead of our correct QG function, a

function Qiso(AO,d), which is defined as the average of QG(9,
0', d) over all 0 and 0', keeping AO = 9 - 9' constant. This
QJSO has a Mexican-hat form and is isotropic (i.e., indepen-
dent of the direction of the displacement d). The nearly
Hebb-optimal states for Eq. 8 using Q50° consist of regular,
generally parallel iso-orientation bands, with a generally
monotonic progression of orientation as one moves trans-
verse to the bands. The overall orientation of the parallel-
banded pattern is arbitrary. I find much greater parallelism of
adjacent bands than is shown in ref. 6, probably because the
results of ref. 6 were generated by a method that does not
ensure Hebb-optimality.
The correct anisotropic QG function for our system leads

to Hebb-optimal states having band patterns (as in Fig. 2) that
are not disposed in a parallel fashion, in contrast to those
generated by Qiso. This is because the QG function favors the
formation of vertically elongated regions of vertical-orienta-
tion cells, horizontally elongated regions of horizontal-ori-
entation cells, etc. Such preferences mutually conflict. The
QT5O function, on the other hand, favors the formation of
parallel bands (in an arbitrary direction) for regions of all
labels.
The experimentally observed degree of regularity and

parallelism of orientation bands varies from an irregular
arrangement (with frequent breaks and reversals of orienta-
tion sequence) in macaque (3, 4, 8) to a more regular
arrangement of locally parallel bands in tree shrew (7). Since
I have not explored the parameter space for orientation
column formation in detail, I am not in a position to place
limits on the degree of band irregularity to be expected in
general in a modular self-adaptive network.

APPENDIX

Let c. denote the feedforward-connection strength from cell
u in layer F to cell n in layer G, and let fnm denote the
lateral-connection strength from cell m in G to cell n in G.
There can be more than one connection between two given
cells; all such connections are summed over. For ease of
notation, suppress the additional index that would distinguish
such connections from one another. Index pairs u,n or m,n
not corresponding to any connection are understood to be
omitted from the sums below. [The equations can easily be
rewritten in terms of the more exact "pre(ni)" notation of
paper 2, but this adds possibly confusing detail that I wish to
avoid here.]

Eqs. 1 and 2 give the linear-summation rule for the
postsynaptic activity FG, of the G cell labeled n, to first order
[hence the superscript "(1)"] in the lateral (G-to-G) interac-
tion, in terms of the input activities from F and G cells. Eqs.
3 and 4 give the Hebb-type modification rule (1) for the c and
f connections, to lowest required order in the lateral inter-
action for each case.

FGir(1) = Ra + Rb X (IcnCFFYr + imfnmFG(°))
FGV(°) = Ra + Rb X YucmuFFir

[1]

[2]

(Ac..)1Y = ka + kb X (F1r(l) - FG) X (FF- F ) [3]

(Afnm)f = kc + kd X (FGff0) - FG) X (FGr(0) - FG). [41

Here Rab, kabcd, Fg, and FG1,2 are constants (Rb, kb, kd >
0). The "presentation," or set of signaling activities at a given
time, is indexed by ir.
By ensemble-averaging Eqs. 3 and 4, and using Eqs. 1 and

2, we obtain the development Eqs. 5 and 6 for the time

8782 Neurobiology: Linsker
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derivatives of c,,,, and fnm, in terms of the QF function defined
by Eq. 7.

= k1+- (QuF + k2)c
mvNG

+ Rb~mfnm[kia + N v(Qu~v + k2)Cmv] [5]

fnm = k3[k4 + kSyuCnu + k6yuCmu

+ 5 u~v(Q~U + k7)CnuCmv] [6]

QF (Fr -F() x (Ff - FF)). [7]

Angle brackets denote the ensemble average, kl-k7 are simple
functions of the constants introduced in Eqs. 1-4 (see paper
1 for the explicit definitions of k1 and k2 in the absence of
lateral interactions), NG is the number of c inputs to each G
cell, and T is the ensemble-averaged activity at any point in
layer F (1). Here QF is a function, QF(s), only of the distance
s between u and v (2) and is normalized to QF(O) = 1. We use
Eqs. 5 and 6 except when a c or f value reaches one of its
saturation limits (1), in which case c or f is "pinned" at that
limit for that time step.
From Eq. 1, we see that the relative contribution (to G-cell

response) of the lateral (f) vs. the feedforward (c) connec-
tions is proportional to the relative numbers of f and c
connections. We characterize the perturbation expansion
used in Eqs. 1-6 as an expansion in a small parameter
denoted by K, whose value can be controlled (for example) by
adjusting the relative numbers of f and c connections.

Special Case of All-Excitatory f Values. Consider an as-
sembly ofG cells distributed with uniform density in layer G,
and with the number p(d) of excitatory (f = 1) connections
between any two G cells depending only upon the distance d
between the cells. [This latter condition is unnecessarily
restrictive. For the Ansatz used here, only the number of
connections between pairs of grid boxes is relevant to the
function (Eq. 8) we shall need to optimize. The random
variations in the number of box-to-box connections are much
smaller than the variations in the number of connections
between pairs of individual cells, if there are many cells per
box.]

Construct an objective function E of all the {cnu} in a
manner similar to that used in paper 2 (but here comprising
all c for an entire assembly of G cells), having the property
that enu = -NG OE/acnu. This property means that the
system, which develops according to Eq. 5, is always
following the path of locally steepest (gradient) descent of the
E function. To obtain E (full result omitted to save space),
multiply each term on the right-hand side of Eq. 5 by
(-1/NG)cu, then multiply terms that are quadratic in the c
variables by 1/2, then sum over n and u.
The resulting E is the sum of two parts, E(°) + E(I). The

dominant part (since the contribution of lateral connections
is taken to be weak), E(°), is just the sum over all G cells of
the En function of paper 2 for each G cell n in the absence of
lateral connections. Every arrangement of orientations (of

cells of given morphology) has the same globally near-
minimal value of E(t) (apart from random variations in
synaptic density, which are arbitrarily small for NG large).
We can therefore ignore this term when we calculate Hebb-
optimal arrangements of orientations. The E(1) part results
from the lateral interaction; its orientation-dependent portion
for our Ansatz is proportional to

E'= xxP(lX - X' )QG(x, ', x' - x), [8]

where the sum is over all pairs of sites x and x' on a square
lattice, and O. is the orientation of the cells at site x. In our
calculations, we take p(d) to be decreasing with d, either
gradually (as a Gaussian) or abruptly (constant out to some
distance, and zero beyond). Here

Q0(6, 6', d) x ,jQF(Id + tj - til)cocj", [9]

where i indexes the F-to-G connections of a standard cell (see
Fig. la) whose axis is oriented at angle 0 measured counter-
clockwise from the vertical;j indexes the F-to-G connections
of a standard cell that is displaced d relative to the first cell
and has orientation 0' ti and tj are the locations of connec-
tions i and j relative to the center of their respective bilobed
cells; each c value is +0.5 or -0.5, depending upon whether
the corresponding connection lies in an excitatory or inhib-
itory domain of Fig. la; and we choose the normalization
QG(6, 0, 0) = 1. The QG function is in fact proportional to the
autocorrelation function of the activity of a pair of G cells, if
one computes only the leading-order terms (i.e., those that
are independent of the lateral connections). To see this,
replace superscripts "F" by "G" in Eq. 7 and use Eq. 2 (see
also paper 2).
That same calculation shows (2) that for two arbitrary G

cells at any stage of development (not just for two standard
cells), we have Qnm uLvQivCnuCmv. Also, Eq. 5 shows that
the fnmQUVCmV term tends to drive cnu in the direction of
QFvCmv for fixed positive fnm, during c-value development.
This explains why each G cell tends to affect its neighbors'
development in such a way as to increase QGm, as stated in the
text.
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