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Transitivity of preferences is a fundamental principle shared by most major contemporary rational,
prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group,
or society that prefers choice option x to y and y to z must prefer x to z. Any claim of empirical violations
of transitivity by individual decision makers requires evidence beyond a reasonable doubt. We discuss
why unambiguous evidence is currently lacking and how to clarify the issue. In counterpoint to Tversky’s
(1969) seminal “Intransitivity of Preferences,” we reconsider his data as well as those from more than 20
other studies of intransitive human or animal decision makers. We challenge the standard operational-
izations of transitive preferences and discuss pervasive methodological problems in the collection,
modeling, and analysis of relevant empirical data. For example, violations of weak stochastic transitivity
do not imply violations of transitivity of preference. Building on past multidisciplinary work, we use
parsimonious mixture models, where the space of permissible preference states is the family of
(transitive) strict linear orders. We show that the data from many of the available studies designed to elicit
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intransitive choice are consistent with transitive preferences.
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Individuals “are not perfectly consistent in their choices. When faced
with repeated choices between x and y, people often choose x in some
instances and y in others.” It seems “that the observed inconsistencies

reflect inherent variability or momentary fluctuation in the evaluative
process. This consideration suggests that preference should be defined
in a probabilistic fashion.” (Tversky, 1969, p. 31)
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Jim is writing a dissertation on decision making and meets with
his advisor three times a week. Each time, he offers his advisor a
choice of two locations on campus. After a while, Jim notices that
out of 30 times that he offered to meet in either the alumni center
(A) or the business library (B), his advisor chose the alumni center
20 times. Out of the 30 times that Jim offered to meet in either the
business library (B) or the coffee shop (C), his advisor preferred
the business library 20 times. However, out of the 30 times that
Jim offered to meet in either the alumni center (A) or the coffee
shop (C), his advisor preferred to meet at the coffee shop 20 times.
Jim questions the rationality of an advisor who two thirds of the
time chooses A over B and two thirds of the time chooses B over
C, but two thirds of the time chooses C over A, seemingly
indicating intransitive preference. He considers switching to Bob’s
advisor, who, when given the same choices, chose A over B in
90% of cases, chose B over C in 90% of cases, and 70% of the time
chose A over C.

Forlorn, Jim confronts his advisor, who gives him a surprisingly
simple explanation for the apparent paradox. The two had met each
Monday, Wednesday, and Friday when his advisor was on campus
to teach, and she had chosen to meet closest to where she taught
each time. On Mondays, she taught in the engineering building
adjacent to the alumni center (A). On Wednesdays, she taught next
to the business library (B), and on Fridays, she taught in the
mathematics building across the street from the coffee shop (C).
From the engineering building, the meeting locations are ranked
ABC by proximity. From the classroom next to B, it is closer to C
than to A. From the classroom near the coffee shop, the second
closest venue is A. Hence, two of the three classrooms are closer
to A than to B, two are closer to B than to C, and two are closer
to C than to A. Jim’s adviser had been choosing consistently
according to a criterion—distance from current location—that
cannot be cyclical.

Furthermore, she explains that Bob’s advisor could not possibly
be choosing in the same manner. If Bob’s advisor is 90% of the
time closer to A than B and 90% of the time closer to B than C,
then it is mathematically impossible for him to be closer to C than
A as often as 30% of the time even if he teaches class in a hot air
balloon! Regardless of switching locations, he would have to
choose A over C at least 80% of the time. The only person whose
rationality can possibly be drawn into question is Bob’s advisor.

This article discusses the challenges of disentangling variability
in choices from structural inconsistency of preferences. As the
Tversky epigraph suggests, when someone is faced with the same
choice options repeatedly, he or she does not always choose the
same way. As the epigraph also suggests, this may lead one to
question whether the decision maker has consistent preferences.
An important distinction must be drawn, however, between two
possible meanings of inconsistent preference. Preferences could be
inconsistent because they vary from time to time, that is, because
the decision maker does not want the same thing at all times.
We henceforth refer to this kind of inconsistency as variability. On
the other hand, preferences could be inconsistent because they are
logically incompatible with the assumptions (known as axioms) of
expected utility theory (von Neumann & Morgenstern, 1947).
Preferences that are inconsistent in this manner challenge the
notion of human rationality and suggest the need for theories based
on more psychologically descriptive assumptions to replace ratio-
nal choice models.

Experimental research in burgeoning areas such as judgment
and decision making and behavioral economics often claims to
find the latter sort of inconsistency, rendering the axioms of
expected utility theory descriptively inadequate. Such claims,
however, are surprisingly difficult to substantiate properly, as we
demonstrate in this article using the example of transitivity. Be-
cause decision axioms are stated in algebraic, deterministic terms,
testing them involves bridging an open conceptual gap to intrin-
sically variable, probabilistic choice data (see Luce, 1995, 1997;
see also Busemeyer & Townsend, 1993; Carbone & Hey, 2000;
Harless & Camerer, 1994; Hey, 1995, 2005; Hey & Orme, 1994;
Iverson & Falmagne, 1985; Loomes, 2005; Loomes & Sugden,
1995, for important related discussions). Bridging the gap presents
a twofold challenge: (a) specifying a probabilistic model of the
axiom (i.e., introducing variability) and (b) testing that model of
the axiom using appropriate statistical methods (i.e., determining
whether structural consistency has been significantly violated).

Our above example demonstrates how variability and structural
inconsistency can be conflated. Suppose that we had modeled the
variability in Jim’s advisor’s choices as reflecting true determin-
istic preference plus random error. This approach would imply the
condition of weak stochastic transitivity (Block & Marschak,
1960; Luce & Suppes, 1965; Tversky, 1969), according to which,
if A is chosen over B at least 50% of the time and B is chosen over
C at least 50% of the time, then A must be chosen over C at least
50% of the time. Weak stochastic transitivity seems an intuitive
bridge between a deterministic axiom and variable behavior, and
indeed, Jim’s intuition was that his advisor’s preferences were
intransitive. Yet, when we are able to reveal the mental process
behind the choices, it is transitive at each and every instance
(minimizing distance always rank orders the options), even if
seemingly inconsistent at the aggregate level because it violates
weak stochastic transitivity.

Our approach to modeling choice variability, the mixture model,
avoids the erroneous conclusion that the advisor’s preference is
intransitive. The mixture model assumes that choices vary because
the decision maker is in different mental states (analogous to different
locations on campus) at different points in time. That is, the decision
maker has some probability distribution over mental states and
chooses x over y if and only if her or his current mental state is one
in which she or he prefers x to y. Formally, as later stated in
Equation 5 in the text,

2 P

>ell x>y
[

P, =
—

overt probability of

choosing x over y total probability of latent

mental states > in which
x is preferred to y

To accommodate a two-alternative forced-choice (2AFC) task like
the one above, only (transitive) linear orders over the choice
options are allowable mental states.

Perhaps counterintuitively, this model already places a con-
straint on observed choice probabilities that is more restrictive than
weak stochastic transitivity: Every distinct triple of choice proba-
bilities must satisfy the triangle inequalities, as set out later in the
text in Formula 4:

P,+P,—P,=1.
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We make no parametric assumptions about the probability distri-
bution over allowable mental states, nor do we allow the flexibility
of additional noise in the empirical choice data. Yet, when we
analyze many sets of human and animal choice data using a
powerful test of the highly restrictive triangle inequalities, we
conclude that violations appear to occur only within a Type I error
rate (=5%). Hence, preferences appear to be generally transitive,
even for stimuli that were sometimes designed to elicit intransitive
behavior. The extensive literature on intransitivity should be re-
considered. More importantly, decision-making researchers should
reconsider how frequently rational choice models are actually
violated.

We focus specifically on transitivity for several reasons. First
and foremost, transitivity is arguably the most fundamental axiom
of rational choice (Bar-Hillel & Margalit, 1988). Informally, if an
agent prefers x to y and y to z, then she or he must prefer x to z to
be transitive. Nearly all normative, prescriptive, and even descrip-
tive theories of choice imply transitivity (Kahneman & Tversky,
1979; Luce, 2000; Savage, 1954; von Neumann & Morgenstern,
1947). Indeed, real-valued utility functions logically require tran-
sitivity of preference, since the real numbers themselves are tran-
sitively ordered. Abandoning transitivity jeopardizes the very fun-
damental hypothetical construct of utility, and it questions nearly
all theories that rely on this construct. On the other hand, should
transitivity hold, then research in noncompensatory decision mod-
els (e.g., lexicographic heuristics) would lose one of its preeminent
sources of empirical motivation and support.

The example of transitivity is further interesting because, on the
surface, it would appear that suitable probabilistic models of
transitivity have been developed (most notably, stochastic transi-
tivity) and that testing these models is straightforward—both
notions that we challenge later in this article. Finally, transitivity is
interesting because it has been subject to intense scrutiny. After
decades of research, there appears to be broad consensus that the
axiom is empirically violated in human and animal decision mak-
ers (see, e.g., Brandstitter, Gigerenzer, & Hertwig, 2006;
Gonzalez-Vallejo, 2002).

Axiom testing itself serves a purpose similar to that of the study
of universal cognitive processes, such as attention or memory,
even though it is grounded in a different research tradition. Just as
the study of fundamental cognitive processes delineates what the
cognitive system can or cannot do, axiom testing delineates what
classes of theories can or cannot account for observed behavior.
Furthermore, whether transitivity is violated may yield other im-
portant clues to the cognitive processes underlying choice behav-
ior.

In this article, we review problems with past approaches, and we
discuss the current (lack of) evidence for intransitivity of prefer-
ence. A companion study (Regenwetter, Dana, & Davis-Stober,
2010) provided the in-depth technical discussion of how one
should and how one should not proceed when testing transitivity of
preferences.

Luce’s Challenge: Deterministic Axioms Versus
Probabilistic Data

The property of transitivity of preference says that if a person,
group, or society prefers some choice option x to some choice

option y and they also prefer y to z, then they furthermore prefer x
to z. Formally, this is as follows:

DEFINITION. A binary relation > on a set of choice alternatives C is
a collection of ordered pairs of alternatives. It is standard to write such
pairs as x > y and to read the relationship as “x is (strictly) preferred
to y.” A binary relation > on C satisfies the axiom of transitivity if
and only if the following is true.

Whenever x > yand y >z,
then x > z (for all choice options x, y, z in C).

)]

A binary relation is intransitive if it is not transitive. Because any
given empirical study relies on a finite set of stimuli, we assume
throughout that C is finite.

Any convincing test of transitivity must, as we discuss above,
separate the issue of variability in overt choice behavior from the
algebraic requirement that latent preferences are transitive. More
generally, bridging such theory—data gaps is one of the most
profound (and unresolved) challenges to empirical testing of de-
cision theories (Luce, 1995, 1997). Luce’s twofold challenge is to
(a) recast a deterministic theory as a probabilistic model (or a
hypothesis) and (b) properly test that probabilistic model of the
theory (or the hypothesis) on available data.

Before we provide our solution to Luce’s challenge, we
review the broad range of approaches that the existing literature
on (in)transitive individual preferences covers. We argue that all
reported violations of transitivity of which we are aware have
offered unconvincing solutions to Luce’s challenge.

Existing Probabilistic Models for the Axiom of
Transitivity of Preference

In meeting the first component of Luce’s challenge—specitying
a probabilistic model—some studies of intransitive preference
have relied on pattern counting approaches. Typically, this in-
volves counting the number of cyclical choice triples across many
respondents, who each made every paired comparison once. This
number is used to descriptively measure the degree of intransitivity
of a respondent group in a given experimental condition (Bradbury
& Nelson, 1974; Budescu & Weiss, 1987; Chen & Corter, 2006;
Gonzalez-Vallejo, Bonazzi, & Shapiro, 1996; Lee, Amir, & Ari-
ely, 2009; May, 1954; Mellers & Biagini, 1994; Mellers, Chang,
Birnbaum, & Ordonez, 1992; Ranyard, 1977; Riechard, 1991;
Sopher & Narramore, 2000; Treadwell, Kearney, & Davila, 2000;
Tversky, 1969).

We agree that this measure can be interpreted as an indication of
transitivity if there are zero cycles. When the degree of intransi-
tivity is positive, however, it is unclear what this number can tell
us about how close a group of decision makers is to being transi-
tive. Figure 1 illustrates how different counting procedures could
yield dramatically different assessments of how intransitive a
binary relation is. One preference relation has the decision maker
preferring octagon shapes with larger numbers to octagons with
smaller numbers, except that Octagon 0 is preferred to Octagon 2.
The other has the decision maker preferring triangles with larger
numbers to triangles with smaller numbers, except that Triangle 0
is preferred to Triangle 101. Each of these relations is just one
pairwise reversal away from the transitive ordering > of the
integers 0—101 (as indicated by the dotted arrows). Yet the pref-
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Figure 1.

Two preference relations that each differ from the linear order > on the integers 0, 1, ..., 101, by

one single ordered pair. The left-hand binary relation, where 0 > 2 instead of 2 > 0, has one cycle. The
right-hand binary relation, where 0 > 101 instead of 101 > 0, has 100 cycles.

erence relation over octagons contains one cycle (2 > 1, 1 >0,
0 > 2), while the preference relation over triangles contains 100
cycles (101 >i,i>0,0> 101, withi = 1, 2,..., 100).

We also discuss the following surprising, but related, statistical
fact in a later section: In an appropriate goodness-of-fit test, one
group with few cyclical choice patterns could significantly violate
a given model of transitivity while a second group with many more
cyclical choice patterns does not. We illustrate later how degree of
intransitivity is not monotonically related to the goodness of fit of
our model.

Other approaches combine pattern counting with hypotheses, for
example, that intransitive patterns occur significantly more often
than expected by chance (Bradbury & Moscato, 1982; Bradbury &
Nelson, 1974; Corstjens & Gautschi, 1983; Humphrey, 2001; Li,
2004; Peterson & Brown, 1998) or that a predicted cyclical pattern
occurs significantly more often than its reverse (Kivetz & Simon-
son, 2000; Loomes, Starmer, & Sugden, 1991; Loomes & Taylor,
1992; Starmer, 1999). Regenwetter et al. (2010) showed, for
example, that one approach leads to a self-contradiction while the
other can confirm two incompatible theories on the same data.

When studying individual participants making repeated choices,
researchers must accommodate variability over time. A simple
approach for introducing probabilities here is to treat preference as
deterministic and then attribute all variability to poor measure-
ment, that is, error or noise in the data (for examples and/or
discussions, see, e.g., Carbone & Hey, 2000; Harless & Camerer,
1994; Hey, 1995, 2005; Hey & Orme, 1994; Loomes, 2005). We
consider this approach reasonable when the decision maker be-
haves in a highly consistent fashion. However, it is not uncommon
for participants to choose one object over the other close to half the
time. A theory that allows error rates approaching 50% is unsat-
isfying (see Loomes, 2005, for a related discussion).

In a related approach, Sopher and Gigliotti (1993) assumed that
cyclical preferences have probability zero but that cycles occur in
the choice data because paired-comparison responses are noisy and
subject to errors. While they did not find support for intransitivity,

they had to allow for rather large estimated error rates (e.g.,
exceeding 25%).

Undoubtedly, the most influential approach to Luce’s challenge
has been weak stochastic transitivity (Block & Marschak, 1960;
Luce & Suppes, 1965). The leading article on this approach is
Tversky (1969), of which we have found more than 600 citations
in the past 20 years.

In his first and main experiment, Tversky (1969) used five
gambles. He presented every participant with each of the 10
unordered pairs of gambles 20 times, separated by decoys. Tversky
used a 2AFC paradigm: On each trial, the participant had to choose
one gamble and was not allowed to express either indifference or
lack of preference. Faced with the challenge of reconciling the
structural axiom of transitivity with variability in the choice data,
Tversky introduced probabilities as follows: x was said to be
preferred to y only when it was chosen over y the majority of the
time. Formally, he operationalized transitivity by the null hypoth-
esis in the test (Formula 2) shown at the bottom of the page.

It is important to grasp the full complexity of these hypoth-
eses. For instance, for three choice alternatives, as we vary the
labels x, y, z, the null hypothesis considers six different inequal-
ity triples simultaneously. When dealing with five choice alter-
natives, there are 10 ways to select three distinct gambles x, y,
z, with each selection leading to six different inequality triples.
Thus, the null hypothesis considers 60 distinct inequality triples
in that case. The alternative hypothesis considers two different
cyclical scenarios for three gambles and 20 distinct cyclical
scenarios for five gambles.

Weak stochastic transitivity, as a property of choice probabili-
ties, is implied by a variety of models. For instance, decision field
theory (Busemeyer & Townsend, 1993; Roe, Busemeyer, &
Townsend, 2001) assumes that the utilities of objects at any point
during the deliberation process are probabilistic, with a multivar-
iate normal distribution. Other researchers who have considered
Thurstonian random utility models include Bockenholt (1992b),
Hey and Orme (1994), Roelofsma and Read (2000), and

{HO : For all distinct x, y, z, if (P,, =

H, : There exist distinct x, y, z with (P,

1/2) and (P,, =

1/2), then also (P, = 1/2).

= 1/2). (P, = 1/2), and (P, < 1/2). @
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Tsai and Bockenholt (2006). Such normally distributed random
utility models imply weak stochastic transitivity as an immediate
consequence (Halff, 1976).

Weak stochastic transitivity in conjunction with 2AFC holds if
and only if majority aggregated preferences are transitive. As a
consequence, one faces a conceptual complication with violations
of weak stochastic transitivity: the Condorcet paradox of social
choice theory (Condorcet, 1785). The paradox says that when
transitive individual preferences are aggregated by majority rule,
they can lead to cycles. Imagine three decision makers with the
following preference orders (from best to worst): xyz, yzx, zxy.
Even though each decision maker has a transitive rank ordering,
the majority preference is cyclical: x preferred to y by a two-thirds
majority, y preferred to z by two thirds, and z preferred to x by two
thirds.

Tversky (1969) provided some evidence that the pairwise
choices of an individual, when aggregated across trials, can gen-
erate a majority cycle, and he concluded that individual partici-
pants could behave intransitively. Yet the main reason why Con-
dorcet’s paradox is so notorious in social choice theory is because
it shows that when aggregating any type of preferences (transitive
or not) via majority rule, one can introduce cycles. In other words,
following Tversky’s own assessment that individuals’ judgments
and choices fluctuate, one can imagine an individual who has a
transitive preference at every time point but violates weak stochas-
tic transitivity at the aggregate (e.g., across time). Our introduction
has illustrated such a situation, where a single individual rank
ordered choice alternatives (transitively) by proximity to her cur-
rent location but, because she was not always in the same location,
generated choices that appeared intransitive in the aggregate.

The (mis)use of majority aggregated data is pervasive even in
today’s literature on individual decision making. For instance,
Brandstitter et al. (2006) argued that the priority heuristic, which
predicts intransitive behavior, outperformed all other theories they
considered because it correctly predicted the largest proportion of
observed majority choices (aggregated across participants). Yet,
for m = 3, the majority choice in a sample of participants could
have 100% agreement with the intransitive binary relation pre-
dicted by the priority heuristic even if none of the participants
made their choices in accordance with the priority heuristic.

Aggregation paradoxes are not the only problem with using
weak stochastic transitivity as a representation of transitivity. This
model also implies additional properties that are substantially
stronger than transitivity alone. When considering five choice
alternatives, Regenwetter et al. (2010) showed that, for all practical
purposes, weak stochastic transitivity reduces the aggregate pref-
erences down to 120 linear orders. The number of (otherwise
unconstrained) transitive relations is three orders of magnitude
larger (see, e.g., Fiorini, 2001; Klaska, 1997). Rejecting weak
stochastic transitivity on 2AFC data means essentially rejecting
aggregate linear orders, not rejecting transitivity. On the other
hand, if weak stochastic transitivity does hold, transitivity of
majority aggregated preferences also holds.

Our main concern is with interpreting violations of stochastic
transitivity as indicating violations of transitivity of preferences.
Both the Condorcet paradox and the restrictiveness of stochastic
transitivity show that such conclusions are unwarranted.

Finally, weak stochastic transitivity is theoretically weak in that
it does not treat probability quantitatively. No distinction is made

whether a person chooses x over y with probability 0.500001 or
with probability one. Our preferred model, given in Equation 5
below, uses the binary choice probabilities on an absolute scale.
Before we state that model, we also inspect the empirical paradigm
itself.

The Problem of Two-Alternative Forced Choice

The most common empirical paradigm for testing transitivity of
preferences, the 2AFC paradigm, itself raises problems for testing
transitivity. The 2AFC task prohibits respondents from stating lack
of preference or indifference between alternatives. Mathemati-
cally, this means that the 2AFC paradigm forces the axioms of
asymmetry and completeness to hold in each observed binary
choice datum (Regenwetter et al., 2010). This, in turn, implies that
transitivity cannot be studied in isolation at the level of the ob-
served choices. If one assumes that underlying preferences satisfy
the axioms of completeness and asymmetry, then any transitive
decision maker’s preferences are characterized by a strict linear
order. As we highlighted in our critique of weak stochastic tran-
sitivity, adding additional axioms is substantially stronger than just
transitivity alone, especially when the number of choice alterna-
tives is large.

For choices between gambles that involve complicated trade-
offs, we believe it is unrealistic to rule out either indifference or
lack of preference. Forcing that additional structure, yet specifi-
cally claiming violations of transitivity, invites artifacts. While
asymmetry is a normatively attractive property for strict prefer-
ences, we see no reason why a theory of rational choice would rule
out indifference (say, among some similar, yet distinct, gambles
with equal expected value). To accommodate the extra structure
imposed on the empirical data, we later reanalyze the data under
the null hypothesis of strict linear order preferences. Regenwetter
and Davis-Stober (2010) proceeded to a different empirical para-
digm, where they dropped the modeling assumption that prefer-
ences are linear orders.

In addition to the problems we have already discussed sepa-
rately for the 2AFC task and for weak stochastic transitivity,
problems arise from the combination of both, including further
artifacts: Some pairs of stimuli in Tversky’s (1969) study made
indifference or high degrees of preference uncertainty plausible.
This may have led respondents to make some pairwise choices
with probability equal to or near one half. However, Tsetlin,
Regenwetter, and Grofman (2003) showed in a social choice
context that the latter behavior is particularly vulnerable to artifi-
cial majority cycles. When the choice probabilities are near one
half, statistical tests of weak stochastic transitivity may have
extremely high Type I error rates in small samples. This problem
should not be taken lightly. For example, Kramer and Budescu
(2005) illustrated the empirical prevalence of indifference in lab-
oratory experiments.

We now proceed to review the model class that we believe
offers the most natural solution to the first part of Luce’s chal-
lenge.

Solving Luce’s First Challenge: Mixture Models of
Transitive Preference

Heyer and Niederée (1989, 1992), Regenwetter (1996), Regen-
wetter and Marley (2001), and Niederée and Heyer (1997) devel-
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oped general tools to derive probabilistic generalizations from
deterministic axiom systems. Ho, Regenwetter, Niederée, and
Heyer (2005) demonstrated a successful application to the axiom
of consequence monotonicity. This approach is not redundant with
the approaches we have discussed earlier. Indeed, Loomes and
Sugden (1995) concluded their study by pointing out that “future
theoretical and empirical work should not regard stochastic spec-
ification as an ‘optional add-on,” but rather as integral part of every
theory which seeks to make predictions about decision making
under risk and uncertainty” (p. 648). They and others showed that
the same core theory can lead to opposite empirical predictions
under competing stochastic specifications (e.g., Carbone & Hey,
2000; Hey, 1995, 2005; Hey & Orme, 1994; Loomes, 2005;
Loomes & Sugden, 1995).

A mixture model of transitivity states that an axiom-consistent
person’s response at any time point originates from a transitive
preference but that responses at different times need not be gen-
erated by the same transitive preference state. In particular, all
responses could be generated by a single transitive cognitive
process (e.g., “rank order venues by distance to current location”),
and yet the overt responses at different times could differ from
each other.

Formally, we assume that a person’s responses come from a
probability distribution over different possible transitive states. In
the terminology of Loomes and Sugden (1995), this is a random
preference model in that it takes a core theory (here, the axiom of
transitivity) and considers all possible ways that the core theory
can be satisfied. We use the term mixture model rather than the
term random preference model to highlight the fact that the prob-
ability distribution underlying the observed patterns does not need
to be uniform.

In the case of binary choices, again writing P, for the proba-
bility that a person chooses x over y and writing 7 for the collec-
tion of all transitive binary preference relations on C, the mixture
model states that

Py= X P.. (3)

>e T

x>y
where P . is the probability that a person is in the transitive state
of preference > in 7. In words, the binary choice probability that
x is chosen over y is the total (i.e., marginal) probability of all
preference states in which x is preferred to y. Note that this model
does not assume a 2AFC task, that is, P,, + P,, need not be 1.
Note also that 7 includes, for example, transitive, but incomplete,
partial orders.

One way to formulate this as a psychological theory is to say
that the space of preference states is 7 because any transitive
preference is an allowable mental state. Each observation is col-
lected at a randomly sampled preference state (from a possibly
unknown distribution), either because the participant is randomly
sampled or because the responses are separated by enough decoys
to make the observations of a given respondent statistically inde-
pendent of each other. Equation 3 implies that intransitive relations
have probability zero.

Note that the probability distribution over 7 is not, in any way,
constrained. This model does not imply weak stochastic transitiv-
ity of Formula 2, but it implies other constraints on binary choice
probabilities, such as, for instance, the triangle inequalities (Mar-

schak, 1960; Morrison, 1963; Niederée & Heyer, 1997), that is, for
any distinct x, y, z, in C:

P{VJ'_RVZ_PXZSI' (4)

The model stated in Equation 3 is closely related to the more
restrictive classical binary choice problem (e.g., Marschak, 1960;
Niederée & Heyer, 1997). In that problem, each decision maker is
required to have strict linear order preferences (not just transitive
relations), and 7 of Equation 3 is replaced by the collection of all
strict linear orders over C, which we denote by I1:

Py= X P. (5)
>ell
x>y
In words, the binary choice probability that x is chosen over y is the
total (i.e., marginal) probability of all strict linear order preference
relations in which x is preferred to y. This assumes a 2AFC task,
that is, P, + P, = 1.

The study of the binary choice problem is intimately linked to
the study of the (strict) linear ordering polytope (Bolotashvili,
Kovalev, & Girlich, 1999; Cohen & Falmagne, 1990; Fiorini,
2001; Fishburn, 1992; Fishburn & Falmagne, 1989; Gilboa, 1990;
Grotschel, Jiinger, & Reinelt, 1985; Koppen, 1995; Suck, 1992),
based on the fact that the permissible probabilities P, that satisfy
Equation 5 form a convex polytope. It is well known that, for m =
5 (but not for larger m) and 2AFC, the triangle inequalities (For-
mula 4) are necessary and sufficient for the model representation
(Equation 5). In other words, the triangle inequalities fully char-
acterize the linear order model for up to five choice alternatives
(see Regenwetter et al., 2010, for a thorough discussion).

Recall that Tversky (1969), as well as the intransitivity literature
at large, used a 2AFC paradigm where respondents must choose
either of two offered choice alternatives and that this forced the
data to artificially satisfy the completeness and asymmetry axioms
in each observed paired comparison. We pursue the case where the
underlying model of preferences likewise assumes completeness
and asymmetry. In the Discussion, we explain alternative routes
(see also Regenwetter & Davis-Stober, 2008, 2010) that rely on
different empirical paradigms and allow the participant to express
indifference among choice alternatives.

To accommodate the use of a 2AFC paradigm, the canonical
way to test whether data satisfy a mixture over transitive relations
is to test the much more restrictive hypothesis that they lie in the
(strict) linear ordering polytope, that is, test whether Equation 5
holds. Incidentally, the linear ordering polytope not only charac-
terizes a model we consider theoretically superior but is also
geometrically more restrictive (i.e., has a smaller volume) than the
collection of polytopes defined by weak stochastic transitivity
(Regenwetter et al., 2010). Thus, it is not only a more natural but
also a more stringent test of transitivity. It is important to keep in
mind, however, that violations of the linear ordering polytope, if
found, are not necessarily due to violations of transitivity because
strict linear orders are stronger than transitive relations. Most
studies we have reviewed use five (or fewer) gambles, and thus,
the triangle inequalities completely characterize the polytope in
these cases.

We now turn our attention to Luce’s second challenge, the use
of appropriate statistical methods when testing models of transi-
tivity.
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Statistical Methods for Testing Models of the Axiom
of Transitive Preference

Much of the literature on intransitive preferences does not even
employ any statistical significance or quantitative goodness-of-fit
tests at all but operates on a purely descriptive level (e.g., recently
and prominently, Brandstitter et al., 2006). Those studies that have
employed statistical testing often suffer from one or more of the
problems we now review.

A common approach in the literature is to concentrate on only
one cycle and to attempt to show that the data satisfy that cycle,
often by pinning it against one single transitive preference relation,
hence ignoring the quantifier in the axiom. For example, if there
are five choice alternatives, there are 10 ways of choosing three
objects, and each such triple can generate two cycles, hence
yielding altogether 20 cyclical triples. Some researchers, rather
than considering all possible cycles, only concentrated on one
(e.g., Bateson, 2002; McNamara & Diwadkar, 1997; Schuck-Paim
& Kacelnik, 2002; Shafir, 1994; Waite, 2001).

Intimately related to the problem of ignoring the quantifier is the
problem of carrying out multiple binomial tests (e.g., McNamara
& Diwadkar, 1997; Schuck-Paim & Kacelnik, 2002; Shafir, 1994,
Waite, 2001). While the problem of ignoring the quantifier is a
failure to consider all triples of alternatives jointly, the problem of
multiple binomial tests is a failure to consider all pairs of alterna-
tives jointly. For example, testing whether x is chosen over y with
probability greater than one half and whether y is chosen over z
with probability greater than one half through two separate bino-
mial tests inflates Type I error. This problem is exacerbated when
dealing with many pairs of alternatives. A Bonferroni correction
(Hays, 1988) of the Type I error, in turn, causes the statistical
power to deteriorate rapidly with increasing numbers of choice
alternatives. The solution to this problem is to run a simultaneous
test of all constraints. Such tests have recently become available.

The greatest threat to correct statistical testing in this context
comes from boundary problems and the need for constrained
inference. Many probabilistic generalizations of axioms lead to
probabilistic models with inequality constraints on the parameters,
similar to weak stochastic transitivity. This leads us to consider
constrained inference, a domain of statistics where tremendous
progress has been made in recent years. When the data themselves
satisfy all of the inequality constraints, then there is not even a
need for a statistical test because the model fits the data perfectly.
When the data do not satisfy all constraints, however, one faces a
so-called boundary problem. Here, the parameter point estimates
will lie on the boundary of the parameter space, for example, on a
face of a cube. Unfortunately, this means that certain requirements
for standard likelihood theory are violated. As a consequence, for
such models, the log-likelihood ratio statistic generally does not
follow an asymptotic chi-square distribution.

Iverson and Falmagne (1985) demonstrated this problem for
testing weak stochastic transitivity. In their reanalysis of Tversky
(1969), only one of Tversky’s violations of weak stochastic tran-
sitivity turned out to be statistically significant when analyzed with
the correct asymptotic distribution. This fact does not appear to be
well known: Compared to over 600 citations of Tversky in the past
20 years, we found Iverson and Falmagne cited fewer than 25
times. Of these, fewer than 10 (Birnbaum, 2004; Birnbaum &
Gutierrez, 2007; Bouyssou & Pirlot, 2002; Gonzalez-Vallejo,

2002; Iverson, 2006; Karabatsos, 2006; Luce, 2005; Myung, Kara-
batsos, & Iverson, 2005; Tsai & Bockenholt, 2006) actually went
as far as acknowledging explicitly that Iverson and Falmagne had
falsified Tversky’s analysis. While we have had to make many
judgment calls on what precisely a given study claims, we have
conservatively counted 110 post-1985 studies reporting that Tver-
sky demonstrated violations of transitivity or of rational choice
models generally (including such prominent works as Colman,
2003; Erev, 1998; Fishburn, 1986; Johnson-Laird & Shafir, 1993;
Kivetz & Simonson, 2000; Luce, 1990; Mellers et al., 1992) The
problem of incorrect statistical tests for weak stochastic transitivity
is, of course, further compounded by the erroneous conclusion that
a violation of weak stochastic transitivity demonstrates intransitive
preferences.

Myung et al. (2005) developed a general Bayesian approach that
is, in principle, directly applicable to these models, as long as all
inequality constraints are explicitly known. Myung et al. revisited
Tversky’s (1969) study in a Bayesian model selection framework
and concluded that, within a certain collection of candidate mod-
els, Tversky’s conclusions outperformed the other models under
consideration, thus reversing the substantive conclusions of Iver-
son and Falmagne (1985) from a Bayesian model selection per-
spective. We have several reservations with their conclusions.
First, their list of candidate models did not include the class of
mixture models that we endorse here. Second and more important,
while a good fit of weak stochastic transitivity is evidence in favor
of transitive aggregate preference and a good fit of the linear order
model is evidence in favor of transitive individual preferences, the
two models are not operating at the same level and thus do not
actually stand in competition. This is compounded by the fact that
violations of either of the two models would provide evidence only
against linear order preferences (at either the aggregate or individ-
ual level), but not against transitivity per se.

An important implication of Iverson and Falmagne (1985) is the
following: Consider the number of triples a, b, ¢, such that, in a
data set, a was chosen over b a majority of the time, b was chosen
over ¢ a majority of the time, and ¢ was chosen over a a majority
of the time. For m > 3, the number of such triples is not mono-
tonically related to the goodness of fit of weak stochastic transi-
tivity. Similar problems arise in other pattern counting approaches.

Solving Luce’s Second Challenge: Statistical Test of
the Linear Ordering Polytope

Recall that, for five alternatives, 20 distinct triangle inequalities
completely characterize the linear ordering polytope, that is, the
mixture model over linear orders. Recall also that one faces a
constrained inference problem, where the log-likelihood ratio test
statistic will fail to have an asymptotic chi-square distribution
when the observed choice proportions lie outside the polytope.
Instead, one needs to use a X (chi-bar-square) whose weights
depend on the geometric structure of the polytope near the
maximum-likelihood point estimate. Davis-Stober (2009) devel-
oped a method for finding that ¥? distribution. We have used his
method and refer the reader to Regenwetter et al. (2010) and to
Davis-Stober (2009) for technical details.

In our data analysis, we assume that the observed choices form
an independent and identically distributed (iid) random sample
from an unknown distribution. This assumption raises the caveat



TRANSITIVITY OF PREFERENCES 49

that the experimenter must take precautions to design the experi-
ment in a way that justifies the iid assumption.

A Reanalysis of Across-Participants Data

We applied the above methods in our reanalysis of across-
participants data that were originally either published (Birnbaum,
Patton, & Lott, 1999; Bockenholt, 1992a; Bradbury & Moscato,
1982; Bradbury & Nelson, 1974; Chen & Corter, 2006; Humphrey,
2001; Kirkpatrick, Rand, & Ryan, 2006; Kivetz & Simonson,
2000; Loomes, Starmer, & Sugden, 1989, 1991; Loomes & Taylor,
1992; May, 1954; Roelofsma & Read, 2000; Sopher & Gigliotti,
1993; Starmer, 1999; Starmer & Sugden, 1998) or made available
to us (Birnbaum & Gutierrez, 2007; Lee et al., 2009).

Note that some of these studies had broader agendas than testing
transitivity of preferences.

The online supplemental materials provide a table with the
results for 107 across-participant data sets. A total of 12 studies
yielded choice proportions lying outside the linear ordering poly-
tope. Of these, only four were statistically significant violations at
o = .05 using the appropriate X* distributions. The small propor-
tion of violations is well within Type I error range.

In all of these 107 studies, it seems reasonable to treat the
respondents as an iid sample from the population. However, some
of these studies did not separate a given decision maker’s paired
comparisons by decoys, and some even allowed decision makers to
revisit their prior choices and change them. With those studies, it
may not be legitimate to treat all pairwise choices as resulting from
iid sampling because individual decision makers may not have
judged different pairs statistically independently of each other.
This is why we do not dwell on these results. Rather, we move on
to within-participant studies, such as Tversky’s (1969) study, as
well as later replication studies, including our own.

A Reanalysis of Tversky’s and Others’
Within-Participants Data

Table 1 shows our reanalysis of Tversky’s (1969) Experiment 1.
Out of 18 volunteers, eight students actually participated in the
study, which used five different monetary gambles. Each partici-
pant provided 20 separate paired comparisons among all 10 pos-

Table 1

sible gamble pairs. Tversky used decoys to avoid memory effects
and thus attempted to ensure independent choices. Consider Re-
spondent 1 from Table 1. This participant’s choice proportions lie
outside the linear ordering polytope and violate six different tri-
angle inequalities. The log-likelihood ratio test statistic G* takes a
value of 1.52. Using the methods developed by Davis-Stober
(2009), we found that the local geometry at the point estimate
yields the following asymptotic ¥ distribution:

X2 =.08 + .41x3 + 442 + .07x2 + .01x%

The test yields a p value of .34. In other words, the data may
have landed outside the linear ordering polytope by sampling
variability alone even if their underlying probabilities belonged
to the polytope. As the table shows, six respondents generated
choice proportions that violated the linear ordering polytope.
Only one participant, Respondent 3, did so in a statistically
significant fashion. Given that, in an initial screening task on a
master set of 18 volunteers, the eight participants were cherry-
picked for their alleged proneness to intransitivity, this raises
the question whether the one violation may be within the scope
of a Type I error. Note that we later demonstrate that our test
has high statistical power.

If one assumes that the 10 persons who were screened out
would not have generated significant violations, then Tversky’s
(1969) Experiment 1 data do not provide statistically compel-
ling evidence for violations of the linear ordering polytope. Up
to sampling variability, they are essentially consistent with the
hypothesis that each respondent had a linear order preference
state at each time point that he or she answered an item, with the
preference relations being allowed to vary between responses.
Tversky’s data may be explainable by variability in choices
without intransitivity in preferences. Recall also that linear
orders are stronger than transitive relations. (For five objects, as
here, there are more than 1,000 times as many transitive rela-
tions as linear orders.) The statistical evidence against transi-
tivity is weak in this experiment, even though the study was
custom designed to elicit violations.

Table 1 illustrates the danger of pattern counting. Respondent 1
violated six of the 20 triangle inequalities, and the test has a p
value of .34. Yet Respondent 5 violated only a single triangle

Reanalysis of the First Experiment in Tversky (1969) for the Eight Participants Who Participated in the Experiment (Out of 18 Who

Entered the Prescreening)

Respondent Number of triangle inequalities violated Asymptotic distribution of G* G? p value
1 6 08 + 41x7 + 44x3 + .07x3 + .01x3 1.52 34
2 2 25+ .75x; 0.08 .59
3 7 05 + .16x7 + .39x3 + .34x3 + .07x3 + .01x2 10.36 01
4 2 29 + .66x7 + .05x3 0.91 25
5 1 54 .5 0.71 20
6 5 05 + .14x7 + .29x3 + .33x3 + .15x5 + .04x2 + .01x¢ 7.54 .05
7 0 0
8 0 0
9-18

Note. For each respondent, we report how many triangle inequalities are violated by the choice proportions, the appropriate asymptotic x*-distribution,

the log-likelihood ratio G* at the maximum-likelihood estimate, and the p value. Significant violations are marked in bold. Weights of the chi-bar
distributions are rounded to two significant digits.
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inequality but has a p value of .20. Even though Respondent 1
violated 6 times as many constraints, all these empirical violations
amass less statistical significance than does the single violation of
Respondent 5. This shows that the number of pattern violations
(here, violated triangle inequalities) is not monotonically related to
the p value of the full-fledged likelihood ratio test.

This nonmonotonicity may seem counterintuitive at first, but the
following simple thought experiment may help to see why pattern
counting can be so misleading. Suppose that a person flips 10
different coins, each 20 times. Even if none of them gives exactly
10 heads, as long as each of them yields pretty close to 10 heads,
there is no reason to reject the null hypothesis that all 10 coins are
fair. So, the fact that 10 out of 10 coins generated choice propor-
tions different from one half does not imply that any coins are
biased. On the other hand, suppose that even just one of these coins
always came up heads in those 20 trials. This would be strong
evidence against the claim that all 10 coins are fair, regardless of
what the remaining 19 coins yielded. So, counting the number of
coins that violated the requirement of coming up heads in 10 of 20
trials would be deceptive. To return to our analysis, Respondent 1
violated six out of 20 triangle inequalities, but these six violations
are so minor that they (even jointly) do not provide significant
evidence against the model.

We have not reanalyzed Tversky’s (1969) Experiment 2 because
it collected only three observations per gamble pair for each
participant. This is not enough to use the asymptotic results of
Davis-Stober (2009). In the online supplemental materials, we
provide reanalyses of data from Montgomery (1977), Ranyard
(1977), Tsai and Bockenholt (2006), and Waite (2001).The first
two of these data sets used cherry-picked participants, and their
sample sizes were so small that an asymptotic distribution may not
be warranted. Tsai and Bockenholt used an extremely large sample
size for each respondent, and Waite used a large sample size.
These two studies yielded somewhat opposite conclusions, with
the latter generating four significant violations in 12 birds, but the
former generating none in five humans.

Experiment

Much of the data in the literature on testing transitivity comes
with a variety of caveats: (a) The 107 across-participant data sets
in the online supplemental materials provided only pooled data
across participants; (b) Tversky (1969), Montgomery (1977), and
Ranyard (1977) reported cherry-picked data only, and the latter
two used extremely small sample sizes; and (c) just two prior
studies provided individual respondent data, worked with a large
sample size, and avoided cherry-picking of respondents, namely,
Waite (2001) and Tsai and Bockenholt (2006).

We decided to run a study within the 2AFC paradigm, with
individual respondent data, with large sample size, with stimuli
that had a historic track record of allegedly generating intransitive
behavior, and with no cherry-picking of subjects. We replicated
Tversky’s (1969) seminal study (without prescreening partici-
pants) by recruiting 18 human participants, using contemporary
equivalents of Tversky’s five gambles, and collecting a sample
size of 20 repetitions per gamble pair per person. With this
replication of Tversky’s original study forming the core, we added
two new sets of gambles, one with equal expected values and one

with nonmonetary outcomes. In all three cases, the more attractive
prizes came with smaller probabilities of winning.

The equal expected value gambles were meant to be even more
conducive to intransitive behavior given that they involve even
more difficult trade-offs. The nonmonetary gambles were designed
to expand beyond the usual world of small-stakes monetary gam-
bles, make numerical utility calculations difficult, and render the
experiment more interesting to the respondents.

Method

Participants

Participants were 18 undergraduates (11 females, seven males)
at the University of Illinois at Urbana—Champaign who responded
to a campus advertisement for a paid experiment. Participants were
not prescreened in any way. All participants gave informed con-
sent before participating.

Procedures

As in Tversky’s (1969) original experiment, participants made
repeated choices over gambles presented as probability wheels
with verbal descriptions of the outcomes, with the following mod-
ifications. Gambles were presented via computer interface rather
than paper and pencil. Payoffs from Tversky’s original gambles
(Cash I) were converted to present-day dollar equivalents. In
addition to these gambles, we used two new sets of gambles: A
second set of monetary gambles (Cash II) with expected values
equal to $8.80, and a set of nonmonetary gambles whose outcomes
were gift certificates redeemable for a specific good, for example,
40 movie rentals. All five nonmonetary prizes had equal dollar
values, a fact that we did not disclose to the participants. To
establish the preference ordering among the gift certificates, each
participant ranked them from most to least preferred before receiv-
ing instructions for the choice task, so that there was no strategic
incentive to misstate one’s preferences. The probabilities and pay-
offs for all gambles are summarized in Table 2, while Figures 2 and
3 depict examples of the computer display for choosing gambles.

Prior to beginning, participants were informed that they would be
paid a base fee of $10.00 and that one of their choices would be
randomly selected to be played for real at the experiment’s conclu-
sion. For the first 18 rounds of choice, participants were given gam-
bles with randomly selected probabilities and outcomes drawn from
one of the three choice sets. These rounds were used as training and
were not considered in the final data analysis. During training, if a
participant chose a stochastically dominated option, the software
prompted him or her to notify the experimenter. In this way,
participants could be monitored for any initial confusion about the
task. The experimenter simply explained the task again without
providing the reason for the prompt.

After training, participants chose between gamble pairs drawn
sequentially from the Cash I set, Cash II set, noncash set, and a
distractor after each such sequence of three trials. The order of this
sequence was kept constant so that gambles from a given set were
maximally separated from each other. The distractor gambles were
included to reduce memory effects. The distractor gambles con-
sisted of a win probability drawn from a uniform distribution and
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Table 2
Cash and Noncash Gambles Used in Our Experiment
Cash T
Gamble a b c d e
Probability of winning 7124 8/24 9/24 10/24 11/24
Payoff $28.00 $26.60 $25.20 $23.80 $22.40
Cash II
Gamble a b c d e
Probability of winning 0.28 0.32 0.36 0.40 0.44
Payoff $31.43 $27.5 $24.44 $22.00 $20.00
Noncash
Gamble a b c d e
Probability of winning 9/50 10/50 11/50 12/50 13/50
Noncash
Gamble f h i

Prizes About 15 sandwiches

g
About 40 movie rentals

J
About 40 coffees About 7 paperback books About 4 music CDs

Note. Cash I is a computer-based replication of the stimuli used by Tversky (1969) in his Experiment 1, but using 2007 U.S. dollar equivalents.

an outcome from one of the three gamble sets in Table 2 with equal
probability.

Participants continued until they had made 20 choices over each
gamble pair in each set, thus making 818 choices. The pair pre-
sented in a given round was chosen randomly subject to the
constraint that it had not been used in any of the last five trials
from that gamble set and that neither one of the gambles had
appeared in the previous trial from that set. The side of the screen
on which a gamble appeared was also randomized.

The distractor items should have enhanced decision makers’ atten-
tion but also counteracted memory effects, thus making the assump-
tion of independence more realistic than a booklet format. First,
several rounds of choice would have to have elapsed between any
repetition of a gamble pairing. Second, because of the distractor sets,
it appeared as if each gamble set was comprised of a large number of
possible gambles, instead of only five. Finally, the distractor items
were so diverse that they encouraged cognitive effort in every
round. For example, in some distractor trials, one gamble had a
substantially higher expected value, thus greatly discouraging re-
spondents from choosing gambles by coin flip. On some distractor
trials, one gamble stochastically dominated the other, thus giving

v

Choose Choose
this game this game

Figure 2. Example display of a Cash I paired-comparison stimulus.

incentives for vigilance. The rich set of distractor items also helped
combat monotony in the decision task.

After making all choices, participants played their chosen gam-
ble from a randomly selected trial by drawing a marble from an urn
that replaced the probability wheel.

Results

Table 3 summarizes our findings for the 18 participants. Each
decision maker had to carry out all 10 paired comparisons 20 times
in each of the conditions marked Cash I, Cash II, and noncash. In
Cash I, four out of 18 respondents generated choice proportions
outside the linear ordering polytope, but only one of them (Re-
spondent 16) violated the polytope significantly (o« = .05). In Cash
II, which made the trade-off between outcomes and probability of
winning even more difficult (all gambles had the same expected
value), eight out of 18 participants generated choice proportions
outside the polytope. However, again, only Respondent 16 violated
the linear ordering polytope in a statistically significant fashion. In
the noncash condition, we found no statistically significant viola-
tions at all. All in all, we found fewer participants and conditions

about 7 paperback books about 40 coffees

AV,

Choose Choose
1his game this game

Figure 3. Example display of a noncash paired-comparison stimulus.
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Table 3
Our Cross-Validation Study, With 18 Participants, and No Prescreening
Cash I Cash II Noncash
Degree of Degree of Degree of
Respondent G? p value intransitivity G? p value intransitivity G? p value intransitivity
1 0 30 2.01 .29 51 0 8
2 0 15 0 3 2.87 .09 7
3 0 0 0 3 1.42 31 2
4 3.77 .09 47 .10 1 23 0 0
5 0 4 0 11 0 4
6 .36 48 23 .08 .39 34 0 0
7 0 13 0 26 3.64 .08 4
8 0 0 0 2 0 13
9 0 39 0 21 0 24
10 0 6 37 .55 10 0 2
11 0 1 1.42 23 4 0 0
12 0 42 .000 .55 32 0 1
13 0 33 0 49 0 12
14 0 0 0 0 2.9 .18 2
15 0 27 0 27 0 0
16 16.47 <.01 29 9.51 <.01 46 1.43 29 3
17 1.5 17 48 0 17 0 9
18 0 37 33 48 55 .38 52 6

Note. Each participant participated in all three scenarios, Cash I, Cash II, and Noncash. Significant violations of the linear ordering polytope are marked

in bold (Respondent 16 in Cash I and Cash II).

with significant violations in our data than one would expect by
Type I error.

We have seen in Table 1 that the number of violated triangle
inequalities is not monotonically related to the p value of a quan-

titative test for the linear order mixture model. Similarly, Table 3
and Figure 4 document the nonmonotonic relationship between the
most common form of pattern counting and the p value. For each
respondent, we computed a version of what some authors call the
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Figure 4. Pattern counting versus p value of quantitative test. The horizontal axis gives the p value of the
quantitative fit for our 18 respondents across three gambles sets, with the two significant violations given
on the far left as large circles and all perfect fits given on the far right. The vertical axis provides the number
of cyclical triples in a pattern counting analysis, that is, what some authors call the degree of intransitivity.
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degree of intransitivity as follows: First, we took the respondent’s
first binary choice for each gamble pair and combined these first
choices into a first binary relation. Then, we took the respondent’s
second choice for each gamble pair and created a second binary
relation. We proceeded the same way to construct 20 binary
relations from each respondent. We then counted all intransitive
triples across all 20 binary relations, separately for each respondent
and each gamble set. As Table 3 and Figure 4 show, the two
significant violations of the linear ordering polytope corresponded
to degrees of intransitivity of 29 and 46, respectively. Twelve data
sets that did not significantly violate the linear ordering polytope
(including six perfect fits) generated a degree of intransitivity
exceeding 29. The 52 data sets that did not significantly violate the
polytope have degree of intransitivity pattern counting values that
vary wildly between 0 and 55. This is particularly true for the 23
perfect fits of the linear ordering polytope, whose degree of in-
transitivity indices appear to be nearly uniformly distributed.
Hence, the degree of intransitivity is undiagnostic of the fact that
these data are compatible with a model that requires (transitive)
linear order preferences with probability one.

Finally, we consider our statistical power to reject the mixture
model when alternative models hold. The linear ordering polytope
is a null hypothesis with nonzero volume in a high-dimensional
space. There are infinitely many alternative hypotheses that can lie
in infinitely many different directions in space. To tackle power in
a general fashion, we wanted to avoid isolating any single specific
alternative model. Instead, following an approach similar to that of
Follman (1996), we considered 1,000 different alternative hypoth-
eses. We selected these 1,000 points outside of the linear ordering
polytope through uniform sampling from the outcome space. Each
of these points forms a viable alternative hypothesis against which
we can pin the mixture model. Using a simulation with a sample
size of 20 repetitions per gamble pair to mimic Tversky’s (1969)
and our studies, we fit a data set drawn from each alternative
hypothesis and correctly rejected the linear ordering polytope in
76.6% of those cases. Hence, we have high estimated average
power. Interestingly, of those 1,000 data sets that we simulated by
drawing from 1,000 alternative hypotheses, no single data set
accidentally landed inside the linear ordering polytope. Recall
from Table 3 that 23 out of 54 data sets lay inside the linear
ordering polytope. This suggests to us that our findings are no
statistical accident.

Conclusion and Discussion

Transitivity of preferences is a quintessential ingredient of
nearly all normative, prescriptive, and descriptive theories of de-
cision making. Almost any theory that uses utility functions im-
plies or assumes transitivity. Yet the literature is peppered with
reports of intransitive choice behavior. Some contemporary theory
development in behavioral decision research, such as the develop-
ment of noncompensatory decision models, is aimed at accommo-
dating intransitive behavior (e.g., Brandstitter et al., 2006). We
have provided a series of arguments challenging the common
wisdom on intransitive preferences. In our view, there is little
evidence of intransitivity.

Problems in the Existing Literature

As Luce (1995, 1997) discussed succinctly, several areas of
psychology and of the decision sciences suffer from a concep-
tual and statistical disconnect between theory and data. Simi-
larly, several scholars have extensively written about the need
to integrate probabilistic components into deterministic deci-
sion theories and have cautioned about the conceptual chal-
lenges that arise in choosing a suitable stochastic specification
(Carbone & Hey, 2000; Hey, 1995, 2005; Hey & Orme, 1994;
Loomes, 2005; Loomes, Moffatt, & Sugden, 2002; Loomes &
Sugden, 1995, 1998). Others (e.g., Iverson & Falmagne, 1985)
have warned of nontrivial statistical pitfalls in psychological
measurement. Nonetheless, these important warnings have gen-
erated limited impact, and few studies have even tackled Luce’s
challenge.

The algebraic axiom of transitivity (of preferences) is a proto-
typical and high-profile example of this problem. The conceptual
problems associated with testing transitivity have received almost
no attention (for the most notable exception, see Loomes & Sug-
den, 1995). A substantial portion of the literature on intransitive
preferences completely fails to provide a probabilistic formulation
of the algebraic axiom, and the vast majority of studies either
ignore considerations of statistical inference or apply questionable
statistical techniques.

In this article, we have discussed the most serious problems,
namely, those associated with pattern counting, weak stochastic
transitivity, the 2AFC paradigm, order-constrained inference, and
cherry-picking. We have also provided what we consider the most
careful empirical analysis of the existing evidence for intransitive
preferences. We are aware of an additional handful of important,
but somewhat less prominent, conceptual, mathematical, and sta-
tistical errors in the literature, which we have sketched only in
passing. A technical companion article (Regenwetter et al., 2010)
provided a complete in-depth analysis of the one dozen or so
problems we have identified with the existing literature on intran-
sitive preferences.

Mixture Models of Transitive Preference

Mixture models provide an elegant solution to Luce’s first
challenge. The basic idea is to take a core theory (e.g., transitivity,
or the concept of a linear order) and require that theory to hold at
each sample point in the probability space under consideration.
This means that, in contrast to many other approaches, the mixture
model requires the core theory to hold with probability one. We
can identify our probability space here directly with the set of all
strict linear orders on C endowed with some probability measure.
The philosophy behind mixture models is furthermore to model
variability substantively rather than treating it as a nuisance. Con-
trary to many approaches, the mixture model treats choice proba-
bilities as absolute scale quantities. In the present article, we have
focused on linear orders because this is the canonical model to
handle the omnipresent 2AFC paradigm, in which decision makers
are not allowed to express indifference among choice alternatives.
Our model is equivalent to the linear ordering polytope.

Regarding Luce’s second challenge, the order-constrained in-
ference framework of Davis-Stober (2009) and Myung et al.
(2005) interfaces with the mixture model naturally, as soon as a
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complete description of the relevant polytope is known. We have
applied Davis-Stober’s approach to the characterization of the
linear ordering polytope via the triangle inequalities. While linear
orders are substantially more restrictive than some of the other
families of transitive binary relations one might consider, we have
demonstrated that the linear order model can account for nearly all
data sets available to us, most notably, three sources (Tsai &
Bockenholt, 2006; Tversky, 1969; and our own data) of human
data that collected large numbers of repetitions from individual
participants. However, we believe that a more direct test of tran-
sitive preferences requires moving to different empirical para-
digms.

Future research on intransitive preferences should take into
account the considerable conceptual, mathematical, and statistical
complexities and caveats that we have discussed. For example,
2AFC tasks should be avoided. Barring the problem of appropriate
incentivization, researchers may consider ternary paired-
comparison data, by which we mean decisions between pairs of
choice alternatives with the option of expressing indifference
between the two alternatives. This paradigm opens up the study of
many convex polytopes (Regenwetter & Davis-Stober, 2008,
2010). For instance, Regenwetter and Davis-Stober (2010) inves-
tigated the weak order polytope for five choice alternatives. They
found that this model also accommodates ternary paired-
comparison choices.

Similar methods can be brought to bear on alternative mixture
models, including mixtures of intransitive preferences. While our
results here and the results of Regenwetter and Davis-Stober
(2010) strongly suggest that preferences are transitive linear or
weak orders, we cannot rule out that a mixture model of intransi-
tive preferences could conceivably be found that also accounts for
the same data. However, given that so many data sets have gen-
erated a perfect fit with our (very) parsimonious model, we have
set an extremely high bar for competing models. Like elsewhere in
science, the most parsimonious model that accounts for the em-
pirical evidence should prevail until a better model is found.

Last but not least, we are not the first research team to consider
stochastic specification in combination with intransitivity of pref-
erences. This combination has previously received careful atten-
tion by Loomes, Starmer, and Sugden, whose extensive and sem-
inal work in this area we have discussed in various places. Our
conclusions and approach differ in the following main ways: (a)
We have made a strong case against stochastic transitivity as a
model of transitive preference in favor of pursuing mixture mod-
els. (b) There are many different possible mixture models for
transitive preference (Regenwetter & Davis-Stober, 2008), and
contrary to a prior cursory assessment by Loomes and Sugden
(1995, p. 646), these mixture models are quite parsimonious.
Moreover, most of them have never been studied empirically and
many have hardly been studied mathematically. (c) We have
emphasized convex geometric representations of mixture models
via convex polytopes. (d) We have highlighted the fact that many
of these stochastic specifications lead to order-constrained infer-
ence, for which appropriate statistical tools have only recently
become available. (e) In other contexts, Loomes, Starmer, and/or
Sugden have shown that mixture models can sometimes be so
restrictive that they are readily rejected on empirical data (see, e.g.,
Loomes, 2005, for a discussion). For instance, this is typically the
case when mixture models imply equality constraints among

choice probabilities. An open question, to deal with this case, is
how to create hybrids of mixture models and error models. We
have not considered these here because they would only further
reduce the already low number of statistically significant viola-
tions.
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Correction to Pleskac and Busemeyer (2010)

In the article “Two-Stage Dynamic Signal Detection: A Theory of Choice, Decision Time, and
Confidence” by Timothy J. Pleskac and Jerome R. Busemeyer (Psychological Review, 117,
864-901), the name of the philosopher Charles Peirce was misspelled throughout as Charles Pierce.




