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The advent of functional magnetic resonance imaging

(fMRI) in non-human primates has facilitated compari-

son of the neurobiology of cognitive functions in humans

and macaque monkeys, the most intensively studied

animal model for higher brain functions. Most of these

comparative studies have been performed in the visual

system. The early visual areas V1, V2 and V3, as well as

the motion area MT are conserved in humans. Beyond

these areas, differences between human and monkey

functional organization are increasingly evident. At the

regional level, the monkey inferotemporal and intra-

parietal complexes appear to be conserved in humans,

but there are profound functional differences in the

intraparietal cortex suggesting that not all its constitu-

ent areas are homologous. In the long term, fMRI offers

opportunities to compare the functional anatomy of a

variety of cognitive functions in the two species.

The advent of functional imaging, initially PET and now
mainly fMRI has greatly enhanced our ability to explore the
neurobiological basis of cognitive function in humans [1].
However, fMRIonly indirectly reflectsneuronalactivityand
has limited spatial and temporal resolution. Hence, the
interpretation of human fMRI data frequently draws on the
vast knowledge obtained over recent decades by invasive
brain studies in non-human primates, especially the
macaque. The study of the visual system serves as a model
in this respect, for a combination of reasons. Extensive
psychophysical studies have shown that many aspects of
visual perception are remarkably similar in the two species.
The visual cortex is heavily developed in primates: approxi-
mately 50% of cerebral cortex in macaque and 20–30% in
humans is devoted to vision, compared with about 3% for
audition inmonkeysand8%inhumans[2].Thevisual cortex
ofmacaquemonkeyshasbeeninvestigated intensively,more
than any other cerebral system. This has generated a
plethoraoffunctionalparcellationsofmacaquevisualcortex:
30 or more anatomically and/or functionally distinct areas
have been described (for a review see [2]). Finally, vision is
frequently used to study cognitive processes such as
discrimination [3], attention [4], working memory [5] and
decision processes [6].

Complications in relating human fMRI tomonkey studies

Even in this favorable case of the visual system, establish-
ing the relationship between non-invasive functional
imaging in humans and invasive single-cell, lesion or
anatomical studies in monkeys is far from straight-
forward. Making comparisons across species and tech-
niques raises several challenges (see Box 1). Humans and
macaques diverged froma small-brained common ancestor
,30 million years ago [7]. Because the ensuing expansion
of cerebral cortex was far greater in the human lineage,
the cortex is ten-fold greater in surface area and also far
more convoluted in humans comparedwithmacaques. The
differences are not simply amatter of scale, but instead are
likely to involve divergences in the number of visual areas
and in how they are functionally specialized.

In single-cell studies, inferences about the function(s)
of a visual area are often based on tuning curves or,
more generally, selectivity for various stimulus dimen-
sions. There can be considerable diversity in the types
and degree of selectivity encountered in the neuronal

Box 1. How close can one get in comparing human and

monkey using fMRI?

Even when using fMRI in awake subjects, the experimental pro-

cedures for the two species differ in several respects. Typically,

monkeys sit in a sphinx position viewing a projection screen directly

[15], whereas humans lie on their back viewing the screen through a

mirror. There are also differences in head immobilization and reward.

The coils used to measure the MR signals are different, as are

the signals themselves. The use of a contrast agent (MION) in the

monkey enhances sensitivity and signal localization [15,77] com-

pared with the blood oxygen-level dependent effect (BOLD) used in

humans. To compensate for these latter differences, one can esti-

mate a scale factor for the sensitivity by comparing MR signals in a

landmark region such as V1 [21].

The number of subjects is usually higher in human studies, but the

number of functional volumes sampled in each subject is smaller.

The standard spatial resolution of the fMRI measure is lower in

humans than in monkeys, but with high-field scanners humans can

be scanned with the same resolution (2 £ 2 £ 2 mm) as monkeys [20].

There are important differences in how functional data are registered

to the anatomical MRI, in the details of the statistical analysis, and

how data are registered across individuals. Monkeys might pay

relatively less attention to the stimuli than humans because only the

fixation point controls their behavior. Therefore some experiments

have been repeated with monkey and human subjects performing at

the same level in a very demanding high acuity task [14,20].Corresponding author: Guy A. Orban (Guy.orban@med.kuleuven.ac.be).
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population within a given area [8]. Functional MRI pro-
vides an indirectmeasure of spike plus synaptic activity [9]
of very large numbers of neurons (millions of neurons if
the resolution is ,3 mm voxel size). It remains an open
question how the MR signals reflect neuronal selectivities
within the sampled population. Adaptation of the MR
signal might reflect neuronal selectivity [10], but this has
not as yet been convincingly demonstrated by correlation
with single-cell analyses. Therefore we refer to sensitivity
for stimulus dimensions rather than selectivity when
reporting fMRI results.

Monkey fMRI fills a missing link

Monkey fMRI [11], particularly in the awake monkey,
should accelerate progress onmany of these questions [12].
It allows comparison of fMRI signals with single-cell
properties such as selectivity or adaptation in the same
individual. Furthermore, fMRI-based functional neuro-
anatomy (localization of functional properties in the brain)
can be compared directly in humans and monkey [13,14].
The main focus of this review is on the latter question as
applied to the visual system. A growing number of studies
have addressed this issue in alert monkeys [14–22] and
in anesthetized monkeys [23–26]. These comparisons
reveal important insights about the nature of interspecies
commonalities (particularly for the early areas) plus
divergences in functional organization (more pronounced
in higher areas).

How relevant is the functional neuroanatomy of vision
for understanding cognitive abilities unique to humans?
Taking language as an example, there is evidence that
linguistic abilities are rooted in preexisting capabilities
present in the common ancestors of monkeys and humans
[27,28]. In the long term, fMRI offers excellent oppor-
tunities to compare the functional anatomy of a variety of
cognitive systems that have evolved differently in the two
species. The comparison of the visual cortex in humans
and monkeys can provide an invaluable testbed for such
analyses. Here we review recent progress in charting
visual areas in humans and monkeys, illustrate new
approaches to interspecies comparison, and evaluate
several candidate homologies for both early and higher-
order visual areas.

Strategies for comparing human and monkey visual

cortical systems

Defining cortical areas

Cortical visual areas have been identified using one or
more among four major criteria: (1) cyto- and myeloarchi-
tecture, (2) connectivity, (3) retinotopic organization and
(4) function, as revealed by single-cell, lesion and neuro-
imaging analyses. Each of these criteria has significant
limitations and does not apply equally well to all regions
or across species. For example, some areas lack clear
retinotopy, and cytoarchitectonic subdivisions are often
very subtle. Connectivity studies are problematic in
humans (although diffusion tensor imaging provides
some hope [29]). Consequently, consensus partitioning
schemes have yet to emerge for higher-level areas in either
macaque or human visual cortex [2].

Figure 1a shows an fMRI-based charting of early visual
areas (V1, V2, V3) and several mid-level visual areas
(V4, MT and V3A) of the monkey, defined by their
retinotopic organization and displayed on a flatmap of
the right hemisphere of an individual macaque [18]. This
illustrates the power of functional mapping, in which
signals can be measured over the entire visual cortex
(indeed over the whole brain), whereas single-unit retino-
topic studies typically explore only a limited region in any
individual monkey. Figure 1b shows the middle and
higher-order cortical areas (beyond V3), according to a
recent architectonic scheme of Lewis and Van Essen [30],
displayed on an atlas surface and viewed in fiducial
(original 3D shape), inflated and flat-map configurations.

Retinotopic and functional characteristics revealed
using fMRI provide a major basis for delineating visual
areas in humans. Figure 1c shows a mosaic of areas
defined by retinotopy and/or functional specializations, as
mapped onto different configurations of a human surface-
based atlas [2]. In general, early andmid-level visual areas
are located more medially and posterior than their corre-
spondingly named macaque counterparts. For example
human V1 lies almost entirely in the calcarine sulcus on
the medial surface of the hemisphere, whereas macaque
V1 occupies a substantial portion of the operculum on the
lateral surface. The middle temporal (MT)/V5 motion area
is located in the superior temporal sulcus (STS) in the
macaque and in the inferior temporal sulcus (ITS) in
humans (Figure 1a,c)

Criteria for inferring homology

Despite species differences in geographic location, the case
for homology of V1 in monkeys, humans and all other
primates studied was compelling long before the advent of
neuroimaging, based on a constellation of anatomical as
well as retinotopic similarities [7]. PET and fMRI subse-
quently revealed human V2, adjacent to V1, and a more
distant motion-sensitive region that was originally identi-
fied as human MT or V5 [31–33]. However, the latter
region is now commonly called hMTþ [34] to reflect the
likelihood that it contains multiple areas, some corre-
sponding to the neighboring MST/FST satellite areas in
the macaque (see below). Nonetheless there is widespread
consensus that its more posterior portion is a homologue of
macaque MT [35]. Thus a major basis for inferring
homology from fMRI studies is to show that regions
have similar functional and/or retinotopic characteristics
in humans and monkeys. This functional equivalence can
in some favorable cases complement existing anatomical
evidence, as for V1, but in most cases needs further
support (see Box 2).

Surface-based approaches to homology evaluation

The case for homology between monkey and human V2
derives in part from the fact that both directly adjoin area
V1. More generally, the neighborhood relationships with
areas whose homologies are more firmly established pro-
vides an important basis for evaluating homologies through-
out the cortical sheet. This issue can best be addressed
using surface-based warping techniques [36] to explore
mappings that reflect species-specific non-uniformities in
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cortical expansion during evolution. The starting point in
this approach is to identify a standard set of landmarks
whose homology is in little doubt. A set of such landmarks
shown on flat maps of macaque (Figure 2a) and human
(Figure 2b) include primary areas of the different sensory
and motor systems plus MTand the frontal eye field (FEF)
[2,37]. Notably, area MT and primary auditory cortex (A1)
are much farther apart on the human map than on the
macaque map, suggesting a disproportionate expansion
of the intervening region in humans. To explore this
issue, the landmarks were projected to spherical maps of
macaque and human cortex (to circumvent the problems
associated with artificial cuts on the flat maps), and the
macaque sphere was registered to the human sphere using
the projected landmarks as constraints. A Cartesian grid
overlaid on a map of identified sulci in the macaque
(Figure 2c) appears deformed on the human map
(Figure 2d) when registered using the standard land-
marks. It suggests large regional differences in which
human parietal, temporal and frontal cortex have
expanded more than occipital cortex. If the expansion in
between the landmarks were in fact relatively uniform, it
would suggest that the macaque intraparietal sulcus
(IPS; lime green in Figure 2c,d) corresponds not only to
human IPS but also to part of the angular gyrus (red
arrows in Figure 2d). Also, under this scheme, substantial
fractions of human Brodmann areas 20–22 would be

Figure 1. Visual cortical areas in monkey (a,b) and human (c). In (a), portions of ventral and dorsal V1, V2, V3, V4 and V3A and MT representing 1–7 degrees eccentricity are

color coded (modified from [18]). Full and dashed white lines, and black stars, indicate projections of horizontal and vertical meridians, and central visual field, respectively.

IPS: intraparietal sulcus, LaS: lateral sulcus, OTS: occipito-temporal sulcus, POS: parieto-occipital sulcus, STS: superior temporal sulcus. In (b) the middle- and higher-level

areas according to the Lewis and Van Essen [30] scheme are shown. In (c) early and middle human visual areas as compiled by Van Essen [2] are shown. Coll S: collateral

sulcus, ITS: inferior temporal sulcus. The definition of some areas is only tentative at present (stippled contours). For alternatives to the V4v/V8 scheme see [56,57]. Datasets

are accessible in the SumsDB database for online surface visualization (WebCaret) or downloading and offline visualization (Caret) via http://brainmap.wustl.edu:8081/

sums/directory.do?dirid¼706149.
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Box 2. Homology

Cortical areas in humans and macaques are considered homologous

if they derive from areas present in a common primate ancestor.

For areas that existed in this common ancestor, the challenge is to

identify the homologous areas in monkeys and humans despite

whatever divergences have occurred in structure, function and

geographic location. Given that this common ancestor of humans

and macaques had a smaller brain and probably fewer cortical areas,

an even more formidable challenge is to evaluate homologies, or lack

thereof, in regions where new areas emerged. In evaluating these

issues, one should be mindful of two considerations. First, homology

cannot be proven, but rather must be inferred with a degree of

confidence that depends on the number and distinctiveness of the

criteria and the number of species sharing common characteristics

(for reviews see [7,73,74]). Second, the evaluations of evolutionary

changes will benefit from an improved understanding of the develop-

mental processes underlying cortical parcellation. These include

molecular signaling mechanisms (e.g. morphogens that provide

positional cues, axonal guidance molecules) and activity-dependent

mechanisms that modify thalamo-cortical innervation patterns [73,75].

Possible (but unproven) mechanisms for how new areas can arise

during evolution include: (i) duplication of an existing area, ana-

logous to gene duplication [76]; (ii) segregation of what initially were

functional modules within a single area; (iii) reorganization driven by

altered afferent activity patterns, and (iv) emergence of new neuronal

populations in an expanding cortical sheet [73]. Given these diverse

developmental possibilities and also the persisting uncertainties

regarding the precise partitioning of primate cortical areas, it is useful

to note that homologies can be considered at the level of clusters of

neighboring areas (‘regional’ homology) as well as the level of a

single area (‘areal’ homology).
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potentially homologous to the inferotemporal complex and
adjoining parts of the macaque STS (Figure 2e).

One valuable approach for evaluating the plausibility
of this warping is to compare fMRI-based functional
maps generated using equivalent stimulation paradigms
in the two species. For example, Figure 3 shows maps of
2D-shape sensitivity in monkey (3a) and human (3b)
cortex based on the paradigm of Kourtzi and Kanwisher
[38], in which intact object images were compared with
scrambled stimuli. The deformedmonkey activation (green)
was not well-matched to the actual human activation (red)
in temporal and parietal cortex (arrows in Figure 4c). One
interpretation is that the monkey and human activation
did not arise from homologous regions, which would sig-
nify a major divergence in functional organization of these
regions. Alternatively, the parietal and temporal activa-
tions might indeed arise from homologous clusters of
areas, coupled with highly differential expansion of neigh-
boring cortical regions. To explore the latter hypothesis,
four landmarks based on the fMRI activation patterns
(white and yellow pairs in Figure 4a,b) were added to the
standard set. The results of this modified warping are
shown in Figure 4d: in this case, the deformed monkey
activation and actual human activation are substantially
better matched as evidenced by the increase in overlap
(yellow). A corollary of this hypothesis is that the potential

homologue of the monkey IT complex is contained mainly
within Brodmann’s area 37, plus small parts of areas
19 and 20 (Figure 4e). Also the anterior part of macaque
STS would correspond to the anterior fusiform cortex
(arrow in Figure 4e) rather than inferior temporal gyrus
(Figure 2e). The deformed macaque parietal visual areas
(yellow) involve disproportionate expansion of area 7a and
nearby regions relative to more medial intraparietal areas
(Figure 4e), in qualitative agreement with the suggestion
made by Simon et al. [39]. The fMRI-constrained warping
suggests a larger expansion than previously appreciated of
parietal visual cortex and a relatively smaller expansion of
ventral visual cortex (compare the extent of yellow and
blue regions in Figure 4e and Figure 2e). This suggests
that the human dorsal stream areas [40] of the visual
system, which are related to the representation of space to
guide action, might have undergone greater expansion
than ventral stream areas, which are related to represen-
tation of objects for recognition and categorization. This
hypothesis can be further explored using fMRI paradigms
that reveal the full extent of each stream in each species.

Conserved early visual areas

As noted above, the retinotopic organization of early visual
areas V1, V2 and V3 is similar in monkeys and humans
[18,25,31,34]. fMRI has revealed important functional

Figure 2. Standard landmarks used for surface-based registration between monkey and human cortex. (a,b) Delineation of landmark regions and contours in monkey

(a) and human (b). CC: corpus callosum, FEF: frontal eye fields, HC: hippocampus, ORB S, orbital sulcus, OLF/Gust., olfactory/gustatory cortex. (c,d) Visualization of

deformation: Cartesian grid and identified sulci on monkey flat map (c) and deformed grid and sulcal pattern (standard warping) projected onto human flat map (d).

(e) Deformed monkey areas (from Figure 1b) from the standard warping projected onto human cortex with human Brodmann areas outlined in purple (modified from

[2,20]). In (d) red arrows point to intraparietal sulcuc (IPS) and angular gyrus (AG). Datasets are accessible in the SumsDB database for online surface visualization

(WebCaret) or downloading and offline visualization (Caret) via http://brainmap.wustl.edu:8081/sums/directory.do?dirid¼706149.
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similarities in these early areas. These include similarities
in local integration of line elements in V1 and V2 [26], in
the effect of scrambling in V1 [20] (Figure 3c,d), and in the
involvement of V2 and V3 in the extraction of 3D-structure
from motion (SFM) [14] (Figure 5a,b).

Other studies have revealed modest species differences
in function and structure. V1 shows species differences in
its laminar architecture [41] indicating a greater differ-
entiation of the magnocellular signals reaching V1 in
humans and hinting thatmotion processingmight bemore
important in humans than in monkeys. In monkeys, V3 is
more motion sensitive than V3A [15], whereas in humans
the opposite is true [42]. Monkey V3d is more shape
sensitive than human V3 [20].

One intriguing question concerns possible dorso/ventral
asymmetries in the early visual areas. This can shed
light on the likelihood of finding what Zeki refers to as
‘improbable areas’ [43]: areas that represent only a quad-
rant of the visual field rather than a complete hemifield.
Two such asymmetries have been documented with fMRI

recently, adding to previous physiological and anatomical
evidence for asymmetries [2]. In monkey, V3d is more
engaged in 2D-shape processing thanV3v [20]. In humans,
ventral parts of V1–V3 are more active in color discrimi-
nation, compared with a dimming control task, than their
dorsal counterparts [44]. Interestingly, activity in the
upper and lower field representation of the human color
responsive region was equal. Discrimination performance
was also comparable in upper versus lower fields and is
thus better correlated with higher-level activation than
the early visual activation.

A mixed bag: the mid-level visual areas

Likely homology: area V3A

Human V3A has a retinotopic organization similar to that
of monkey V3A: a complete representation of the visual
field split by a horizontal meridian, which also adjoins V3d
[18,25,42]. This constitutes strong evidence for homology
even in the face of evidence for significant divergence in
function. V3A is stereo sensitive in both species [16,45].

Figure 3. Object-related activation in human and monkey (group data, modified from [20]). (a,b) Flatmaps showing the statistical parametric maps (SPMs) indicating the

voxels with significantly (p , 0.05 corrected for multiple comparisons) larger activity for viewing intact images of objects compared with viewing scrambled images. Same

data as in Figure 4a,b, but shown on flattened (Freesurfer) maps of posterior cortex to reveal the relationship with retinotopic borders in the monkey (a) and with motion

sensitive regions (white outlines) in humans (b). (c,d) Activity profiles plotting percentage MR signal change compared with fixation baseline in intact greyscale (G) and

scrambled greyscale (SG) images and intact (L) and scrambled (SL) drawings of objects (stimuli used in [38]) in V1 and inferotemporal cortex (IT) of the monkey (c) and V1

and lateral occipital complex (LOC) of humans (d). These profiles are the averages of MR signal changes obtained in four and five local maxima in V1 and temporal cortex,

respectively. In (a) abbreviations m, d, v, p, a indicate: middle, dorsal, ventral, posterior, anterior, respectively; in (b) letters a to j indicate local maxima of motion sensitive

regions [19]; LuS: lunate sulcus, IOS: inferior occipital sulcus, CollS: collateral sulcus, TOS: transverse occipital sulcus; ITG: inferior temporal gyrus, FG: fusiform gyrus.

Other conventions as in Figure 1.
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However, as mentioned earlier, human V3A is motion
sensitive [42], 2D-shape sensitive [46], and involved
in the extraction of 3D SFM [14,47] whereas monkey
V3A is not [14,15,20].

hMTþ , a complex in need of subdivision

Although there is general agreement that the posterior
part of the hMTþ motion complex corresponds to macaque
middle temporal area, MT, the homologues of the more
anterior portions remain to be elucidated. In macaque, the
satellites of MT include FST (floor of the superior temporal
visual areas) and several MST (medial superior temporal)
subdivisions (Figure 1b). Although most investigators are
aware of the inclusion of the MST homologues in the hMT
complex (e.g. [35]), the FST homologue is usually neglected.
Yet FST is the main responsive element of the macaque
complex, other than MT, when tested with simple trans-
lational motion [15]. Further complications could arise
because additional regions in the macaque STS outside the
MT complex are motion sensitive [2] and in humans a

satellite of hMTþ responsive to optic flow has been
described that might have no counterpart inmonkeys [48].

In search of the human homologue of macaque V4

The human homologue of macaque V4 is unclear at pre-
sent. Early retinotopic studies in humans [31,34] proposed
that human cortex includes a ventral V4 very similar to
monkey V4v [18,49], but no studies have yet revealed a
retinotopic equivalent of V4d. The monkey fMRI retino-
topic study [18] indicates that in macaque the retinotopic
organization of ventral and dorsal V4 differ, contrary to
findings regarding new world monkeys [50]. Thus there is
some evidence to suggest that ventral and dorsal parts of
V4 have evolved differently among primates. The region in
the expected location of dorsal V4 (based on deformed
macaque V4 in Figure 4e) has been assigned a variety
of labels (lateral occipital complex or LOC/LOP as in
Figure 1c, V3B, V4D topo), reflecting differing interpre-
tations of an elusive retinotopy [51–53]. Denys, Orban and
colleagues [20,47] refer to it as LOS, given its proximity to

Figure 4. Additional fMRI-based landmarks and evaluation of the warpings (modified from [20]). Monkey (a) and human (b) object-related activation (SPM, p , 0.05

corrected for multiple comparisons; same data as in Figure 3 registered to atlas maps) with the landmark lines (white and yellow pairs) fitted. (c,d) Comparison of deformed

monkey activation (green) and actual human activation (red) for standard landmarks (c) and standard plus functional landmarks (d). In (c) arrows point to deformed monkey

activation that is located anterior to human activation. The larger extent of the red regions in (c,d) compared with the fMRI pattern in (b) reflects the inclusion of a 3 mm

spatial uncertainty in mapping data to the surface (see [20], Fig. 4). (e) Deformed monkey areas (Figure 1b) from the fMRI-constrained warping projected onto human cortex

with human Brodmann areas outlined in purple. FG: fusiform gyrus (located between collateral and occipito-temporal sulci). Other conventions as in Figure 1,2. Datasets

are accessible in the SumsDB database for online surface visualization (WebCaret) or downloading and offline visualization (Caret) via http://brainmap.wustl.edu:8081/

sums/directory.do?dirid¼706149.
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the lateral occipital sulcus and its 2D-shape sensitivity. It
is part of the original LO described by Malach et al. [54],
but is not included in recent descriptions of the LO complex
(see [55] for review), which has two components: LO
(located in posterior inferior temporal gyrus; ITG) andLOa
(located in middle fusiform region). Several alternatives to
the V4v plus LOS scheme have been proposed [32,56,57].

Several observations suggest that the LOS region is
functionally heterogeneous. The LOS region is motion
sensitive [19,58,59], but the motion-sensitive and shape-
sensitive parts are not co-extensive [20]. The kinetic
occipital (KO) region, which is specialized for the proces-
sing of moving boundaries [52,60,61] and is contained in
the LOS region, might represent another functional
subdivision. In contrast to other motion-sensitive regions
[62], KO is involved in extracting 2D shape from motion,
especially under active conditions [63], but also, more
generally, in shape processing based on different cues
[60,61,64], as has been observed in monkey fMRI
experiments [65].

Human LOS and macaque V4d differ in retinotopic
organization, and also in motion sensitivity [15,19] and
stereo sensitivity [16]. However, they have a similar
sensitivity for kinetic patterns [65] and 2D- shape
processing [20], as well as for 3D SFM [14]. Thus the
evidence for areal homology is roughly split in the middle.
Although some functional differences between dorsal and
ventral V4 have been reported in monkey fMRI studies
[14,16] (Figure 5), a systematic comparison has yet
to be performed.

Functional differences in higher-order regions

The IT complex: an example of ‘regional’ homology

The monkey IT complex and the human LO complex are
relatively similar [20]. They are located in similar posi-
tions relative to neighboring regions (e.g. MT) in the brain,
and they lack a clear retinotopic organization, yet there
is some evidence for separate central representations
in humans [55] and in monkeys [18,25]. On the one hand,
in both species the activation by scrambled patterns
decreases along a posterior-to-anterior gradient, object-
related responses show adaptation [46,66,67], and both
regions include patches specialized for face processing
[17]. On the other hand, monkey IT responds less to
drawings of objects than to greyscale images of objects [20],
whereas the human counterpart responds equally to both
types of stimuli [20,38]. Also the monkey face sensitive
patches might be more specialized than their human
counterparts [17]. The overall evidence favors the view of a
‘regional’ homology. As the exact parcellation of these
complexes is still unresolved, one cannot exclude the
possibility that some of the constituent areas of these
complexes will turn out not to be homologous (see Box 2).

The IPS region: can the discrepancies be resolved?

As noted above, the intraparietal sulcus is expanded
markedly in humans compared with monkeys. Function-
ally, the IPS appears very different in the two species at the
areal level. In humans, Sunaert et al. [62] described four
motion-sensitive regions along the IPS that were assigned
anatomically-based labels, to avoid suggesting homologies

Figure 5. SPM for the subtraction of viewing 3D rotating lines minus viewing 2D translating lines (p , 0.05 corrected) of a single monkey (a) and human (b) subject

projected on the posterior part of the flattened right hemisphere (modified from [14]). White stippled and full lines: vertical and horizontal meridian projections

(from separate retinotopic mapping experiments); black stippled lines: motion-responsive regions from separate motion localizing tests; purple stippled lines: region of

interspecies difference encompassing V3A and intraparietal sulcus. AMTS anterior middle temporal sulcus, CAS: calcarine sulcus, CoS: collateral sulcus, PCS: post central

sulcus, PMTS: posterior middle temporal sulcus. Other conventions as in Figures 1, 3.
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with monkey areas. From its ventral (occipital) end to its
dorsal (anterior) end, abutting the postcentral sulcus, they
described: ventral intraparietal sulcus (VIPS), parieto-
occipital intraparietal sulcus (POIPS), dorsal intraparietal
sulcus medial (DIPSM) and anterior (DIPSA). Subse-
quently, all four regions (Figure 5) were also found to be
involved in 3D SFM [14,47]. As shown in Figure 3b, there
is a roughly similar activation pattern associated with
2D-shape sensitivity [20]. Corresponding tests in the
monkey have revealed motion sensitivity in VIP [15], as
expected from single unit studies [68]; no region involved
in 3D SFM (Figure 5) [14]; and two 2D-shape sensitive
regions, an anterior one that overlaps with LIPd and
perhaps extends into AIP plus a posterior one that does not
match any of the known parcellations of posterior IPS [20].

However, other studies suggest important similarities
between species in the most anterior and posterior por-
tions of IPS. In the anterior IPS a human homologue of
monkey AIP has been proposed [69,70]. In the posterior
IPS, the region immediately anterior to V3A (CIPS in
monkeys, and CPDR or VIPS in humans) shows sensitivity
to stereoscopic depth stimuli [17,71]. This supports the
notion that the most pronounced species difference is in
the middle part of human IPS, as also suggested by Simon
et al. [39]. A human homologue of macaque LIP has been
proposed [37,72], a suggestion supported by a recent
comparative functional neuroanatomy study [22]. These

findings suggest that one or more new areas have appeared
in the vicinity of the homologues of macaque LIP and AIP,
but this remains consistent with a homology of IPS at the
regional level.

Conclusions

The macaque is the primary animal model for neuro-
physiological and lesion studies of cognitive functions.
Monkey fMRI is essential for establishing informed
relationships between human fMRI and a diverse portfolio
of non-human primate data and can pave the way for
enhanced progress in systems and cognitive neuroscience
(see also Box 3). Despite several functional differences,
many areas are homologous, especially at early levels of
the visual hierarchy. In higher-order cortex, ‘regional’
homology still largely applies, and further functional
imaging studies should clarify many homologies at the
level of individual areas.
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revealing the latest advances in understanding parasite life cycles. Check them out today!

Microsporidia: how can they invade other cells?
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Interaction of Leishmania with the host macrophage
By E. Handman and D.V.R. Bullen [(2002) Trends Parasitol. 18, 332–334]
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