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INTRANSITIVITY OF PREFERENCES
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Hebrew University of Jerusalem, Jerusalem, Israel

It is shown that, under specified experimental conditions, consistent and pre-
dictable intransitivities can be demonstrated. The conditions under which
intransitivities occur and their relationships to the structure of the alternatives
and to processing strategies are investigated within the framework of a general
theory of choice. Implications to the study of preference and the psychology
of choice are discussed.

Whenever we choose which car to buy,
which job to take, or which bet to play we
exhibit preference among alternatives.
The alternatives are usually multidimen-
sional in that they vary along several at-
tributes or dimensions that are relevant to
the choice. In searching for the laws that
govern such preferences, several decision
principles have been proposed and investi-
gated. The simplest and probably the
most basic principle of choice is the trans-
itivity condition.

A preference-or-indifference relation,
denoted >, is transitive if for all x, y, and 2

x > y and y > z imply x > z. [1]

Transitivity is of central importance to both
psychology and economics. It is the
cornerstone of normative and descriptive
decision theories (Edwards, 1954, 1961 ;
Luce & Suppes, 1965; Samuelson, 1953),
and it underlies measurement models of
sensation and value (Luce & Galanter,
1963; Suppes & Zinnes, 1963). The essen-
tial role of the transitivity assumption in
measurement theories stems from the fact
that it is a necessary condition for the ex-
istence of an ordinal (utility) scale, «, such
that for all x and y,

Transitivity is also a sufficient condition for
the existence of such a scale, provided the
number of alternatives is finite, or countable.

Individuals, however, are not perfectly
consistent in their choices. When faced
with repeated choices between x and y,
people often choose * in some instances and
y in others. Furthermore, such inconsist-
encies are observed even in the absence of
systematic changes in the decision maker's
taste which might be due to learning or
sequential effects. It seems, therefore,
that the observed inconsistencies reflect
inherent variability or momentary fluctu-
ation in the evaluative process. This con-
sideration suggests that preference should
be defined in a probabilistic fashion. To
do so, let P(x,y) be the probability of
choosing x in a choice between x and y,
where P(x,y) + P(y,x) = 1. Preference
can now be defined by

x > y if and only if P(x,y) > -|. [3]

The inconsistency of the choices is thus
incorporated into the preference relation as
x is said to be preferred to y only when it is
chosen over y more than half the time. Re-
stating the transitivity axiom in terms of
this definition yields

u(x) > u(y) if and only if x > y. [2] P(x,y) >
1 This work was supported in part by United

States Public Health Service Grant MH-04236 and
by National Science Foundation Grant GM-6782 to
the University of Michigan and in part by Carnegie
Corporation of New York B-3233 to Harvard Uni-
versity, Center for Cognitive Studies. The author
wishes to thank H. William Morrison for his helpful
comments and David H. Krantz for his valuable
assistance, including the suggestion of the likelihood
ratio test.

and P(y,z) > J
imply P(x,z) > J. [4]

This condition, called weak stochastic
transitivity, or WST, is the most general
probabilistic version of transitivity. Vio-
lations of this property cannot be attribut-
able to inconsistency alone.

Despite the almost universal acceptance
of the transitivity axiom, in either algebraic
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or probabilistic form, one can think of sev-
eral choice situations where it may be
violated. Consider, for example, a situa-
tion in which three alternatives, x, y, and z,
vary along two dimensions, I and II, and
where their values on these dimensions are
given by the following payoff matrix.

Dimensions
I II

A Iternatives
x
y
z

2e
3e
4e

6e
4e
2e

The alternatives may be job applicants
varying in intelligence (I) and experience
(II), where the entries are the candidates'
scores on the corresponding scales or dimen-
sions. Suppose the subject (S) uses the fol-
lowing decision rule in choosing between
each pair of alternatives: if the difference
between the alternatives on Dimension I is
(strictly) greater than e, choose the alter-
na^ive that has the higher value on Dimen-
sion I. If the difference between the
alternatives on Dimension I is less than or
equal to e, choose the alternative that has
the higher value on Dimension II. It is
easy to see that this seemingly reasonable
decision rule yields intransitive preferences
when applied to the above matrix. Since
the differences between x and y and be-
tween y and 2 on the first dimension are not
greater than t, the choice is made on the
basis of the second dimension and hence x
is chosen over y and y is chosen over z. But
since the difference between x and z on the
first dimension is greater than e, z is chosen
over x yielding an intransitive chain of
preferences.

Formally, such a structure may be char-
acterized as a lexicographic semiorder,
abbreviated LS, where a semiorder (Luce,
1956) or a just noticeable difference struc-
ture is imposed on a lexicographic ordering.
As an illustration, let us restate this rule in
terms of the selection of applicants. An
employer, regarding intelligence as far more
important than experience, may choose the
brighter of any pair of candidates. Cogni-
zant that intelligence scores are not per-
fectly reliable, the employer may decide to
regard one candidate as brighter than an-

other one only if the difference between
their IQ scores exceeds 3 points, for ex-
ample. If the difference between the
applicants is less than 3 points, the em-
ployer considers the applicants equally
bright and chooses the more experienced
candidate. Essentially the same example
was discussed by Davidson, McKinsey, and
Suppes (1955). Such a decision rule is
particularly appealing whenever the rele-
vant dimension is noisy as a consequence
of imperfect discrimination or unreliability
of available information. Where this de-
cision rule is actually employed by indi-
duals, WST must be rejected.

Other theoretical considerations proposed
by Savage (1951), May (1954), Quandt
(1956), and Morrison (1962) suggest that
WST may be violated under certain con-
ditions. No conclusive violations of WST,
however, have been demonstrated in studies
of preferences although Morrison (1962)
provided some evidence for predictable
in transitivities in judgments of relative
numerosity, and Shepard (1964) produced a
striking circularity in judgments of relative
pitch. Several preference experiments
have tested WST, for example, Edwards
(1953), May (1954), Papandreou, Sauer-
lander, Bownlee, Hurwicz, and Franklin
(1957), Davis (1958), Davidson and Mar-
schak (1959), Chipman (1960), and Gris-
wold and Luce (1962). All these studies
failed to detect any significant violation of
WST.

The present paper attempts to explore
the conditions under which transitivity
holds or fails to hold. First, the LS de-
scribed above is utilized to construct alter-
natives which yield stochastically intransi-
tive data. The conditions under which
WST is violated are studied within the
framework of a general additive difference
choice model and their implications for the
psychology of choice are discussed.

EXPERIMENTS

General Considerations

The purpose of the following studies was
to create experimental situations in which
individuals would reveal consistent pat-
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terns of intransitive choices. The experi-
ments are not addressed to the question of
whether human preferences are, in general,
transitive; but rather to the question of
whether reliable intransitivities can be
produced, and under what conditions. The
construction of the alternatives was based
on the LS described in the introduction.
The application of the LS to a specific ex-
perimental situation, however, raises serious
identification problems.

In the first place, the LS may be satisfied
by some, but not all, individuals. One
must identify, therefore, the 5s that satisfy
the model. This, however, is not an easy
task since even if the LS is satisfied by all
people, they may differ in the manner in
which the alternatives are perceived or pro-
cessed. Different individuals can char-
acterize the same alternatives in terms of
different sets of attributes. For example,
one employer may evaluate job applicants
in terms of their intelligence and experience
whereas another employer may evaluate
them in terms of their competence and
sociability. Similarly, one S may con-
ceptualize (two-outcome) gambles in terms
of odds and stakes, while another may
view them in terms of their expectation,
variance, and skewness. Since the predic-
tions of the model are based on the dimen-
sional structure of the alternatives, this
structure has to be specified separately for
each 5. In order to induce 5s to use the
same dimensional framework, alternatives
that are defined and displayed in terms of a
given dimensional representation have been
employed.

Then, even if all individuals satisfy the
LS relative to the same dimensions, they
may still vary in their preference threshold
as well as in the relative importance that
they attribute to the dimensions. A differ-
ence between an IQ of 123 and an IQ of 127,
for instance, may appear significant to some
people and negligible to others.

These considerations suggest treating
each 5 as a separate experiment and con-
structing the alternatives according to the
dimensions and the spacing he uses. Al-
ternatively, one may select, for a critical
test, those 5s who satisfy a specified cri-

terion relative to a given representation.
(It should be noted that the preselection of
5s or alternatives, on the basis of an inde-
pendent criterion, is irrelevant to the ques-
tion of whether WST is consistently vio-
lated for any given 5.) Both methods are
employed in the following studies. The first
study investigates choice between gambles
while the second one is concerned with the
selection of college applicants.

Experiment I

The present study investigates prefer-
ences between simple gambles. All gam-
bles were of the form (x,p,o) where one
receives a payoff of §x if a chance event p
occurs, and nothing if p does not occur.
The chance events were generated by spin-
ning a spinner on a disc divided into a black
and a white sector. The probability of
winning corresponded to the relative size
of the black sector. The gambles employed
in the study are described in Table 1.

Each gamble was displayed on a card
showing the payoff and a disc with the cor-
responding black and white sectors. An
illustration of a gamble card is given in
Figure 1. Note that, unlike the outcomes,
the probabilities were not displayed in a
numerical form. Consequently, no exact
calculation of expected values was possible.
The gambles were constructed so that the
expected value increased with probability
and decreased with payoff.

Since the present design renders the
evaluation of payoff differences easier than
that of probability differences, it was hy-
pothesized that at least some 5s would
ignore small probability differences, and
choose between adjacent gambles on the

TABLE 1
THE GAMBLES EMPLOYED IN

EXPERIMENT I

Gamble

a
b
c
d
e

Probability of
winning

7/24
8/24
9/24

10/24
11/24

Payoff (in $)

S.OO
4.75
4.50
4.25
4.00

Expected value
(in*)

1.46
1.58
1.69
1.77
1.83
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$4.50

FIG. 1. An illustration of a gamble card.

basis of the payoffs. (Gambles are called
adjacent if they are a step apart along the
probability or the value scale.) Since ex-
pected value, however, is negatively cor-
related with payoff, it was further hypothe-
sized that for gambles lying far apart in the
chain, 5s would choose according to ex-
pected value, or the probability of winning.
Such a pattern of preference must violate
transitivity somewhere along the chain
(from a to e).

In order to identify 5s who might exhibit
this preference pattern, 18 Harvard under-
graduates were invited to a preliminary
session. The 5s were run individually.
On each trial the experimenter presented
5 with a pair of gamble cards and asked
him which of the gambles he would rather
play. No indifference judgment was al-
lowed. The 5s were told that a single trial
would be selected at the end of the session
and that they would be able to play the
gamble they had chosen on that trial.
They were also told that the outcome of this
gamble would be their only payoff.

To minimize the memory of earlier
choices in order to allow independent re-
plications within one session a set of five
"irrelevant" gambles was constructed.
These gambles were of the same general
form (x,p,o) but they differed from the
critical gambles in probabilities and payoffs.

In the preliminary session, all 5s were
presented with all pairs of adjacent gam-
bles (a,b; b,c; c,d; d,e) as well as with the
single pair of extreme gambles (a,e). In

addition, all 10 pair comparisons of the
"irrelevant" gambles were presented.
Each of the 15 pairs was replicated 3 times.
The order of presentation was randomized
within each of the three blocks.

The following criterion was used to
identify the potentially intransitive 5s.
On the majority of the adjacent pairs (i.e.,
three out of the four) 5 had to prefer the
alternative with the higher payoff, while on
the extreme pair, he had to prefer the one
with the higher expected value (i.e., choose
e over a). A gamble was said to be pre-
ferred over another one if it was chosen on
at least two out of the three replications of
that pair. Eight out of the 18 5s satisfied
the above criterion and were invited to
participate in the main experiment.

The experiment consisted of five test
sessions, one session every week. In each
session, all 10 pair comparisons of the test
gambles along with all 10 pair comparisons
of the "irrelevant" gambles were presented.
Each of the 20 pairs was replicated four
times in each session. The position of the
gambles (right-left) and the order of the pairs
were randomized within each block of 20
pairs. The 5s were run individually under
the same procedure as in the preliminary
session. Each of the test sessions lasted
approximately f of an hour. The choice
probabilities of all eight 5s between the five
gambles are shown in Table 2. Violations
of WST are marked by superscript x and
violations of the LS are marked by super-
script y.

The data indicate that although two 5s
(7 and 8) seemed to satisfy WST, it was
violated by the rest of the 5s. Further-
more, all violations were in the expected
direction, and almost all of them were in the
predicted locations. That is, people chose
between adjacent gambles according to the
payoff and between the more extreme gam-
bles according to probability, or expected
value. This result is extremely unlikely
under the hypothesis that the intransitivi-
ties are due to random choices. Had this
been the case, one should have expected the
violations to be uniformly distributed with
an equal number of violations in each of the
two directions.
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TABLE 2

PROPORTION OF TIMES THAT THE Row GAMBLE WAS
CHOSEN OVER THE COLUMN GAMBLE BY

EACH OF THE EIGHT SUBJECTS

Subject

1

2

3

4

5

6

7

8

Gamble

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

Gamble
a b c

— .75 .70
— .85

—

— .40' .65
— .70

. — .

— .75 .70
— .80

—

— .50 .45
— .65*

—

— .75 .65
— .80

—

— 1.00 .90
— .80

—

— .45* .65
— .60

—

— .60 .70
— .65

—

d

.45'

.65

.80
—

.50

.40%y

.75
—

.60

.65

.95
—

.20

.35

.70"
—

.35"

.55

.65
—

.65

.75

.90
—

.60

.40**

.50
—

.75

.75

.60
—

e

.15"

.40*

.60

.85
—

.25*

.35"

.55

.75
• —

.25*

.40*

.80
1.00

—

.05

.10

.40

.85*
—

.60^

.30"

.65

.70
• —

.20*

.55

.65

.75
—

.60*

.65

.75

.70
—

.85*

.85

.80

.40^
~

To further test the statistical significance
of the results, likelihood ratio tests of both
WST and the LS were conducted for each 5.
This test compares a restrictive model (or
hypothesis) denoted MI (such as WST or
the LS) where the parameter space is con-
strained, with a nonrestrictive model, de-
noted Ma, which is based on an uncon-
strained parameter space. The test sta-
tistic is the ratio of the maximum value of
the likelihood function of the sample under
the restrictive model, denoted L*(Mi), to
the maximum value of the likelihood func-
tion of the sample under the nonrestrictive
model, denoted L*(M0). For a large sam-
ple size, the quantity

= - 2 In
i*(Jlfo)

» Violations of WST.
» Violations of the LS.

has a chi-square distribution with a number
of degrees of freedom that equals the num-
ber of constrained parameters. Using this
distribution, one can test the null hypothe-
sis that the data were generated by the re-
strictive model. For further details, see
Mood (1950).

In the present study, L*(M0) is simply
the product of the binomial probabilities,
while L*(Mi) is obtained from it by sub-
stituting a value of one-half in the above
product for those choice probabilities that
were incompatible with the particular re-
strictive model. The tested version of the
LS was that in the (four) pairs of adjacent
gambles, preferences are according to pay-
off while in the most extreme pair of gam-
bles, preferences are according to expected
value. The obtained chi-square values
with the associated degrees of freedom and
significance levels are displayed in Table 3.

The table shows that WST is rejected at
the .05 level for five Ss, while the LS is re-
jected for one S only. It is important to
note that the test for rejecting WST is very
conservative in that it depends only on the
magnitude of the violations and ignores
their (predicted) location and direction.

The last column of Table 3 reports the
Q values corresponding to the ratio of the
maximum likelihoods of WST and the LS.
Since both models are of the restrictive
type and the two chi-squares are not in-
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TABLE 3
LIKELIHOOD RATIO TEST FOR ALL SUBJECTS UNDER WST AND THE LS

Subject

1
2
3
4
5
6
7
8

Q(WST,Mo)

11.82
7.84
6.02

15.94
S.18
7.36
.40
.00

df

3
3
2
3
2
1
1
0

P<

.01

.05

.05

.01

.10

.01

.75
—

Q(LS,M0)

.00

.00

.00

.00

.40

.00
1.80

11.62

df

0
0
0
0
1
0
3
2

P<

_

—

—.75
—
.50
.01

Q(WST,LS)

11.82
7.84
6.02

15.94
4.78
7.36

-1.20
-11.62

Note.— Q(Mi,M») - 2 In

dependent the distribution of this statistic
is not known. Nevertheless, its values are
substantially positive for six out of the
eight 5s, suggesting that the LS accounts
for the data better than WST.

In a postexperimental interview, 54

described his behavior as follows: "There
is a small difference between Gambles a and
b or b and c etc., so I would pick the one
with the higher payoff. However, there is
a big difference between Gambles a and e
or b and e etc., so I would pick the one with
the higher probability." This is, in fact, a
good description of his actual choices.
When asked whether this type of behavior
might lead to in transitivities, he replied,
"I do not think so, but I am not sure."
The 5s did not remember for sure whether
any of the pairs were replicated during the
experiment, although they were sure that
most gambles appeared in more than one
pair in any one of the sessions. When the
transitivity assumption was explained to
the 5s, they reacted by saying that although
they did not pay special attention to it,
they were almost certain that their prefer-
ences were transitive.

The degree of intransitivity obtained in
an experiment depends critically on the
spacing of the alternatives and the selection
of the display. To study the effects of
changes in the payoff or the probability
structure, three sets of gambles portrayed
in Table 4 were compared.

Note that Set I is the one used in the
main experiment. Set II was obtained
from it by increasing the probability differ-
ences between adjacent gambles, and Set

III by decreasing the payoff differences be-
tween them. All sets were constructed so
that the expected value increased with the
probability of winning and decreased with
the payoff.

To compare the three sets, 36 Harvard
undergraduates (who did not participate
in the earlier sessions) were invited for a
single session. Each 5 was presented with
five pairs of gambles from each one of the
three sets. These included the four pairs
of adjacent gambles and the single pair of
extreme gambles from each set. Each of
the 15 pairs was replicated three times, in a
randomized presentation order. The 5s
were run individually under the procedure
employed in the earlier sessions. Further-

TABLE 4

GAMBLE SETS I, II, AND III

Set

I

II

I I I

Probability

7/24
8/24
9/24

10/24
11/24

8/24
10/24
12/24
14/24
16/24

7/24
8/24
9/24

10/24
11/24

Payoff

5.00
4.75
4.50
4.25
4.00

5.00
4.75
4.50
4.25
4.00

3.70
3.60
3.50
3.40
3.30

Expected value

1.46
1.58
1.69
1.77
1.83

1.67
1.98
2.25
2.48
2.67

1.08
1.20
1.31
1.42
1.51
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more, the same criterion for circularity
was investigated. That is, S had to
choose between most (three out of four)
adjacent gambles according to payoff and
between the extreme gamble according to
probability. The results showed that, out
of the 36 5s, 13 satisfied the criterion in
Set I, 6 satisfied the criterion in Set II and
8 satisfied the criterion in Set III. These
findings indicate that the probability and
the payoff differences used in Set I yield
more in transitivities than those used in
Sets II and III.

Experiment II
The second experimental task is the selec-

tion of college applicants. Thirty-six
undergraduates were presented with pairs
of hypothetical applicants and were asked
to choose the one that they would rather
accept. Each applicant was described by
a profile portraying his percentile ranks on
three evaluative dimensions, labeled I, E,
and S. The 5s were told that Dimension
I reflects intellectual ability, Dimension E
reflects emotional stability, and Dimension
S reflects social facility. An illustrative
profile is shown in Figure 2.

The 5s were further told that the profiles
were constructed by a selection committee
on the basis of high school grades, intel-

TABLE S
THE 10 PROFILES USED IN THE PRE-
LIMINARY SESSION OF EXPERIMENT II

100
(I) (E) (s)

100

a
b
c
d
e
f
g
h
i
j

Dimensions

I

63
66
69
72
75
78
81
84
87
90

E

96
90
84
78
72
66
60
54
48
42

S

95
85
75
65
55
45
35
25
15
S

FIG. 2. An illustrative applicant's profile.

Note.—I = intellectual ability, E = emotional stability,
S = social facility.

ligence and personality tests, letters of
recommendation, and a personal interview.
Using this information, all applicants were
ranked with respect to the three dimensions
and the three corresponding percentile
ranks constitute the applicant's profile.
The 5s were then told that

The college selection committee is interested in
learning student opinion concerning the type of ap-
plicants that should be admitted to the school.
Therefore, you are asked to select which you would
admit from each of several pairs of applicants.
Naturally, intellectual ability would be the most
important factor in your decision, but the other
factors are of some value, too. Also, you should
bear in mind that the scores are based on the com-
mittee's ranking and so they may not be perfectly
reliable.

The study consisted of two parts: a pre-
liminary session and a test session. The
profiles used in the preliminary session are
given in Table 5.

The profiles were constructed such that
there was a perfect negative correlation be-
tween the scores on Dimension I and the
scores on Dimensions E and S. The (ab-
solute) difference between a pair of profiles
on Dimension I is referred to as their I
difference. A choice between profiles is
said to be compatible with (or according
to) Dimension I whenever the profile with
the higher score on that dimension is se-
lected, and it is said to be incompatible
with Dimension I whenever the profile
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with the lower score on that dimension is
selected.

Since Dimension I is the most important
to the present task, and since the graphical
display hinders the evaluation of small I
difference it was hypothesized that the LS
would be satisfied by some of the 5s. For
small I differences these 5s would choose
according to Dimensions E and S, but for
large I differences they would choose ac-
cording to Dimension I. The purpose of
the preliminary session was to identify
5s who behaved in that fashion and to col-
lect preference data that could be employed
in constructing new sets of profiles to be
used in the test session.

The 5s were run individually. On each
trial the experimenter presented 5 with a
pair of profiles and asked him to make a
choice. Indifference judgment was not al-
lowed. The 5s were presented with all 45
pair comparisons of the 10 profiles in the
same randomized order.

The criterion for participation in the test
session was that at least six out of nine
choices between the adjacent profiles (a,b;
b,c; c,d; d,e; e,f;f,g; g,h; h,i; i,j) were ac-
cording to Dimensions E and S and at least
seven out of the 10 choices between the ex-
treme profiles (a,j; a,i; a,h; a,g; b,j; b,i;
b,h; c,j; c,i; d,j) were according to Dimen-
sion I. Fifteen out of the 36 5s satisfied
this criterion and were invited to the test
session.2

2 In some pilot studies in which 5s were run in a
group and only two dimensional profiles were used

Using the data obtained in the prelimi-
nary session, the following procedure was
employed to construct a special set of five
profiles for each 5. Let n(d) denote the
number of choices (made by a given 5 in
the preliminary session) between profiles
whose I difference was at most 5 and that
were incompatible with Dimension I. Sim-
ilarly, let m(8) denote the number of choices
between profiles whose I difference was at
least S and that were compatible with Di-
mension I. Note that S = 3, 6, 9, • • •, 27
and that, by the selection criterion em-
ployed, w(3) > 6 and w(18) > 7 for all the
selected 5s. The values of n(d) and m(d)
were computed for each 5 and the value of
S' for which n(t>) + m(d) is maximized was
obtained.

To illustrate the procedure, the choices
made by 5s in the preliminary session,
along with the values of n(d), m(8), and
n(8) + m(S) are shown in Table 6. A
value of 1 in an entry indicates that the
profile in that row was selected over the
profile in that column. A value of 0 indicates
the opposite.

Note that the diagonals of Table 6 rep-
resent pairs of profiles that have equal I
differences, and that these differences in-
crease with the distance from the main
(lowest) diagonal. Thus, pairs of adjacent
profiles are on the lowest diagonal while
pairs of extreme profiles are on the higher
diagonals. Inspection of Table 6 reveals

the proportion of 5s satisfying the above criterion
was considerably lower.

TABLE 6

CHOICES MADE BY Ss IN THE PRELIMINARY SESSION AND THE RESULTING
VALUES OF n(S), m(S), AND »(«) + m($)

Profile

a
b
c
d
e
f
g
h
i
3

a b c d e

1 1 0 0
1 1 1

1 0
1

f

0
0
1
1
0

g

1
0
1
0
1
1

h

0
0
0
1
1
1
1

i

0
1
0
1
0
1
0
0

j

0
0
0
0
1
0
0
1
1

5 «(5)

27 23
24 23
21 23
18 22
15 21
12 19
9 17
6 13
3 7

»»(«) n(i)+m(J)

1 24
3 26
5 28
8 30

11 32
15 34
18 35
20 33
22 29

Note.—The preference of a row profile over a column profile is denoted by a 1, and the reverse preference is denoted by 0.
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that most choices on the three lower diag-
onals were incompatible with Dimension I,
while most choices on the six upper diag-
onals were compatible with Dimension I.
The value of S which maximizes n (5) + m (5)
is 9, which is taken as an estimate of the
preference threshold e. (It should be
noted that e was originally defined as a
subjective rather than objective difference.
Consequently, it need not be independent
of the location of the scores, and different
estimates of 5' may be obtained for different
parts of the scale. In the present study,
however, only a single estimate of e was
obtained for each S.)

On the basis of these estimates, 5s were
divided into four groups, and a special set
of profiles was constructed for each group.
The new sets were constructed so that the
intermediate I differences equaled the esti-
mated threshold, e, for each 5. More
specifically, the I differences in the four
pairs of adjacent profiles (a,b; b,c; c,d; d,e)
were smaller than t, the I differences in the
three pairs of extreme profiles (a,e; a,d;
b,e) were larger than e, and the I differences
in the three pairs of intermediate profiles
(a,c; b,d; c,e) equaled e. The four sets of
profiles, constructed for the test session, are
shown in Table 7. Note that in each of
the sets of Table 7 there is a perfect negative
correlation between Dimension I and Di-
mensions E and S, and that the profiles are
equally spaced. The four sets differ from
each other in the location and the spacing
of the profiles. The differences between
adjacent profiles on Dimensions I, E, and S
respectively are 3, 6, and 10 in Set I; 6, 10,
and IS in Set II; 9, 12, and 20 in Set III;
12, 16, and 23 in Set IV. Under the hy-
pothesized model this construction was de-
signed to yield preference patterns where
choices between the four adjacent profiles
are incompatible with Dimension I, whereas
choices between the three extreme profiles
are compatible with Dimension I.

The test session took place approximately
2 weeks after the preliminary session. The
5s were reminded of the instructions and
the nature of the task. They were run
individually, and each one was presented
with all 10 pair comparisons of the five new

TABLE 7
FOUR SETS OP PROFILES CONSTRUCTED

FOR EXPERIMENT II

Set

I

11

I I I

IV

Profiles

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

Dimensions

I

69
72
75
78
81

66
72
78
84
90

54
63
72
81
90

42
54
66
78
90

E

84
78
72
66
60

90
80
70
60
50

90
78
66
54
42

96
80
64
48
32

S

75
65
55
45
35

85
70
55
40
25

95
75
55
35
15

96
73
50
27
4

Note.—I = intellectual
S = social facility.

ability, E = emotional stability,

profiles along with all 10 pair comparisons
of five "irrelevant" profiles introduced to
minimize recall of the earlier decisions. Each
of the 20 pairs was replicated three times
during the session. The order of presenta-
tion was identical for all 5s and it was ran-
domized within each block of 20 pairs. The
choice frequencies of all 10 critical pairs of
profiles are shown in Table 8 for each 5.
Since only three replications of each pair
comparison were obtained, the likelihood
ratio test could not be properly applied to
these data. Instead, the maximum likeli-
hood estimates of the choice probabilities,
under both WST and the LS, were ob-
tained for each S. The observed propor-
tion of triples violating WST, denoted TT,
was then compared with the expected pro-
portions, based on the maximum likelihood
estimates under WST and the LS, denoted
WST (IT) and LS(» respectively. Table 8
shows that the observed values of IT exceed
the maximum likelihood estimates of TT
under WST for all but one 5 (p < .01 by a
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TABLE 8
FREQUENCIES OF SELECTING THE FIRST ELEMENT OF EACH PAIR OVER THE

SECOND, TOTALED OVER THE THREE REPLICATIONS

Subject

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Total

Set

I
I
I

II
II
II
II
II
II

III
III
III
III
IV
IV

Pair

a, b

3
2
3
3
0
3
3
3
3
3
3
2
3
2
3

b,c

3
1
2
3
0
2
3
3
2
3
3
1
2
2
2

c, d

2
2
3
2
0
3
3
3
3
2
3
2
2
3
3

d,e

1
3
2
3
0
1
1
1
3
3
3
3
3
3
3

a, c

2
2
1
1
0
2
2
2
1
2
2
2
2
1
2

b,d

1
1
2
0
0
1
1
1
2
2
3
1
1
0
2

c, e

2
2
3
0
0
2
1
1
3
2
3
2
0
2
2

a,d

1
0
0
0
0
2
0
0
2
1
1
0
1
1
2

b, e

0
0
0
0
0
0
0
0
1
0
2
0
1
1
0

a,e

0
0
0
0
0
1
0
0
0
0
1
0
0
0
0

7T

.4

.2

.4

.3

.0

.3

.2

.3

.4

.5

.4

.2

.3

.3

.4

.307

WSTM

.213

.1Q6

.262

.125

.000

.171

.197

.125

.237

.324

.238

.196

.228

.228

.238

.199

LSM

.316

.292

.303

.241

.300

.285

.295

.242

.281

.391

.366

.292

.275

.275

.372

.302

Note.—The values of T denote the observed proportions of intransitive triples, whereas the values of LS(TT) and WST (T) denote
the expected proportions under the two models, respectively.

sign test). Furthermore, the LS predicted
the observed proportions better than WST
for 11 out of 15 5s. Finally, the overall
proportion of intransitive triples (.307) is
significantly higher (p < .01) than the
value expected under WST (.199), but it is
not significantly different from the value
expected under the LS (.302), according to
a chi-square test. Hence, WST is rejected
because both the overall proportion of in-
transitive triples and the TT values of a sig-
nificant majority of 5s exceed their expected
value under WST.

The 5s were interviewed at the end of the
test session. None of the 5s realized that
his preferences were intransitive. More-
over, a few 5s denied this possibility
emphatically and asked to see the experi-
menter's record. When faced with his
own in transitivities one 5 said "I must have
made a mistake somewhere." When the
LS was explained to that 5, however, he
commented, "It is a reasonable way to make
choices. In fact, I have probably made
some decisions that way." The relation
between the model and its logical conse-
quences was obviously not apparent to our
5.

THEORY

The empirical studies showed that, under
appropriate experimental conditions, the
behavior of some people is intransitive.
Moreover, the intransitivities are system-
atic, consistent, and predictable. What
type of choice theory is needed to explain
intransitive preferences between multi-
dimensional alternatives?

The lexicographic semiorder that was
employed in the construction of the alter-
natives for the experiments is one such
model. It is not, however, the only model
that can account for the results. Further-
more, despite its intuitive appeal, it is
based on a noncompensatory principle that
is likely to be too restrictive in many con-
texts. In this section, two choice theories
are introduced and their relationships to
the transitivity principle are studied.

Let A = AI X • • • X An be a set of
multidimensional alternatives with ele-
ments of the form x = (xi, • • • , # „ ) , y
= (yi, • • •, y«). where #,• (» = ! , • • • , « )
is the value of Alternative x on Dimension
i. Note that the components of x may be
nominal scale values rather than real num-
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bers. A theory of choice between such
alternatives is essentially a decision rule
which determines when x is preferred to y,
or when p(x,y) > %. A more elaborate
theory may also provide an explicit formula

In examining the process of choice be-
tween multidimensional alternatives, two
different methods of evaluation have been
considered (Morrison, 1962). The first is
based on independent evaluations. Ac-
cording to this method, one evaluates the
two alternatives, x and y, separately, and
assigns scale values, u(x) and u(y), to each
of them. Alternative * is, then, preferred
to Alternative y if and only if u(x) >u(y}.
The scale value assigned to an alternative is
a measure of its utility, or subjective value,
which is assumed to depend on the sub-
jective values of its components. More
specifically, there are scales u\, • • • , «„ de-
fined on A i, • • • , A n respectively such that
Ui(xi) is the subjective value of the *th com-
ponent of Alternative x. It is further as-
sumed that the overall utility of an alter-
native is expressable as a specified function
of the scale values of its components.
Among the various possible functional rela-
tions, the additive combination rule has
been most thoroughly investigated. Ac-
cording to the additive (conjoint measure-
ment) model, the subjective value of an
alternative is simply the sum of the sub-
jective value of its components.

Stated formally, a preference structure
satisfies the additive model if there exist
real-valued functions u, Ui, • • •, un such
that

x > y if and only if
n n

«(*)= L «<(*<) ^ E«<Cy<) = «(?)• [5]
*-l i-l

Axiomatic analyses of this model, which
are based on ordinal assumptions, have
been provided by Debreu (1960), Luce and
Tukey (1964), Krantz (1964), and Luce
(1966) under solvability conditions. Nec-
essary and sufficient conditions for addi-
tivity have been discussed by Adams and
Fagot (1959), Scott (1964), and Tversky
(1967b). For some of the empirical appli-

cations of the model, see Shepard (1964)
and Tversky (1967a). Note that the
commonly applied multiple-regression
model is a special case of the additive
model where all the subjective scales are
linear.

The second method of evaluation is
based on comparisons of component-wise
differences between the alternatives. Ac-
cording to this method one considers quan-
tities of the form 8,- = Ui(xi) — Ui(yt)
which correspond to the difference between
the subjective values of x and y on the ith
dimension. To each such quantity, one
applies a difference function, <f>i, which
determines the contribution of the particu-
lar subjective difference to the overall
evaluation of the alternatives. The quan-
tity $,-(5<) can be viewed, therefore, as the
"advantage" or the "disadvantage" (de-
pending on whether 3,- is positive or nega-
tive) of x over y with respect to Dimension
i. With this interpretation in mind, it is
natural to require thai <fo( — 5) = — 0<(5).
The obtained values of 0<(6<) are, then,
summed over all dimensions, and x is pre-
ferred over y whenever the resulting sum is
positive.

Stated formally, a preference structure
satisfies the additive difference model if there
exist real-valued functions MI, • • • , « » and
increasing continuous functions 0i, • • • , $„
defined on some real intervals such that

x > y if and only if

£ *<[«<(*<) -
t-i

> 0

where

^(- 5) =- <t>{(5) for all t.

An axiomatic analysis of the additive
difference model will be presented else-
where. Essentially the same model was
proposed by Morrison (1962). A set of
ordinal axioms yielding a (symmetric) ad-
ditive difference model of similarity (rather
than preference) judgments has been given
by Beals, Krantz, and Tversky (1968).

A comparison of the additive model
(Equation 5) with the additive difference
model (Equation 6) from a psychological
viewpoint reveals that they suggest differ-
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ent ways of processing and evaluating the
alternatives. A schematic illustration of
the difference is given below.

X =

y =

' , Xi, • • -,Xn)

In the simple additive model, the alterna-
tives are first processed "horizontally," by
adding the scale values of the components,
and the resulting sums are then compared to
determine the choice. In the additive
difference model, on the other hand, the
alternatives are first processed "vertically,"
by making intradimensional evaluations,
and the results of these vertical compari-
sons are then added to determine the choice.
Although the two models suggest different
processing strategies, the additive model is
formally a special case of the additive
difference model where all the difference
functions are linear. To verify this fact,
suppose 0j(8i) = ttSi for some positive ti
and for all i. Consequently,

= £ tiUi(Xi) — £ tiUi(yi).
»=i i-i

Thus, if we let »<(*<) = <<«<(*<) for all i,
then Equation 6 can be written as x > y if
and only if

which is the additive model of Equation 5.
Hence, if the difference functions are

linear the two models (but not necessarily
the processing strategies) coincide. The
vertical processing strategy is, thus, com-
patible with the additive model if and only
if the difference functions are linear.

The proposed processing strategies, as
well as the models associated with them, are
certainly affected by the way in which the

information is displayed. More specifi-
cally, the additive model is more likely to be
used when the alternatives are displayed
sequentially (i.e., one at a time), while the
additive difference model is more likely to
be used when the dimensions are displayed
sequentially. Two different types of polit-
ical campaigns serve as a case in point.
In one type of campaign, each candidate
appears separately and presents his views
on all the relevant issues. In the second
type the various issues are raised separately
and each candidate presents his view on that
particular issue. It is argued that the
"horizontal" evaluation method, or the
simple additive model, is more likely to be
used in the former situation, while the
"vertical" evaluation method, or the addi-
tive difference model, is more likely to be
used in the latter situation.

Although different evaluation methods
may be used in different situations, there are
several general considerations which favor
the additive difference model. In the first
place, it is considerably more general, and
can accommodate a wider variety of prefer-
ence structures. The LS, for example, is a
limiting case of this model where one (or
more) of the difference functions approaches
a step function where 0(5) = 0 whenever
8 < e. Second, intradimensional compari-
son may simplify the evaluation task. If
one alternative is slightly better than an-
other one on all relevant dimensions, it will
be immediately apparent in a component-
wise comparison and the choice will indeed
be easy. If the alternatives, however, are
evaluated independently this dominance
relation between the alternatives may be
obscured, which would certainly complicate
the choice process. But even if no such
dominance relation exists, it may still be
easier to use approximation methods when
the evaluation is based on component-wise
comparisons. One common approximation
procedure is based on "canceling out"
differences that are equal, or nearly
equal, thus reducing the number of dimen-
sions that have to be considered. In decid-
ing which of two houses to buy, for example,
one may feel that the differences in style
and location cancel each other out and the
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choice problem reduces to one of deciding
whether it is worth spending $x more for a
larger house. It is considerably more
difficult to employ this procedure when the
two alternatives are evaluated indepen-
dently.

Finally, intradimensional evaluations are
simpler and more natural than interdimen-
sional ones simply because the compared
quantities are expressed in terms of the
same units. It is a great deal simpler to
evaluate the difference in intelligence be-
tween two candidates than to evaluate the
combined effect of intelligence and emo-
tional stability. In choosing between two
w-dimensional alternatives, one makes 2«
interdimensional evaluations when the al-
ternatives are evaluated independently ac-
cording to the additive model, but only n
interdimensional evaluations along with n
intradimensional evaluations according to
the additive difference model.

Now that the two models have been
defined and compared, their relationships
to the transitivity principle are investi-
gated. It can be readily seen that the
simple additive model satisfies the transitiv-
ity principle, for the assumptions that x is
preferred to y, and y is preferred to z imply
thatw(tf) > u(y)andu(y) > u(z). Hence,
u(x) > u(z), which implies that x must be
preferred to z. Note that the argument
does not depend on the additivity assump-
tion. Transitivity must, therefore, be
satisfied by any model where a scale value
is assigned to each alternative and the pref-
erences are compatible with Equations 2
or 3.

Under what conditions does the additive
difference model satisfy the transitivity
principle? The answer to this question is
given by the following result, which de-
pends on the dimensionality of the
alternatives.3

Theorem: If the additive difference model
(Equation 6) is satisfied then the following
assertions hold whenever the difference
functions are defined.

8 In referring to the dimensionality of the alterna-
tives, denoted n, only nontrivial dimensions having
more than one value are considered. The fact that
transitivity holds whenever n = 2 and <j!>i = 0s has
been recognized by Morrison (1962, p. 19).

1. For n > 3, transitivity holds if and
only if all difference functions are linear.
That is, <£,-(5) = tjS for some positive h and
for all i.

2. For n = 2, transitivity holds if and
only if <£i(5) = <£2(/5) for some positive t.

3. For n = 1, transitivity is always
satisfied.
The proof is given in the appendix. The
theorem shows that the transitivity as-
sumption imposes extremely strong con-
straints on the form of the difference
functions. In the two-dimensional case,
the difference functions applied to the two
dimensions must be identical except for a
change of unit of their domain. If the
alternatives have three or more dimensions,
then transitivity is both necessary and
sufficient for the linearity of all the differ-
ence functions. Recall that under the
linearity assumption, the additive difference
model reduces to the simple additive model,
which has already been shown to satisfy
transitivity. The above theorem asserts,
however, that this is the only case in which
the transitivity assumption is compatible
with the additive difference model. Put
differently, if the additive difference model
is satisfied and if even one difference func-
tion is nonlinear, as is likely to be the case
in some situations, then transitivity must
be violated somewhere in the system. The
experimental identification of these intrans-
itivities in the absence of knowledge of the
form of the difference functions might be
very difficult indeed. The LS employed
in the design of the experimental research is
based on one extreme form of nonlinearity
where one of the difference functions is, or
can be approximated by, a step function.
The above theorem suggests a new explana-
tion of the intransitivity phenomenon, in
terms of the form of the difference functions,
which may render it more plausible than it
seemed before.

Most of the choice mechanisms that have
been purported to yield in transitivities (in-
cluding the LS) are based on the notion of
shifting attention, or switching dimensions,
from one choice to another. Consequently,
they assume that some relevant information
describing the alternatives is ignored or dis-
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carded on particular choices. In contrast
to this notion, intransitivities can occur in
the additive difference model in a fully com-
pensatory system where all the information
is utilized in the evaluation process.

Both the additive model and the additive
difference model can be extended in a
natural way. To do so, let F be an in-
creasing function and suppose that all
choice probabilities are neither 0 and 1.
The (extended) additive model is said to
be satisfied whenever Equation 5 holds and

P(x,y) = / Z «<(*<) - £ Ui(y{) 1. [7]
L <-i <=i J

Similarly, the (extended) additive differ-
ence model is said to be satisfied whenever
Equation 6 holds and

P(x,y) = F( Z *«[>«(*,) - «<(?,)] V
\ i=i /

[8]

Both models are closely related to the
Fechnerian or the strong utility model (see
Luce & Suppes, 1965). This model asserts
that there exists a function u and a distri-
bution function F such that

= F[_u(x) - [9]

Note that Equation 7 is a special case of
Equation 9, where the utilities are additive,
while Equation 8 is an additive generaliza-
tion of Equation 9 to the multidimensional
case. The two most developed probabilis-
tic models of Thurstone (1927, Case V) and
Luce (1959) can be obtained from the Fech-
nerian model by letting F be the normal or
the logistic distribution function respec-
tively.

It can be easily shown that Equation 9
and, hence, Equation 7 satisfy not only
WST, but also a stronger probabilistic
version of transitivity called strong sto-
chastic transitivity, or SST. According to
this condition, if P(x,y) > | and P(y,z)
> | then both P(x,z) > P(x,y) and P(x,z]

Clearly, SST implies WST but not
conversely. However, if Equation 8 is
valid with n > 3, and if WST is satisfied,
then according to the above theorem,
Equation 8 reduces to Equation 7 which
satisfies SST as well. Thus, we obtain the

somewhat surprising result that, under the
extended additive difference model, with
n > 3, WST and SST are equivalent.

DISCUSSION

In the introduction, a choice model (the
LS) yielding intransitive preferences was
described. This model was employed in
the design of two studies which showed that,
under specified experimental conditions,
consistent intransitivities can be obtained.
The theoretical conditions under which
intransitivities occur were studied within
the framework of a general additive differ-
ence model. The results suggest that in the
absence of a model that guides the con-
struction of the alternatives, one is unlikely
to detect consistent violations of WST.
The absence of an appropriate model com-
bined with the lack of sufficiently powerful
statistical tests may account for the failure
to reject WST in previous investigations.

Most previous tests of WST have been
based on comparison between the observed
proportion of intransitive triples, IT, and the
expected proportion under WST. As Mor-
rison (1963) pointed out, however, this
approach leads to difficulties arising from
the fact that in a complete pair comparison
design only a limited proportion of triples
can, in principle, be intransitive. Speci-
fically, the expected value of T for an 5 who
is diabolically (or maximally) intransitive

k + 1
is 77; ^r where k is the number of alter-4(& — 2)
natives. As k increases, this expression ap-
proaches one-fourth, which is the expected
value of IT under the hypothesis of random
choice (i.e., P(x,y) = J for all x,y). Mor-
rison argued, therefore, that unless the
intransitive triples can be identified in ad-
vance, it is practically impossible (with a
large number of alternatives) to distinguish
between the diabolically intransitive S and
the random 5 on the basis of the observed
value of IT. These considerations suggest
that a more powerful test of WST can be
obtained by using many replications of a
few well-chosen alternatives rather than by
using a few replications of many alterna-
tives. The latter approach, however, has
been employed in most studies of preference.
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What are the implications of the present
results for the analysis of choice behavior?

Casual observations, as well as the com-
ments made by 5s, suggest that the LS (or
some other nonlinear version of the additive
difference model) is employed in some real-
world decisions, and that the resulting in-
transitivities can also be observed outside
the laboratory. Consider, for example, a
person who is about to purchase a compact
car of a given make. His initial tendency
is to buy the simplest model for $2089.
Nevertheless, when the saleman presents
the optional accessories, he first decides to
add power steering, which brings the price
to $2167, feeling that the price difference is
relatively negligible. Then, following the
same reasoning, he is willing to add $47 for
a good car radio, and then an additional
$64 for power brakes. By repeating this
process several times, our consumer ends
up with a $2593 car, equipped with all the
available accessories. At this point, how-
ever, he may prefer the simplest car over
the fancy one, realizing that he is not willing
to spend $504 for all the added features,
although each one of them alone seemed
worth purchasing.

When interviewed after the experiment,
the vast majority of 5s said that people are
and should be transitive. Some 5s found
it very difficult to believe that they had ex-
hibited consistent intransitivities. If in-
transitivities of the type predicted by the
additive difference model, however, are
manifest in choice behavior why were 5s so
confident that their choices are transitive?

In the first place, transitivity is viewed,
by college undergraduates at least, as a
logical principle whose violation represents
an error of judgment or reasoning. Con-
sequently, people are not likely to admit the
existence of consistent intransitivities.
Second, in the absence of replications, one
can always attribute intransitivities to a
change in taste that took place between
choices. The circular preferences of the
car buyer, for example, may be explained
by the hypothesis that, during the choice
process, the consumer changed his mind
with regard to the value of the added ac-
cessories. If this hypothesis is misapplied,

the presence of genuine intransitivities is
obscured. Finally, most decisions are
made in a sequential fashion. Thus, hav-
ing chosen y over x and then 2 over y, one is
typically committed to z and may not even
compare it with x, which has already been
eliminated. Furthermore, in many choice
situations the eliminated alternative is no
longer available so there is no way of finding
out whether our preferences are transitive or
not. These considerations suggest that in
actual decisions, as well as in laboratory
experiments, people are likely to overlook
their own intransitivities.

Transitivity, however, is one of the basic
and the most compelling principles of ra-
tional behavior. For if one violates trans-
itivity, it is a well-known conclusion that
he is acting, in effect, as a "money-pump."
Suppose an individual prefers y to x, z to y,
and x to z. It is reasonable to assume that
he is willing to pay a sum of money to re-
place x by y. Similarly, he should be
willing to pay some amount of money to
replace y by z and still a third amount to
replace z by x. Thus, he ends up with the
alternative he started with but with less
money. In the context of the selection of
applicants, intransitivity implies that, if a
single candidate is to be selected in a series
of pair comparisons, then the chosen candi-
date is a function of the order in which the
pairs are presented. Regardless of whether
this is the case or not, it is certainly an un-
desirable property of a decision rule.

As has already been mentioned, the
normative character of the transitivity
assumption was recognized by 5s. In fact,
some evidence (MacCrimmon, 1965) indi-
cates that when people are faced with their
own intransitivities they tend to modify
their choices according to the transitivity
principle. Be this as it may, the fact re-
mains that, under the appropriate experi-
mental conditions, some people are
intransitive and these intransitivities can-
not be attributed to momentary fluctua-
tions or random variability.

Is this behavior necessarily irrational?
We tend to doubt it. It seems impossible
to reach any definite conclusion concerning
human rationality in the absence of a de-
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tailed analysis of the sensitivity of the
criterion and the cost involved in evaluating
the alternatives. When the difficulty (or
the cost) of the evaluations and the consist-
ency (or the error) of the judgments are
taken into account, a model based on com-
ponent-wise evaluation, for example, may
prove superior to a model based on inde-
pendent evaluation despite the fact that the
former is not necessarily transitive while
the latter is. When faced with complex
multidimensional alternatives, such as job
offers, gambles, or candidates, it is ex-
tremely difficult to utilize properly all the
available information. Instead, it is con-
tended that people employ various ap-
proximation methods that enable them to
process the relevant information in making
a decision. The particular approximation
scheme depends on the nature of the al-
ternatives as well as on the ways in which
they are presented or displayed. The
lexicographic semiorder is one such an ap-
proximation. In general, these simplifica-
tion procedures might be extremely useful
in that they can approximate one's "true
preference" very well. Like any approxi-
mation, they are based on the assumption
that the approximated quantity is inde-
pendent of the approximation method.
That is, in using such methods in making
decisions we implicitly assume that the
world is not designed to take advantage of
our approximation methods. The present
experiments, however, were designed with
exactly that goal in mind. They attempted
to produce intransitivity by capitalizing on
a particular approximation method. This
approximation may be very good in gen-
eral, despite the fact that it yields intransi-
tive choices in some specially constructed
situations. The main interest in the pres-
ent results lies not so much in the fact that
transitivity can be violated but rather in
what these violations reveal about the
choice mechanism and the approximation
method that govern preference between
multidimensional alternatives.
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APPENDIX

Theorem imply

If the additive difference model (Equation 6)
is satisfied, then the following assertions hold
whenever the difference functions are denned.

1. For n > 3, transitivity holds if and only
if all difference functions are linear. That is,
0<(5) = tiO for some real d and for all i.

2. For n = 2, transitivity holds if and only
if 0i(8) = <t>?(t8) for some real t.

3. For w = 1, transitivity is always satisfied.

Proof

By WST, P(x,y) = f and P ( y , z ) = J- imply
P(x,z) = J. Hence, according to the additive
difference model there exist functions u\, • • • ,
un and increasing continuous functions 0i, • • • ,
<t>n defined on some real intervals of the form
(- MO such that

= 0.

and

imply

0

= 0

0,

First, suppose n = 1, hence (*) reduces to:

0(a) = 0, 0(|3) = 0 imply 0(a + /3) = 0.

But since 0 is increasing, and 0(0) = — 0(0)
= 0, a = ;8 = 0 = a+ /3 , and hence the above
equation is always satisfied.

Next, suppose n = 2, hence, by (*), 0i(«i)
+ 0aM = 0 and ^(fr) + 02032) = 0 imply
0i(«! + (30 + 02(«2 + /32) = 0. Since 0,-(- 8)
= — 0i(5), the above relation can be rewritten
as 0i(«i) = 0 2(— as) and 0i(/3i) = 02( — /32)
imply 0i (ai + $1) = 0 2(— a2 — /Sa). Conse-
quently, by letting «i = /3i and a2 = /3a, and
repeating the argument n times, we obtain
0i(a) = 0a(/3) implies 0i(wa) = 02(w/3) for any
positive integer n for which both 0i(wa) and
<j>i(np) are defined.

Since all difference functions are continu-
ously increasing and since they all vanish at
zero, one can select positive a, b such that
0i(a), 02(&) are defined and such that 0i(a)
= 0s(&). Hence, for any positive integers

m, n for which 0i( —a ] and 02l —b] are de-
\ « / \ » /

fined

where &(— 5) = — 0i(6). Letting

£»< = w<(x;i)-M<(y<) and Pi = ui(yi')-Ui(Zi')

yields

(*) Efc(a<) = 0 and £0^/3,0 = 0

, 0i( - I and 02( - I are also defined. Fur-
\»/ \n/

thermore, 0if - J = 02f - J, for otherwise a

strict inequality must hold. Suppose 0i( - )

< 02( - ), hence there exists c such that 0if - )
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(»)•= 02(c) < 02( - )• Consequently, c < -, or
\n I n

nc < b, and 02(we) is defined. Hence, 02(we)
= 0i (a) = 02(6) and nc = 6, a contradiction.
By the symmetry of the situation, a similar

contradiction is obtained if 02( - ) > 02( - ).
^\«/ w

Therefore,0i(a)=02(&)implies0i( - )=0s( - )
\n/ \n/

for all n.

Next, let J = - and suppose that both 0i(c)
a

and 02(to) are defined. Thus, for any 5 > 0,

there exist m, n such that c—S<—ffi^c, and

, b, .. b m ., 6 _ ,
hence -(c — o) < a < -c. Consequently,

o a w ~ a

_[ / s\ ̂  j. (m \ ^ j. i \ j ±\ b, .. "I0i\c ~~ o] ^ G>I i —ct j ^ (pi\c) and<p2| *~(,c — o) i
\ n / I a I\ / L. j

( \ / ?i \
— 6 J < 0 2 ( - c ) . As 5 approaches 0,M, I \ Q, I

/ \ /

however, 0i(c — 5) = 0i(c) and 02 -(c — 6)

= 02( -c ), and since 0i[ —a] = 0J —& I, by
\o / V « / . V " /

hypothesis, 0i(c) = 02(to) as required. Con-
versely, if 0i (c) = 02 (to) it follows readily that
Equation (*) is satisfied which completes the
proof of this case.

Finally, suppose n > 3. Since we can let all
but three differences be zero, we consider the

case where » = 3. Hence,

*I(QI) + 02(aa) +

and
= °

0

imply 0i (ai + /?i) + 02(oi2 + (82) + 0s(a3 + /J3)
= 0. By the earlier result, however, 0<(5)
= 0;(£,-5) for i,j = 1, 2, 3. Hence, the above
implication is expressible as

<f> (a) +<f> $)=<!>(&) and <^(

imply

, , . /\ , . /a i «« _ JL/S i s/\cp(a + a ) + q>(p + p ) = <f>(0 + 5 ).

Define tf> such that 0(a) + <!>(£) = ̂ (a, /3)]
for ali a> ^3, Hence,

Hence, ̂ («,«+,A(a',^) - ^(a + «', j8 + /S')
and $ is jjnear in a, /3. Therefore, 0(a) + 008)
= ^(#a + fflS) for some real p, q. If we let
ft = 0, we get 0(a) = 0(#a) hence /> = 1.
Similarly, if we let a = 0, we get 0(0) = 0(08)
hence g = 1. Consequently, 0 (a) + 0(/3) = 0(a
+ ̂  and $ if linear as required. The converse
for any M > 3 ;s immediate which completes
the proof of this theorem.
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