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The Accuracy of Intuitive Judgment Strategies:
Covariation Assessment and Bayesian Inference
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University of Chicago

Most of people’s apparent strategies for covariation assessment and Bayesian
inference can lead to errors. However, it is unclear how often and to what degree
the strategies are inaccurate in natural contexts. Through Monte Carlo simulation,
the respective normative and intuitive strategies for the two tasks were compared
over many different situations. The results indicate that (a) under some general
conditions, all the intuitive strategies perform much better than chance and many
perform surprisingly well, and (b) some simple environmental variables have large
effects on most of the intuitive strategies’ accuracy, not just in terms of the
number of errors, but also in terms of the kinds of errors (e.g., incorrectly ac-
cepting versus incorrectly rejecting a hypothesis). Furthermore, common to many
of the intuitive strategies is a disregard for the strength of the alternative hypoth-
esis. Thus, a key to better performance in both tasks lies in considering alternative
hypotheses, although this does not necessarily imply using a normative strategy
(i.e., calculating the ¢ coefficient or using Bayes' theorem). Some intuitive strat-
egies take into account the alternative hypothesis and are accurate across envi-
ronments. Because they are presumably simpler than normative strategies and are
already part of people’s repertoire, using these intuitive strategies may be the
most efficient means of ensuring highly accurate judgment in these tasks. © 1994
Academic Press, Inc.

How well do we assess relations between variables, estimate the like-
lihood of events, test hypotheses, or update our beliefs in light of new
evidence? When faced with such judgment tasks, people often appear to
use strategies that are simpler and therefore less accurate than formal
strategies (see, e.g., Dawes, 1988; Einhorn & Hogarth, 1981; Hogarth,
1987, 1990; Kahneman, Slovic, & Tversky, 1982; Kahneman & Tversky,
1979; Nisbett & Ross, 1980; Slovic, Fischhoff, & Lichtenstein, 1977).
However, although it is clear that subjects’ intuitive strategies can lead to
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errors, it is unclear how often and to what degree these strategies lead to
errors in natural contexts.

Through Monte Carlo simulation, the present article investigates the
accuracy of several intuitive strategies for covariation assessment and
Bayesian inference under some general conditions, and characterizes
some conditions under which most of the intuitive strategies perform
particularly well or badly. In addition, a common shortcoming of many of
the intuitive strategies is pointed out, and a general prescription is pro-
vided for how to deal effectively with both tasks.

Examining the accuracy of intuitive judgment strategies is important for
at least four reasons. First, it is not clear which strategies are generally
accurate and which are not. For certain strategies, it is sometimes ar-
gued—and more often just assumed—that they are generally accurate
(e.g., availability; Tversky & Kahneman, 1973, 1974). For other strate-
gies, however, it is claimed (or strongly implied) that only chance-level
performance (or worse) will be attained through their use. Examples in-
clude confirmatory hypothesis testing (Wason, 1960, 1968; Wason &
Johnson-Laird, 1972) and making judgments based on ‘‘pseudodiagnos-
tic’’ information (Doherty, Mynatt, Tweney, & Schiavo, 1979). For still
other strategies, it is largely unclear how one will fare by using them.
Examples here include underweighting or ignoring particular sources of
information in covariation assessment (Jenkins & Ward, 1965; Smeds-
lund, 1963; Ward & Jenkins, 1965; Wasserman, Dorner, & Kao, 1990),
“‘averaging’’ old and new information in belief updating (Anderson, 1981;
Hogarth & Einhorn, 1992; Lopes, 1985, 1987; Shanteau, 1970, 1972,
1975), and ignoring base rates when estimating probabilities (e.g., Bar-
Hillel, 1980; Kahneman & Tversky, 1972, 1973; Tversky & Kahneman,
1971, 1974).

Second, if it is the case that a simple judgment strategy is generally
accurate, this would constitute a functional explanation as to why people
use the strategy. Intuitive strategies are assumed to be the result of cog-
nitive economy (Simon, 1955, 1956, 1981; Tversky & Kahneman, 1974)
and, therefore, imperfectly accurate. What one would expect to find in a
well-adapted system, then, are strategies that are simple and generally
accurate. Indeed, there is evidence in the choice-strategy literature indi-
cating that people’s simple strategies are often accurate (Payne, Bettman,
& Johnson, 1988, 1990; Russo & Dosher, 1983; Thorngate, 1980). As
mentioned, though, there is little evidence regarding the accuracy of in-
tuitive judgment strategies, thereby limiting functional explanation in the
area of probabilistic judgment.

Third, learning about the accuracy of intuitive strategies can help im-
prove judgment. For example, more emphasis should be placed on avoid-
ing a strategy that often leads to large errors than on avoiding one that is
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virtually always correct. Furthermore, it would be useful to identify and
exploit simple strategies whose performance virtually equals that of a
normative counterpart—if such strategies exist. Normative strategies are
often difficult to implement, whereas intuitive strategies are presumably
simpler and already part of people’s repertoire. Thus, prescribing robust
intuitive strategies rather than normative strategies may sometimes be a
more efficient means of improving judgment.

Last, inextricably tied in with the above three points is understanding
the environmental conditions that affect the accuracy of intuitive strate-
gies. Some intuitive strategies may perform well under certain conditions,
but poorly under others. If so, this would highlight the importance of
examining the relation between environment and judgment strategy. Con-
clusions about the accuracy of any intuitive judgment strategy may be
incomplete—even wrong—without understanding the environmental con-
ditions under which the strategy is used.

The article is divided into three sections. The first two sections com-
pare the intuitive and normative strategies for covariation assessment and
Bayesian inference, respectively. For each task, I present simulation re-
sults showing the accuracy of several strategies under some general con-
ditions, as well as how some simple environmental factors have a large
impact on accuracy. In the last section, I discuss the implications of the
results for understanding intuitive judgment strategies and point out op-
portunities for future research. In addition, I note a commonality between
many of the intuitive strategies for both tasks: Subjects often do not take
into account the strength of the alternative hypothesis. Finally, I point out
that a key to better performance in both tasks lies in considering the
alternative, although this does not necessarily imply using a normative
strategy (i.e., calculating the ¢ coefficient or using Bayes’ theorem).
Some intuitive strategies take into account the alternative hypothesis and
are accurate across environments.

COVARIATION ASSESSMENT

As pointed out by other researchers, people’s intuitive ability to assess
the covariation between variables plays an important role in many areas
of research in psychology. Examples include learning (e.g., Hilgard &
Bower, 1975), attribution (Kelley, 1967), judgments of causality (Einhorn
& Hogarth, 1986), decision making (Seggie & Endersby, 1972), clinical
assessment (Chapman & Chapman, 1967, 1969; Smedslund, 1963), im-
plicit personality theories (Bruner & Tagiuri, 1954), stereotyping (Ham-
ilton 1976; Hamilton & Gifford, 1976), scientific reasoning (Mynatt,
Doherty, & Tweney, 1977, 1978), categorization (Smith & Medin, 1981),
and helplessness and control (Seligman, 1975). Indeed, Crocker (1981)



212 CRAIG R. M. MCKENZIE

emphasizes that accurate covariation assessment enables one to explain
the past, control the present, and predict the future.

In most covariation tasks, there are two variables (Event and Outcome)
that are present or absent, thereby creating a 2 X 2 contingency matrix
(see Figure 1). Subjects are typically asked to assess the direction and/or
strength of the relation between the variables, given the four cell values.

Imagine, for example, that you are asked to assess the degree to which
a treatment (Event) and recovery from an illness (Outcome) are related,
given the following information: (a) 5 instances of treatment followed by
recovery, (b) 15 instances of treatment followed by no recovery, (¢) 5
instances of no treatment followed by recovery, and (d) 25 instances of no
treatment followed by no recovery. How would you use this information
to determine the relation between the treatment and recovery? One nor-
mative strategy for assessing the covariation between two dichotomous
variables is to calculate the ¢ coefficient, (AD — BC){(A + B) (C + D)
(A + C) (B + D)]":, where A, B, C, and D represent the respective cell
values. The ¢ coefficient is a special case of Pearson’s product-moment
correlation coefficient, varying from —1 to 1.

Research examining how people assess the covariation between two
dichotomous variables has uncovered several strategies that subjects ap-
pear to use. Relative to normative standards, virtually all intuitive strat-
egies lead to errors (for reviews, see Alloy & Tabachnik, 1984; Crocker,
1981; Nisbett & Ross, 1980). There is little evidence, however, regarding
the degree to which these strategies are inaccurate and under what con-
ditions.

The plan of this section is to describe one normative and seven intuitive
covariation strategies, present results showing how well the intuitive

Qutcome
Present Absent
Present CellA CellB
Event
Absent Cell C CellD
N = A+B+C+D

p(Outcome) = (A+C)y/N

FiG. 1. The four cells of a 2 X 2 contingency matrix.



THE ACCURACY OF INTUITIVE JUDGMENT STRATEGIES 213

strategies perform under some general conditions, and characterize some
environmental conditions that have a large impact on most of the strate-
gies.

Covariation strategies

@. The ¢ coefficient is the normative covariation measure used in this
section (see formula, above). Although there are other normative mea-
sures, such as xZ, that could have been used, & was chosen because it
captures both the size and direction of a relation, whereas x> measures
only the size.

AR. This strategy was proposed as normative by Jenkins and Ward
(1965) and is the only intuitive strategy considered correct by covariation
researchers. It involves examining the difference between the two row
conditional probabilities, that is, [A/{A + B)] — [CAC + D)] (e.g., the
difference between the probability of recovery given treatment and the
probability of recovery given no treatment). There is evidence that some
subjects use this strategy to judge covariation (Arkes & Harkness, 1983;
Shaklee & Mims, 1981, 1982; Shaklee & Tucker, 1980; Ward & Jenkins,
1965; Wasserman et al., 1990)." Although the strategy was proposed as
normative, Allan (1980) shows that under certain circumstances ¢ will
show a change in relation between two matrices while AR will not. Be-
cause there are questions concerning the normative status of AR, it is
labeled solely as intuitive for the purposes of this article.

Sum of diagonals. When using this strategy, (A + D) — (B + (), the
larger the difference between evidence for a positive relation (Cells A and
D) and evidence for a negative relation (Cells B and C), the stronger the
relation between the variables. Although this strategy was put forth as
normative by Inhelder and Piaget (1958), Jenkins and Ward (1965) showed
that when either the row or column marginals are not equal, the measure
may assess the direction of a relation incorrectly. Nonetheless, there is
evidence that some subjects use this strategy (Arkes & Harkness, 1983;
Shaklee & Mims, 1981, 1982; Shaklee & Tucker, 1980; Wasserman et al.,
1990).

Positive testing. This intuitive strategy was proposed by Klayman and
Ha (1987) and involves examining both Row 1 (i.e., the probability of
recovery given treatment), and Column 1 (i.e., the probability of treat-

L All of the intuitive strategies discussed in this article are algebraic. However, no com-
mitment is made to the cognitive processes involved, only that there is evidence that sub-
jects respond “‘as if*’ they are making calculations suggested by the models (see Hoffman,
1960).
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ment given recovery), corresponding to [A/(A + B)] + [A/(A + O).
McKenzie (1993) provides evidence showing subjects’ preference for
both Row 1 and Column 1 in a hypothetical covariation task.

Proportion of hits. Recent evidence indicates that subjects are mostly
concerned with Cells A and B when judging covariation (McKenzie, 1993;
Wasserman et al., 1990). One use of this information is to examine A/(A
+ B), the probability, for example, of recovery given treatment. Evi-
dence that some subjects use this strategy is supplied by Ward and Jen-
kins (1965).

Hits minus false positives. Another use of Row 1 information is to
calculate the difference between Cells A and B (i.e., A — B). Arkes and
Harkness (1983) and Wasserman et al. (1990) have collected data indicat-
ing that some subjects use this strategy.

Positive hits. Several researchers have found that some subjects base
their covariation judgments almost entirely on Cell A, the joint presence
of the variables (Arkes & Harkness, 1983; Jenkins & Ward, 1965; Shaklee
& Mims, 1982; Shaklee & Tucker, 1980; Smedslund, 1963; Ward & Jen-
kins, 1965).

Aggregate model. When averaging across subjects instead of looking at
individual subjects’ strategies, Cell A is used most heavily in covariation
judgments, followed by Cells B, C, and D, in order. These across-subjects
results have been found when subjects’ responses were regressed onto
cell frequencies (Schustack & Sternberg, 1981) and when subjects were
asked directly about which cells are important in their judgments
(Crocker, 1982; McKenzie, 1993; Wasserman et al., 1990). Furthermore,
in a meta-analysis of covariation assessment, Lipe (1990) found that all
four cells had an impact on subjects’ judgments and were used in the right
direction (i.e., Cells A and D were used as evidence for a positive relation
and Cells B and C evidence for a negative relation; see also Schustack &
Sternberg, 1981; Wasserman et al., 1990). For the purposes of the simu-
lation, the differential impact of the cells is represented in a weighted
model as 44 — 3B — 2C + D.

The above eight strategies (one normative and seven intuitive) form the
basis of analysis in this section.

Method

A computer program generated every 2 X 2 matrix based on all combinations of cell
values between 1 and 50. That is, the four cell values were varied independently between 1
and 50, producing 50* (6.25 million) matrices. Each covariation strategy’s output was cal-
culated for each matrix using the above formulas. Two measures of accuracy were used. The
first was each intuitive strategy’s product-moment correlation with ¢. The second was how
often each intuitive strategy correctly assessed the direction of the relation. Because there
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TABLE 1

Correlations between the Covariation Strategies’ Qutputs under the General Conditions
Strategy 2 3 4 5 6 7 8
1. ¢ .99 .95 .82 .70 .67 47 .86
2. AR — .94 .81 71 .67 .47 .86
3. Sum of diagonals — 77 .67 71 .50 91
4. Positive testing — .86 .82 7 91
S. Proportion of hits — 94 .67 .85
6. Hits minus false positives — N .90
7. Positive hits — .73
8. Aggregate model —

is no straightforward way to determine direction for the strategy Positive Hits, it is not
included in the latter analysis.?

Results and Discussion

Performance under the general conditions. Table 1 shows the product-
moment correlation matrix for the eight strategies’ outputs based on the
6.25 million cases. Most important is the first row, which shows that the
correlations between ¢ and the intuitive strategies range from .47 for
Positive Hits to .99 for AR. The two strategies using only Row 1 infor-
mation, Proportion of Hits and Hits Minus False Positives, have corre-
lations with ¢ of .70 and .67, respectively. This is of interest because
using only Row 1 information appears to be the most common intuitive
strategy (McKenzie, 1993; Wasserman et al., 1990). Therefore, these two
strategies might be said to represent the ‘‘modal subject.”” Aggregate
Model (the ‘‘mean subject’’) correlates .86 with ¢. Also of interest are
rows 2 through 7 of Table 1, which show that the correlations between the
seven intuitive strategies range from .47 to .94.

The above results show the correlations between the strategies’
strength-of-relation responses. Another relevant issue is how often the
intuitive strategies accurately assess the direction of a relation. The per-
centage of times each strategy was correct is shown in the middle column
of Table 2. The lowest is 75.0, associated with ‘‘modal subject’’ strategies
that use only two cells. Also important is that the ‘‘mean subject” Ag-

2 Instead of creating a third category, the cases in which the strategies imply no relation
are defined as implying a positive relation. (The consequences of this simplification are
minimal; for example, less than .2% of the matrices result in ¢ equal to zero.) With two
exceptions, the strategies were defined as implying a negative relation if the output was less
than zero and a positive relation otherwise. The boundary points for Positive Testing and
Proportion of Hits were 1 and .5, respectively.
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TABLE 2
Percent Correct of Directional Relation for Various Intuitive Covariation Strategies under
Different Conditions

Strategy All matrices b = .2
AR 100.0 100.0
Sum of diagonals 92.0 99.0
Positive testing 80.4 91.7
Proportion of hits 75.0 84.7
Hits minus false positives 75.0 84.7
Aggregate model 84.2 94.9

Note. The strategy Positive Hits is not shown because there is no straightforward way to
determine direction.

gregate Model is accurate 84.2% of the time. Finally, note that AR, gen-
erally accepted by covariation researchers as normative, is always cor-
rect.’?

Are the directional errors ‘‘big’’ ones? Many of the directional errors
may occur either when ¢ is small and positive and the intuitive strate-
gies imply a small negative relation, or vice versa. Such ““small’’ errors
can be contrasted with ‘*big’’ ones, that is, falsely believing that a strong
relation does or does not exist. One way to investigate this possibility is
to calculate the accuracy of the strategies for only those matrices for
which the absolute value of the ¢ coefficient exceeds some value. This
would indicate how likely it is that a strategy will miss reasonably strong
relations that really exist. To this end, the subset of matrices for which ¢
was either less than or equal to —.2 or greater than or equal to .2 was
examined. Although the value .2 is arbitrary, there is evidence that sub-
jects are largely unable to detect covariations of this magnitude (Jennings,
Amabile, & Ross, 1982), thereby making an error of this size at least
psychologically small. For these 3,472,994 matrices, the number of times
that each intuitive strategy accurately assessed the direction was calcu-
lated. The results are presented in the right column of Table 2 and show
that eliminating the matrices implying a weak relation substantially im-
proved the strategies’ performance.

Environmental conditions that affect performance. The general analy-
sis involved every possible matrix (given the constraint on cell size).
However, this may not correspond to environmental conditions in gen-
eral, nor to a given environment of interest. For example, in the physi-

3 These analyses were also performed using all matrices with cell values between 1 and 10.
The correlations and percentages correct are virtually identical to those reported here using
cell values between 1 and 50. In addition, Spearman rank-order correlations were computed
and are virtually identical to the product-moment correlations.
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cian’s environment of assessing covariations between diseases and symp-
toms, Cell D will usually be larger than the other three cells (i.e., most
people have neither the disease nor the symptom). Thus, it is useful to
characterize some environmental conditions under which the intuitive
strategies perform particularly well or badly.

For four of the strategies, Cells A and B have more impact on judg-
ments than do Cells C and D. That is, subjects often prefer information
about the Outcome when the Event occurs over when it does not occur.
In the case of Proportion of Hits and Hits Minus False Positives, Cells C
and D are completely ignored. For both Positive Testing and Aggregate
Model, Cells A and B also have bigger impact than do Cells C and D;
Positive Testing weights Cell A most and ignores Cell D, and Aggregate
Model weights Cells C and D least. Because of this relative insensitivity
to Cells C and D, errors are most likely to occur when the Qutcome is
very common or uncommon. Using the ‘‘treatment and recovery’” exam-
ple, if the frequency of recovery is high, the likelihood of mistakenly
believing in a positive relation between treatment and recovery increases.
If the frequency of recovery is low, however, the likelihood of mistakenly
believing in a negative relation increases. (For empirical evidence of this,
see Allan and Jenkins, 1980, 1983; Alloy and Abramson, 1979; Jenkins
and Ward, 1965; Wasserman and Shaklee, 1984.)

In order to investigate the effect of p(Outcome) on the performance of
the strategies, three subsets of the 6.25 million matrices were examined:
Those matrices for which p(Qutcome) (i.e., [A + C}/N) was (a) less than
or equal to .1 (34,080 matrices), (b) between .45 and .55, inclusive
(1,663,424 matrices}, and (c) greater than or equal to .9 (34,080 matrices).

The correlations between ¢ and the intuitive strategies when p(Out-
come) is near .50 are shown in the middle column of Table 3. Virtually all
the strategies perform well. The correlations when p(Outcome) is either

TABLE 3
Correlations between ¢ and the Intuitive Covariation Strategies’ Outputs for
Different p(Outcome)

p(Outcome)
Intuitive strategy =.45 and <.55 <.lor=9
AR .99 97
Sum of diagonals 97 74
Positive testing .89 .41
Proportion of hits .94 14
Hits minus false positives .95 22
Positive hits .57 .20

Aggregate model .95 .47
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high or low are shown in the right column. Although AR maintains a high
correlation with ¢ (r = .97), the other strategies’ correlations drop con-
siderably. Note the dramatic decrease for the two strategies that use only
Row 1 information, Proportion of Hits and Hits Minus False Positives.

The results regarding directional relation are shown in Table 4. The
pattern and number of errors change with p(Outcome). As expected, most
of the strategies often falsely imply a negative relation when p(Outcome)
is low, often falsely imply a positive relation when p(Outcome) is high,
and perform well when p(Outcome) is near .50.

In short, the preceding analyses show that (a) under some general con-
ditions, the intuitive covariation strategies are quite redundant with each
other and the normative strategy; (b) although suboptimal, AR performed
virtually perfectly; (c) the strategies perform remarkably well when there
is a reasonably strong relation to be detected; and (d) as p(Outcome)
moves away from .5, the accuracy of most of the strategies decreases. In
particular, as p(Outcome) decreases, the likelihood of falsely implying a
negative relation increases, and as p(Outcome) increases, the likelihood
of falsely implying a positive relation increases. Some basic knowledge
regarding the environmental conditions under which a particular intuitive

TABLE 4
Percentage of Times Various Covariation Strategies Incorrectly Imply a Positive or
Negative Relation for Different p(OQutcome)

p(Outcome) Positive relation error Negative relation error

Sum of diagonals

=<.1 13.1 12.4

=.45 and <.55 1.3 i

=9 13.1 12.4
Positive testing

=<.1 0 44.8

=45 and =.55 9.3 6.4

=.9 44.8 .0
Proportion of hits

<.1 .0 49.5

=.45 and <.55 4.3 3.0

=9 49.3 .0
Aggregate model

<] 2 40.3

= .45 and <.55 44 4.1

=9 344 1.8

Note. AR is not shown because it is always correct, Positive Hits is not shown because
there is no straightforward way to determine direction of relation, and Hits Minus False
Positives is not shown because it is identical to Proportion of Hits.
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strategy is used allows for predicting how likely an error is and what kind
of an error it will be.

BAYESIAN INFERENCE

Because Bayes’ theorem makes explicit use of prior probabilities, it can
be used to study the interaction of prior beliefs with new information.
People’s intuitive ability to update their beliefs is of concern to areas of
research such as hypothesis testing (Fischhoff & Beyth-Marom, 1983),
categorization (Anderson, 1991a), memory (Anderson & Milson, 1989),
attribution theory (Ajzen & Fishbein, 1975), jury decision making
(Koehler & Shaviro, 1990), medical diagnosis (Casscells, Schoenberger,
& Grayboys, 1978), and auditor judgment (Smith & Kida, 1991).

The following is Bayes’ theorem in odds form:

p(H1)/p(H2) X p(D|H1)/p(D|H2) = p(H1|D)/p(H2|D), )

where H1 and H2 refer to two mutually exclusive hypotheses and D refers
to data. Reading from the left, the first ratio is the prior odds, consisting
of the probabilities of each hypothesis before the receipt of new informa-
tion (D). The second ratio is the likelihood ratio, consisting of the prob-
abilities of observing the new information, given the respective hypoth-
eses are true. On the right is the posterior odds, which represent the
normative outcome of the prior beliefs combined with new information.

In the empirical literature, one can distinguish between two types of
Bayesian tasks. The first is what might be called a ‘‘one-shot’’ task, in
which a subject is given base rates as a proxy for prior probabilities,
sometimes given the two components of the likelihood ratio, and then
asked to make a single response. In the second type of task, subjects see
more than one datum and make more than one judgment for the same set
of hypotheses. This type of task more closely corresponds to a ‘‘belief-
updating’’ task, differing from the one-shot task not only because subjects
make multiple judgments, but also because after the first response, sub-
jects’ prior probabilities rather than base rates are inserted into Bayes’
theorem in order to determine the ‘‘correct’ posterior probability.

In both kinds of tasks, subjects’ responses often deviate from the
Bayesian response. For one-shot tasks, a common finding is that subjects
underweight or ignore the base rates (e.g., Bar-Hillel, 1980; Casscells et
al., 1978; Doherty et al., 1979; Lyon & Slovic, 1976; Kahneman & Tver-
sky, 1973). For belief-updating tasks, a common finding is that subjects
average prior beliefs with new information (Hogarth & Einhorn, 1992;
Lopes, 1985, 1987; Shanteau, 1970, 1972, 1975; Troutman & Shanteau,
1977; see also Anderson, 1981; Nisbett, Zukier, & Lemley, 1981; Slovic
& Lichtenstein, 1971; Tetlock & Boettger, 1989).

The plan of this section is to discuss both kinds of Bayesian tasks, the
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empirical findings, how the normative and intuitive responses map onto a
2 X 2 matrix, and how subjects’ apparent strategies for coping with
Bayesian inference tasks compare with the normative strategy under var-
ious conditions.

One-Shot Tasks

A classic example of a Bayesian one-shot task is the Cab Problem (from
Tversky & Kahneman, 1982a):

A cab was involved in a hit-and-run accident at night. Two cab
companies, the Green and the Blue, operate in the city. You are
given the following data:

(a) 85% of the cabs in the city are Green and 15% are Blue.

(b) A witness identified the cab as Blue. The court tested the
reliability of the witness under the same circumstances that ex-
isted on the night of the accident and concluded that the witness
correctly identified each one of the two colors 80% of the time
and failed 20% of the time.

What is the probability that the cab involved in the accident
was Blue rather than Green?

Bayes’ theorem prescribes how to answer the question. H1 and H2
correspond to the hypothesis that the cab was Blue and the cab
was Green, respectively, and D corresponds to the fact that the witness
identified the cab as ‘‘Blue.”” The Bayesian response, then, is:
p(Blue|*‘Blue’’)/p(Green|*‘Blue’’) = .80/.20 x .15/.85 = .12/.17. Because
the hypotheses are exhaustive, the probability that the cab was Blue,
given that the witness said *‘Blue,”” is .12/(.12 + .17), which equals .41.

Bayesian problems such as these can be represented in 2 X 2 form. Let
Rows 1 and 2 correspond to H1 and H2, respectively, and let Columns 1
and 2 correspond to Datum 1 and 2. Figure 2 illustrates how the Cab
Problem maps onto a 2 X 2 matrix. The two hypotheses are that the cab
was Blue or Green, and the data are that the witness says either ‘*‘Blue’’
or ‘*‘Green.”’ The marginals for Rows 1 and 2 reflect the respective base
rates for H1 and H2. Each cell in the matrix reflects how often the datum
would be expected to occur in conjunction with the particular hypothesis.
For example, because 15% of the cabs are Blue and the witness correctly
identifies 80% of the Blue cabs, 12% of identifications would result in
correctly identifying a Blue cab as ‘‘Blue’” (Cell A). Similarly, because the
witness incorrectly identifies Blue cabs as ‘‘Green’’ 20% of the time, 3%
of identifications will fall into Cell B, and so on.

In this context, then, the prior odds are captured by (A + B)/(C + D).
The likelihood ratio corresponds to [A/(A + B)I/[C/(C + D)]. The poste-
rior odds are A/C, and thus, the posterior probability of H1 is A/(A + C),
or 12/(12 + 17) = .41.
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Data
"Blue” "Green"
Cell A CellB
H1 =Blue Cab 12 3 15
Hypotheses
CellC Cel D
H2 = Green Cab 17 68 85
N = A+B+C+D

p(H1) = (A+B)N
p(H2) = (C+D)N
p(DIH1) = A/{(A+B)
p(DIH2) = C/{C+D)
p(H1ID) = A/(A+C)
p(Data) = (A+C)/N

F1G. 2. The Cab Problem represented in 2 X 2 form.

How do people answer one-shot Bayesian problems? Subjects’ median
answer to the Cab Problem is .80, which corresponds to the witness’
accuracy and apparently ignores the base rates of cabs in the city. Thus,
one answer to the question is that people ignore base rates and use only
the information in the likelihood ratio. (For other examples of ignoring
base rates—or at least vastly underweighting them—see Bar-Hillel, 1980,
1990; Casscells et al., 1978; Doherty et al., 1979; Ginossar & Trope, 1980;
Locksley, Borgida, Brekke, & Hepburn, 1980; Locksley, Hepburn, &
Ortiz, 1982; Lyon & Slovic, 1976; Nisbett & Borgida, 1975.)

It is important to point out that subjects do not always ignore base rates
in one-shot tasks. For example, it has been proposed that base rates are
used if they are manipulated as a within-subjects variable (Birnbaum &
Mellers, 1983; Fischhoff, Slovic & Lichtenstein, 1979; Kahneman &
Tversky, 1982; Tversky & Kahneman, 1982), perceived as causally linked
to the task at hand (Ajzen, 1977; Tversky & Kahneman, 1982), suffi-
ciently specific (Bar-Hillel, 1980), or if the individuating data are not
diagnostic (Fischhoff & Bar-Hillel, 1984; Ginossar & Trope, 1980; for a
review of the base-rate literature, see Koehler, 1993). Although research-
ers have examined the conditions under which subjects do and do not use
base rates in one-shot tasks, how the information is integrated into a final
response is unclear. What may be the case, however, is that when base
rates are used, they are sometimes ‘‘averaged’” with the likelihood infor-
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mation. If so, this behavior would be similar to that found in belief-
updating tasks described below.

Belief-Updating Tasks

As mentioned, many experimental Bayesian tasks involve updating
probability estimates for the same hypothesis multiple times as new in-
formation is received. For example, imagine that the Cab Problem in-
volved multiple witnesses, and after hearing whether each witness
thought the cab was Blue or Green, you had to update the probability that
the cab involved in the accident was in fact Blue rather than Green. If
your response after the first witness was 80%, .80/.20 would then corre-
spond to the prior odds. Given the second witness’ testimony and accu-
racy, you would be asked for a second response. Normatively, this situ-
ation is exactly like the one discussed under one-shot tasks, except that
the posterior odds given for response n become the prior odds for re-
sponse n + 1. Thus, the prior odds are not given by the experimenter to
the subject, but by the subject to the experimenter.

The phenomenon of interest here is the following: Assume that your
response to the original Cab Problem is 80% and a second witness also
identified the cab as ‘‘Blue,”” but this witness correctly identifies only
70% of both Blue and Green cabs. Because the witness identifies cabs at
better than chance level, your posterior probability should increase to
greater than 80% (the Bayesian response is 90%). Subjects, however,
when confronted by strong support for a hypothesis followed by weak
support for the same hypothesis, sometimes show a decrease in confi-
dence, falling somewhere between the confidence levels that the subject
would exhibit for each datum alone. When presented with the above
two-witness scenario, 24 of 29 subjects responded with 75% (Bar-Hillel,
1980; see also Lopes, 1985, 1987; Nisbett et al., 1981; Shanteau, 1970,
1972, 1975; Troutman & Shanteau, 1977; see Hogarth & Einhorn, 1992,
for an investigation of the conditions under which these errors occur).
Such responses imply some sort of averaging of the prior and likelihood
information (computationally speaking).

Following are the normative Bayesian strategy and four plausible strat-
egies that either use only likelihood information, or average likelihood
and base-rate information. (The strategies are defined below in traditional
Bayesian notation. For the 2 X 2 matrix counterparts that were used in
the simulation, see Fig. 2.).

Bayesian Inference Strategies

Bayes’ theorem. For the purposes of the simulation, the normative
response to the tasks discussed in this section is the Bayesian one, in
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which the probability that H1 is true, given the data, is p(H1)p(D|H1)/
[p(HD)p(D|H1) + p(H2)p(D|H2)].

Relative likelihood. As described in the section on one-shot Bayesian
tasks, subjects sometimes ignore base rates. One possible strategy is to
use the relative likelihood of H1, captured by p(D|H1)/[p(D|H1) +
p(D|H2)).*

Likelihood. Another possible base-rate neglect strategy is to use only
the numerator of the likelihood ratio, where H1 is the hypothesis per-
ceived to be of interest (so-called “‘pseudodiagnosticity’’; see Beyth-
Marom & Fischhoff, 1983; Doherty et al., 1979; Fischhoff & Beyth-
Marom, 1983). In the Cab Problem, H1 = ‘‘the cab was Blue,” and the
likelihood information is that the witness correctly identified Blue cabs
80% of the time. The witness’ accuracy for Green cabs is irrelevant here.
Likelihood equals p(D|H1).

Relative likelihood average. One way to employ base rates is to average
Relative Likelihood and the H1 base rate. This takes the form
.5(Relative Likelihood) + .5[p(H1)].%

Likelihood average. Another plausible strategy is to average Likeli-
hood and the H1 base rate. For example, a subject might average the
witness’ accuracy in identifying Blue cabs (80) and the percentage of Blue
cabs in the city (15). This is equal to .S[p(D|H1)] + .5[p(H1)].

Method

The 6.25 million 2 X 2 matrices were generated based on all combinations of cell values
between | and 50, and each strategy’s output was calculated according to the above for-
mulas. The product-moment correlation matrix was calculated, as well as whether or not the
strategies were correct in terms of identifying H1 as more likely than H2, or vice versa.

Results and Discussion

Performance under the general conditions. Table 5 shows the product-
moment correlation matrix for the five strategies based on the 6.25 million
matrices. Most important is the first row, which shows the correlations
between the normative strategy and each intuitive strategy. Note that
Relative Likelihood Average correlates almost perfectly with the norma-
tive Bayesian response.

4 Kahneman and Tversky's (1971; Tversky & Kahneman, 1982b) ‘‘representativeness’’
heuristic may be similar to this strategy (Gigerenzer & Murray, 1987).

% This is responding with p(D|H]) instead of p(H1|D). See Dawes (1988), Eddy (1982),
Einhorn and Hogarth (1986), and Moskowitz and Sarin (1983) on confusing conditional
probabilities.

® The averaging strategies use equal weighting for simplicity. Also, note that averaging
would result in ‘‘conservative’’ judgments (Edwards, 1968), that is, judgments that are
closer to .5, relative to the normative Bayesian response.
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TABLE §
Correlations between the Bayesian Inference Strategies’ Outputs under the
General Conditions

Strategy 2 3 4 b
1. Bayes’ theorem .79 .49 9 .78
2. Relative likelihood — .67 .79 .60
3. Likelihood — .49 .83
4. Relative likelihood average — .79

5. Likelihood average —

The middle column of Table 6 shows how often each strategy favors the
correct hypothesis. The averaging strategies outperform the non-
averaging strategies, and Relative Likelihood Average is always correct.’

Are the hypothesis-supporting errors ‘‘big’’ ones? As with the covari-
ation strategies, one might wonder if many of the cases in which the
intuitive Bayesian strategies support the wrong hypothesis are ‘‘small”’
errors in that the normative strategy weakly supports one hypothesis and
the intuitive strategy weakly supports the other. In order to get a partial
answer to this question, matrices for which the normative Bayesian re-
sponse only weakly favored one hypothesis were eliminated. More spe-
cifically, the proportion of times each strategy supported the correct hy-
pothesis was calculated for only those matrices for which the normative
H1 posterior probability was either less than or equal to .4 or greater than
or equal to .6 (4,165,000 matrices). The results are shown in the right
column of Table 6 and indicate a substantial improvement in perfor-
mance.

Environmental conditions that affect performance. Because it is well
known that subjects sometimes ignore base rates (e.g., Bar-Hillel, 1980;
Kahneman & Tversky, 1973), a starting point for investigating environ-
mental factors is to examine the effects of different base rates on the
strategies’ performance. Relative Likelihood and Likelihood ignore base
rates and would, therefore, be adversely affected by extreme base rates.
However, because Relative Likelihood Average and Likelihood Average
make use of base rates, these strategies should not be adversely affected.

Three subsets of the 6.25 million matrices were examined: Those ma-
trices for which the H1 base rate (i.e., [A + B]/N) was (a) less than or
equal to .1 (34,080 matrices), (b) between .45 and .55, inclusive (1,663,424
matrices), and (c) greater than or equal to .9 (34,080 matrices).

The correlations between the normative Bayesian response and the
intuitive strategies when the base rate is near .5 are shown in the middle
column of Table 7, and the correlations when the base rate is extreme are

7 The results are virtually identical when cell values between 1 and 10 are used.
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TABLE 6
Percent Correct of Accepting or Rejecting H1 for the Intuitive Bayesian Inference
Strategies under Different Conditions

Intuitive strategy All matrices p(HIID) <4 0or =.6
Relative likelihood 75.0 83.3
Likelihood 66.7 72.2
Relative likelihood average 100.0 100.0
Likelihood average 79.6 88.8

shown in the right column. As expected, because Relative Likelihood and
Likelihood ignore base rates, extreme base rates lead to a decrease in
accuracy. In contrast, because Likelihood Average makes use of base
rates (but ignores particular likelihood information), extreme base rates
aid performance. Relative Likelihood Average is robust across condi-
tions.

The results regarding how often the strategies incorrectly accept or
reject H1 are shown in Table 8. (Relative Likelihood Average is not
shown because it is always correct.) The pattern and number of errors
change with the base rate. The two strategies that ignore base rates (Rel-
ative Likelihood and Likelihood) often incorrectly accept /{1 when the
H1 base rate is low and often incorrectly reject Hl when the base rate is
high. Again, because Likelihood Average incorporates base rates, errors
are fewest when the base rates are extreme.

There is another environmental factor to consider. Like many of the
covariation strategies, two of the Bayesian strategies make more use of
information in Cells A and B than Cells C and D. Likelihood uses only
Cells A and B and, although Likelihood Average takes the H2 base rate
into account, it ignores the H?2 likelihood. Thus, analogous to the effects
of p(Outcome) on the intuitive covariation strategies, differences in the
probability of observing the data (i.e., p|Data]) may affect the intuitive
Bayesian inference strategies. Using the Cab Problem as an example, the
strategies may be affected if the witness often said ‘‘Blue’” when asked to
identify cabs, or often said ‘‘Green.”’

TABLE 7
Correlations between the Outputs of the Normative Bayesian Strategy with Each
Intuitive Bayesian Strategy for Different Base Rates

H! Base rate

Intuitive strategy =.45 and <.55 =<.tor:=.9
Relative likelihood .99 .19
Likelihood .66 .09
Relative likelihood average .99 .98

Likelihood average .68 93
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TABLE 8
Percentage of Times the Intuitive Bayesian Inference Strategies Incorrectly Accepted or
Rejected H1 for Different Base Rates

H1 Base rate Incorrectly accept Hi Incorrectly reject H1i
Relative likelihood
=.1 49.5 .0
= .45 and <.55 3.0 4.3
=9 0 493
Likelihood
=.1 58.0 2
=.45 and =<.55 12.5 13.1
=9 0 48.5
Likelihood average
=.1 0 9
= .45 and <.55 12.1 12.5

=9 0 9

Note. Relative Likelihood Average is not shown because it is always correct.

Three subsets of the matrices were examined: Those matrices for which
p(Data) (i.e., [A + C}/N) was (a) less than or equal to .1 (34,080 matrices),
(b) between .45 and .55, inclusive (1,663,424 matrices), and (c) greater
than or equal to .9 (34,080 matrices).

The correlations are shown in Table 9. Because Relative Likelihood
takes into account both p(D|H1) and p(D|H2), p(Data) has minimal effects
on the strategy. However, p(Data) has large effects on Likelihood and
Likelihood Average, which ignore p(D|H2); when p(Data) is extreme,
performance decreases dramatically. Relative Likelihood Average is
again robust across conditions.

The results regarding how often the intuitive strategies incorrectly ac-
cept or reject H1 are shown in Table 10. Again, the pattern and number
of errors change with the environmental variable. The two strategies that

TABLE 9
Correlations between the Outputs of the Normative Bayesian Strategy with Each
Intuitive Bayesian Strategy for Different p(Data)

p(Data)

Intuitive strategy =.45 and <.55 <.lor=9
Relative likelihood .76 .66
Likelihood .66 .09
Relative likelihood average .99 .99

Likelihood average .96 .27
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TABLE 10
Percentage of Times the Intuitive Bayesian Inference Strategies Incorrectly Accepted or
Rejected H1 for Different p(Data)

p(Data) Incorrectly accept H1 Incorrectly reject H1

Relative likelihood

=<.1 5.4 13.7

= .45 and <.55 12.2 12.8

=9 15.0 15.8

Likelihood

<.1 2 58.0

= .45 and <.55 13.1 12.5

=9 48.5 .0
Likelihood average

=.1 .0 58.4

=.45 and <.55 5.2 1.3

=9 44.5 .0

Note. Relative Likelihood Average is not shown because it is always correct.

ignore p(D|H2) (Likelihood and Likelihood Average) often incorrectly
reject H1 when p(Data) is low, often incorrectly accept H1 when p(Data)
is high, and perform best when p(Data) is near .50.

In summary, the preceding analyses show that: (a) Relative Likelihood
Average, which uses all the pertinent information but combines it inap-
propriately, performed virtually perfectly. (b) When one of the hypothe-
ses was truly supported reasonably strongly, there were substantial in-
creases in the strategies’ performance. (¢) Varying the base rates affects
certain strategies in predictable ways. Strategies that ignore base rates
lead to incorrectly accepting H1 when the base rate is low and incorrectly
rejecting H1 when the base rate is high. (d) Varying p(Data) affects strat-
egies that ignore p(D]|H2), the denominator in the likelihood ratio. When
p(Data) is low, the strategies often result in incorrectly rejecting H1, and
when p(Data) is high, they often result in incorrectly accepting H1. As
with the covariation strategies, some basic knowledge regarding the en-
vironmental conditions under which a particular intuitive Bayesian strat-
egy is used allows for predicting how likely an error is and what kind of
an error it will be.

GENERAL DISCUSSION

In this section, I discuss three implications of the analysis of covaria-
tion assessment and Bayesian inference: (a) The accuracy of people’s
intuitive strategies, (b) a commonality between the intuitive strategies for
the two tasks, and (c) how to improve accuracy.
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The Accuracy of Intuitive Judgment Strategies

When examined under the general conditions of the simulations, all the
apparent intuitive strategies performed much better than chance. How-
ever, this is not too surprising because each strategy makes use of at least
some of the pertinent information. Indeed, the strategies’ relative perfor-
mance is largely due to the amount of information used. For example,
covariation strategies that use more of the cells are generally more accu-
rate, as are Bayesian strategies that do not ignore base rates. Nonethe-
less, many discussions regarding the validity of people’s strategies have
been discouraging (see, e.g., Nisbett & Ross, 1980, on people’s ability to
assess covariation between two dichotomous variables; Doherty et al.,
1979, on ignoring the denominator of the likelihood ratio, p(D|H2), in
Bayesian inference). In this regard, perhaps the most interesting finding
was that Relative Likelihood Average (i.e., averaging prior and likelihood
information) in Bayesian inference results in virtually perfect perfor-
mance according to the two accuracy measures used. This in spite of the
fact that the strategy can lead to decreases in confidence when it should
increase, and vice versa.® Thus, what may appear dysfunctional at a local
level (i.e., case by case) may in fact be functional when a more global
view is taken (i.e., across cases; see also Arkes, 1991; Brunswik, 1952;
Campbell, 1959; Funder, 1987; Hogarth, 1981; Simon, 1955, 1956; Toda,
1962). Even strategies that resulted in considerably less than perfect ac-
curacy may be reasonable to use. The utility of an intuitive strategy will
be found in the combination of its cognitive simplicity and robustness.
The simulation results under the general conditions suggest that, relative
to the normative strategies, some intuitive strategies reduce accuracy
only slightly, while considerably reducing cognitive load. Presumably,
normative strategies are more taxing than intuitive strategies, and strat-
egies that use more information are more taxing than those that use less.
There is, however, no direct evidence of cognitive load (see Footnote 1).

8 How can Relative Likelihood Average lead to decreases in confidence when it should
increase (and vice versa), yet always support the correct hypothesis? Consider cases in
which the prior information favors one hypothesis and the likelihood information favors the
other. The normative Bayesian strategy supports the hypothesis that has the stronger
support from either the prior or likelihood information. This is the same hypothesis that
Relative Likelihood Average supports: The strategy averages prior and likelihood informa-
tion. Clearer differences between the two strategies emerge when both the prior and like-
lihood information favor the same hypothesis. Here, the normative strategy leads to confi-
dence more extreme than either the prior or the likzlihood information (because Bayes’
theorem is multiplicative), whereas the averaging strategy leads to confidence midway be-
tween the prior and likelihood information. Note, though, that even here the averaging
strategy supports the correct hypothesis, just not strongly enough.
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Thus, analyzing the effort/accuracy trade-off for judgment strategies is a
potentially valuable avenue of research (for such an analysis of choice
strategies, see Payne, Bettman, & Johnson, 1988, 1990; see also Beach &
Mitchell, 1978).

A methodological implication of the redundancy between the intuitive
and normative strategies is that correlation is a poor measure for deter-
mining which strategy a subject is using. In the area of covariation as-
sessment, researchers have noted this (see Shaklee, 1983; Shaklee &
Wasserman, 1986; Wasserman et al., 1990) and have contrived matrices
more carefully in order to better distinguish between strategies. Another
implication of the redundancy, however, is that the covariation task may
be a prime candidate for invoking simple strategies because they may
often result in only small decreases in accuracy.

The simulation results also show that most of the intuitive strategies’
accuracy is strongly influenced by some simple environmental variables.
For example, the performance of most of the strategies suffered when the
Column 1 marginal was large or small relative to the Column 2 marginal,
corresponding to differences in p(Outcome) and p(Data) for covariation
assessment and Bayesian inference, respectively. Furthermore, the re-
sults show that most of the strategies make different kinds of errors under
different conditions (i.e., incorrectly implying a positive or negative re-
lation, or incorrectly accepting or rejecting H1). Thus, the cost/benefit
trade-off of using a particular strategy depends not only on the accuracy
versus simplicity of a strategy, but also on the relative costs of the two
kinds of error (see, e.g., Friedrich, 1993).

Although we are presumably concerned with understanding how we
perform in our natural environment, it is most often in the laboratory that
judgment performance is examined. The laboratory environment is usu-
ally designed so that the experimenter can easily distinguish between an
optimal model and the intuitive strategy (or strategies) of interest. Thus,
performance based on intuitive strategies will often be poor in the labo-
ratory. For example, if testing to see if subjects use the representative-
ness heuristic (Kahneman & Tversky, 1972), a researcher would present
subjects with questions involving extreme base rates because it is under
these conditions that the Bayesian response and the representativeness
response are most easily distinguishable. The simulation results show that
extreme base rates (the norm in the laboratory) lead to unusually poor
performance for some of the intuitive Bayesian inference strategies.
Thus, generalizing about the accuracy of intuitive strategies based on the
laboratory environment may be misleading. Conclusions regarding the
accuracy of intuitive judgment strategies appear incomplete without tak-
ing environmental conditions into account (see also Anderson, 1991b;
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Brunswik, 1952, 1956; Campbell, 1959; Christensen-Szalanski & Beach,
1984; Funder, 1987; Hammond, 1955; Hammond, Hamm, Grassia, &
Pearson, 1987; Hogarth, 1981; Simon, 1955, 1956, 1981; Toda, 1962).

The preceding discussion implicitly assumes that people’s strategies are
independent of the various environmental conditions under which people
operate. It may be, however, that people’s strategies reflect different
environmental conditions in adaptive ways. The choice literature indi-
cates that people invoke different choice strategies when normatively
irrelevant task variables are changed (e.g., the number of alternatives;
Einhorn & Hogarth, 1981; Payne, 1982). However, the changes in strat-
egy reflect an adaptive effort/accuracy trade-off (Payne, Bettman, &
Johnson, 1988, 1990). Analogous behavior may occur in judgment tasks.
For instance, do people use different covariation strategies depending on
p(Outcome)? One could use simple strategies and be highly accurate
when p(Outcome) is near .50, but more sophisticated strategies are
needed when p(Outcome) becomes extreme. Similarly, do differing con-
cerns for incorrectly rejecting or accepting H1 affect intuitive Bayesian
judgment strategies? If incorrectly rejecting H1 is of primary concern,
then taking into account the H1 base rate becomes more important as it
increases, and taking into account p(Data) becomes more important as it
decreases. Subjects appear to have several strategies from which to
choose. To what extent do environmental variables determine which
strategy is invoked?

A Common Judgment Strategy

Mapping covariation assessment and Bayesian inference onto a 2 X 2
matrix allows for a simple comparison of subjects’ strategies between the
two tasks. In fact, the framework underscores an apparent theme,
namely, that subjects often approach each task as a hypothesis-testing
task and assess the degree to which the data are consistent with the one
hypothesis perceived to be of interest.

In covariation assessment, it was argued that subjects often examine
only Cells A and B; that is, they examine what happens in the presence of
the Event. If subjects tend to approach the covariation task as a hypoth-
esis-testing task and assess the likelihood of only a single hypothesis, the
natural way to frame the task is in terms of “‘If Event, then Outcome,”
instead of, say, ‘“‘If no Event, then Outcome.’”’ Thus, information about
what happens when the Event does not take place (i.e., Cells C and D) is
not considered to be of interest (see also Beyth-Marom, 1982).

That subjects are concerned with assessing a single hypothesis can be
seen in the Bayesian inference literature as well. Recall that in the belief-
updating tasks in which subjects repeatedly assess the likelihood of the
same set of hypotheses based on new information, subjects’ confidence
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sometimes moves in the wrong direction. For example, when presented
with strong evidence followed by weak evidence for a hypothesis, sub-
jects’ confidence sometimes decreases after the second piece of evidence.
Normatively, because both pieces of information favor the hypothesis,
confidence should increase. However, if the subject is only assessing the
degree to which the evidence is consistent with the hypothesis in ques-
tion, weak evidence would reduce confidence. This behavior is consistent
with the two averaging models examined in the simulation. The analysis
presented here, however, leads to the hypothesis that Likelihood Average
is the more common strategy because it ignores the impact of the data
on H2.

A similar prediction can be made regarding one-shot Bayesian tasks.
Recall that in the Cab Problem, because the accuracy of the witness is
80% for both Blue and Green cabs, it is unclear whether the median
response of 80% is due to a consideration of both likelihoods (i.e., a
comparison of accuracy rates for Blue versus Green cabs) or just due to
the likelihood of H1 (i.e., the fact that the witness is correct 80% of the
time for Blue cabs). The latter explanation is probably the best one. A
simple test could be conducted through orthogonally varying the witness’
accuracy for Blue and Green cabs.

Klayman and Ha (1987) claim that subjects often test hypotheses ac-
cording to a ‘‘positive hypothesis testing strategy’’ that involves checking
for expected features (see also Fischhoff & Beyth-Marom, 1983). For
example, if testing to see if a person is extraverted, subjects are most
likely to look for features consistent with the extravert hypothesis,
whereas introvert features are largely ignored. Again, the strength of the
alternative hypothesis (i.e., How many introvert features are present?) is
not taken into account. Thus, Klayman and Ha’s thesis regarding how
people test hypotheses is consistent with the present account of covari-
ation assessment and Bayesian inference: A single hypothesis is per-
ceived to be of interest, and the subjective probability that the hypothesis
is true is a function of the degree to which the data are consistent with it.
Put more abstractly, subjects are assessing the degree to which “If X,
then Y,”” where X is the hypothesis of interest, and Y is the expected data.
Of interest is that, when asked directly to test (deterministic) statements
of the form “'If X, then Y,” subjects consider irrelevant what happens
when not-X is the case (Evans, 1972; Johnson-Laird & Tagart, 1969; see
also Evans, 1982, 1989; Johnson-Laird and Byrne, 1991; Wason, 1966;
Wason & Johnson-Laird, 1972).

Improving Accuracy

If subjects tend to assess the one hypothesis perceived to be of interest
in covariation assessment and Bayesian inference, then simply consider-
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ing the alternative hypothesis is crucial to better performance. However,
this does not necessarily imply using a normative strategy (i.e., calcu-
lating the ¢ coefficient or using Bayes’ theorem). Some of the intuitive
strategies take into account the alternative hypothesis and are accurate
across environments.

There is evidence for both tasks that subjects’ performance improves
when they are encouraged to compare hypotheses. In the case of covari-
ation assessment, Shaklee and Mims (1981) found that 76% of their adult
subjects appeared to use strategies involving all four cells (i.e., AR or Sum
of Diagonals) when asked to assess whether the Outcome was more or
less likely in the Event’s presence than in the Event’s absence, a phrasing
of the task that encourages a comparison of the two hypotheses.® Con-
sidering the alternative hypothesis when assessing covariation (i.e.,
“‘Does the absence of the Event lead to the Outcome?’’) might result in
the use of AR, which the simulation results show is virtually perfectly
correlated with the ¢ coefficient.

In a Bayesian inference task, Beyth-Marom and Fischhoff (1983, Ex-
periment 1) found that when phrasing the question in comparative terms
(i.e., “‘Is H1 or H2 more probable?’’), 78% of the subjects claimed that
p(D|H2) was important to know, almost equaling the 83.1% who were
interested in p(D|H1). When phrased as ‘‘How probable is H1?," only
53.6% of the subjects wanted to know p(D|H2). For belief updating, sub-
jects might still use an averaging strategy, but when H2 is considered, the
simulation results show that the strategy (Relative Likelihood Average)
correlates virtually perfectly with the normative Bayesian response.

Taken together, these experiments support the contention that subjects
usually cope with covariation assessment and Bayesian inference by eval-
uating a single hypothesis, but that they compare two hypotheses when
that is the perceived task (see also Bassok & Trope, 1984; Gorman, Staf-
ford, & Gorman, 1987; Skov & Sherman, 1986; Trope & Bassok, 1982,
1983; Trope, Bassok, & Alon, 1984; Tweney et al., 1980). Although con-
sidering the alternative hypothesis does not entail using a normative strat-
egy, it can lead to using intuitive strategies that appear relatively simple
and are accurate across environments. Using these strategies may be the
most efficient means of ensuring highly accurate judgment in these im-
portant tasks.

 Although it is difficult to make direct comparisons between the Shaklee and Mims (1981)
study and studies not using the comparative phrasing, studies typically find fewer subjects
using all four cells. For example, Shaklee and Tucker (1980) found that 58% of their subjects
used strategies involving all four cells, and Wasserman et al. (1990) found 33% and 34% of
their subjects using all four cells in Experiments 2 and 3, respectively.
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SUMMARY

Although it has long been recognized that people often do not process
information in the manner prescribed by normative models of judgment,
it has been unclear how often and to what degree one should expect to be
led astray by using intuitive strategies. Through Monte Carlo simulation,
the accuracy of people’s strategies for coping with covariation assessment
and Bayesian inference was examined. Under some general conditions,
all the strategies performed better than chance and many performed sur-
prisingly well. Furthermore, some simple environmental variables were
found to have large effects on the accuracy of most of the intuitive strat-
egies. Indeed, some basic knowledge regarding the environmental condi-
tions under which a particular intuitive strategy is used allows for pre-
dicting how likely an error is and what kind of an error it will be (e.g.,
incorrectly rejecting versus incorrectly accepting H1). Conclusions re-
garding the accuracy of intuitive judgment strategies appear incomplete
without taking into account the structure of the environment in which a
particular strategy is used.

It was also argued that subjects approach both covariation assessment
and Bayesian inference in essentially the same manner. In particular,
subjects often appear to assess the degree to which the data are consistent
with the hypothesis of interest and do not take into account the degree to
which the data are consistent with the alternative hypothesis. A key to
better performance, then, lies in taking into account the strength of the
alternative hypothesis, although this does not necessarily imply using a
normative strategy (i.e., calculating the ¢ coefficient or using Bayes’
theorem). Intuitive strategies that take into account the alternative hy-
pothesis are accurate across environments. Because intuitive strategies
are presumably simpler than normative strategies and are already part of
people’s repertoire, simply taking into account the alternative hypothesis
may be the most efficient means of accurately assessing covariation and
updating beliefs.
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