Psychonomic Bulletin & Review
2002, 9 (4), 821-828

When wrong predictions provide more support
than right ones

CRAIG R. M. MCKENZIE and MARSHA B. AMIN
University of California, San Diego, La Jolla, California

Correct predictions of rare events are normatively more supportive of a theory or hypothesis than
correct predictions of common ones. In other words, correct bold predictions provide more support
than do correct timid predictions. Are lay hypothesis testers sensitive to the boldness of predictions?
Results reported here show that participants were very sensitive to boldness, often finding incorrect
bold predictions more supportive than correct timid ones. Participants were willing to tolerate inac-
curate predictions only when predictions were bold. This finding was demonstrated in the context of
competing forecasters and in the context of competing scientific theories. The results support recent
views of human inference that postulate that lay hypothesis testers are sensitive to the rarity of data. Fur-
thermore, a normative (Bayesian) account can explain the present results and provides an alternative
interpretation of similar results that have been explained using a purely descriptive model.

Imagine a new geophysicaltheory that leads to predictions
as to when large earthquakes, which are rare, will occur.
Which outcome would leave you more convinced that the
theory’s predictions are more reliable than mere guesses,
a correct prediction of a large earthquake, or a correct pre-
diction of none? Bayesian statistics dictates that correctly
predicting a rare event should be more convincing (Horwich,
1982; Howson & Urbach, 1989). Indeed, this “rarity prin-
ciple” seems to be routinely exploited by researchers, who
strive to correctly predict rare or surprising phenomena,
presumably because such results constitute strong evidence
for the theory or hypothesis being tested (but see Wallach
& Wallach, 1994).

Perhaps scientists are sensitive to the rarity principle,
but what about lay hypothesis testers? Some recent psy-
chological research has indicated that people are sensitive
to rarity in a qualitativelynormative manner. Oaksford and
Chater (1994; Oaksford, Chater, & Grainger, 1999; Oaks-
ford, Chater, Grainger, & Larkin, 1997) have argued that
participants are sensitive to rarity when performing Wason’s
(1968) selection task (or a related variant), and McKenzie
and Mikkelsen (2000) have shown that participants con-
sidered rare confirming outcomes more supportive than
common ones in a hypothesis-testing task. Nonetheless,
some authors have disputed the claim that participants are

This research was supported by National Science Foundation Grants
SBR-9515030and SES-0079615.The results were presented at the An-
nual Meeting of the Society for Judgment and Decision Making, No-
vember 2000, in New Orleans. The authors thank Karen Dobkins, Vic
Ferreira, Tom Griffiths, Shlomi Sher, and Mike Ziolkowski for thought-
ful comments on earlier drafts of this manuscript. Correspondence
should be addressed to C. R. M. McKenzie, Department of Psychology,
University of California, San Diego, La Jolla, CA 92093-0109 (e-mail:
cmckenzie @ucsd.edu).

821

sensitive to rarity when testing hypotheses. Using the se-
lection task, Oberauer, Wilhelm, and Diaz (1999) found no
convincing evidence that participants’ information search
strategies shifted in the direction predicted by the Bayesian
account, and Evans and Over (1996) reanalyzed results
from an earlier study (Pollard & Evans, 1983), which they
claimed showed that participants’ behavior shifted in the
wrong direction. (For replies to these authors’ claims, see
Oaksford & Chater, 1996, in press.)

One purpose of the present article is to present new, po-
tent evidence that lay hypothesis testers find rare out-
comes highly informative. Whereas recent research has in-
dicated that correct predictions of rare events (correct
“bold” predictions)are seen as more informative than cor-
rect predictions of common ones (correct “timid” predic-
tions; McKenzie & Mikkelsen, 2000), our first two exper-
iments take this finding a step further: They show that
even incorrectbold predictions are often seen as more sup-
portive of a hypothesis than correct timid predictions.

Such findings clearly show that participants are sensi-
tive to the rarity of data, but they raise anotherissue: It ap-
pears normatively suspect to deem incorrect predictions—
bold or otherwise—to be more supportive than correct
ones. Perhaps lay hypothesis testers sometimes apply the
rarity principle when itis inappropriateto do so. However,
a second purpose of this article is to show that, given some
reasonable assumptions (some of which are confirmed in
our third experiment), incorrect bold predictions can be
normatively more supportive of a hypothesis than correct
timid ones. Thus, our normative analysis suggests that par-
ticipants might make use of rarity in a surprisingly so-
phisticated manner. The third and final purpose of the ar-
ticle is to use the normative analysis to provide an alternative
account of similar results that have been explained with
the use of a purely descriptive model.

Copyright 2002 Psychonomic Society, Inc.
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EXPERIMENT 1

Method

Participants were 105 University of California, San Diego, students
who received course credit. Among other unrelated tasks in a labo-
ratory setting, some participants read the following:

Imagine that you have just arrived a little early for a new class on the first

day of the quarter. Two other students are in the room with you. They
both claim to be able to predict future events better than most people.

“Okay,” you say, “make a prediction about the next person to walk into
the classroom.”

One student says, “The next person to walk into the classroom will be
under 6 feet 8 inches tall.”

The other says, “The next person to walk into the classroom will be over
6 feet 8 inches tall.”

The next person to walk into the classroom was, in fact, 6 feet 7 inches
tall.

Which student do you believe is the better predictor? Choose one:
The student who made the “under 6 feet 8 inches” prediction

The student who made the “over 6 feet 8 inches” prediction

In this “extreme” scenario, the bold (> 6 ft 8 in.) prediction,
which was wrong, was very unlikely a priori because so few people
are taller than 6 ft 8 in. In contrast, the timid (< 6 ft 8 in.) predic-
tion, which was right, was very likely a priori.

The other half of the participants were presented with a “moder-
ate” scenario in which the only difference was that 6 ft 8 in./6 ft 7 in.
was replaced with 5 ft 8 in./5 ft 7 in. Thus, (in)accuracy was held
constant: One prediction was barely wrong and one was barely right.
However, because about half of adults are taller than 5 ft 8 in., both
predictions were moderate. The wrong prediction was no longer bold.

Half of the participants in each group were asked to explain their
choices. Furthermore, the order of the predictions (and the options)
was reversed for half of the participants. Among other things, this
controlled for the possibility that, in the extreme scenario, the sec-
ond forecaster was perceived as being strategic after hearing the first
forecaster’s prediction.

Results and Discussion

The top panel in Figure 1 shows the percentage of par-
ticipants who selected the forecaster who made the wrong
prediction as the better one. The first bar corresponds to
the group presented with the extreme scenario and not
asked for an explanation. More than half (56%) preferred
the wrong bold forecaster to the right timid one. The sec-
ond bar, corresponding to participants presented with the
extreme scenario and asked for a brief explanation after
making their choice, shows a decrease in selecting the
wrong bold forecaster, perhaps because it is easier to ex-
plain choosing the correct forecaster than it is to explain
choosing the incorrect one (Tetlock, 1991). (Participants
could have seen the request for an explanation before
making their choice or even changed their choice after
seeing the request.) Some participants might have felt that
there was good reason to select the wrong bold forecaster,
but were unable or unwilling to articulate the reason (see
also McKenzie & Mikkelsen, 2000). Nonetheless, almost
40% preferred the wrong forecaster, and, of these 10 par-
ticipants, 9 mentioned in their written explanations how
rare it is to be taller than 6 ft 8 in. The right two bars show
that few participants selected the wrong forecaster in the
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Figure 1. The top panel (Experiment 1) shows the percentage
of participants who chose the forecaster who made the incorrect
prediction as better than the forecaster who made the correct
prediction as a function of scenario (extreme vs. moderate) and
whether they were asked to provide an explanation of their
choice. The bottom panel (Experiment 2) shows the results when
participants chose the scientific theory they thought was most
likely true. In both experiments, participants often selected the
forecaster or theory that made an incorrect bold prediction over
the one that made a correct timid prediction. However, when the
predictions were both moderate, the forecaster or theory making
the incorrect prediction was rarely chosen. Standard error bars
are shown.

moderate scenario, regardless of whether an explanation
was requested. A scenario (extreme vs. moderate) X ex-
planation (yes vs. no) log-linear analysis revealed only an
effect of scenario on the number of participants preferring
the wrong forecaster [y2(1, N = 105) = 14.9, p < .001].

These results show that, holding (in)accuracy constant,
the boldness of a prediction matters. A moderate forecaster
who is barely wrong is rarely preferred to one who is barely
right, but a bold forecaster who is barely wrong is often
preferred to a timid one who is barely right.

EXPERIMENT 2

In Experiment 1, participants were asked which of two
forecasters was “better”—a subjective, multidimensional
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judgment. In Experiment 2, participants evaluated two
scientific theories and were asked which of the theories
was most likely true. This allowed us to address whether
the results of Experiment 1 were an artifact of the ambi-
guity of the question, which might have led to any num-
ber of interpretations. Arguably, the question posed in Ex-
periment 2 is less open to interpretation. More generally,
the complete change of context and question posed to the
participants allowed for a check of the robustness of Ex-
periment 1’s findings.

Method
Participants were 113 students from the same population as in Ex-
periment 1. Some participants read the following scenario:

Imagine that there are two new geophysical theories that, their support-
ers claim, can predict when earthquakes will occur and what size they
will be. The two theories are based on very different views of what
causes earthquakes, and they often lead to different predictions. Because
the theories are so different, it is very unlikely that both are correct.
The theories are being tested in a location where small earthquakes
occur every day, but large earthquakes are rare. For example, earth-
quakes in this location registering more than 6.0 on the Richter scale
occur about once every 3 years, on average. The average daily earth-
quake has a magnitude of 2.0.

The theories are being tested by comparing their predictions against
what actually happens on a daily basis. Today was the first day of test-
ing. Today’s predictions made by the theories were:

Theory A predicted that an earthquake measuring larger than 6.0 would
occur. (1 out of every 1,000 earthquakes in this area is larger than 6.0.)
Theory B predicted that an earthquake measuring smaller than 6.0 would
occur. (999 out of every 1,000 earthquakes in this area are smaller than 6.0.)

Today, an earthquake measuring 5.9 on the Richter scale occurred.

Based on the theories’ predictions about the magnitude of today’s earth-
quake and its actual magnitude, which theory do you think is most likely
the true one? Choose one:

Theory A, which predicted an earthquake larger than 6.0.

Theory B, which predicted an earthquake smaller than 6.0.

In this extreme scenario, the bold prediction (>6.0), which was
wrong, was very unlikely a priori, and the timid prediction (<6.0),
which was right, was very likely.

Half of the participants were presented with a moderate scenario,
in which the predictions were larger/smaller than 2.0 and the earth-
quake measured 1.9. The participants were told that half of the earth-
quakes measured below 2.0 and half measured above 2.0. Thus, both
predictions were moderate, but (in)accuracy was the same as in the
extreme scenario: One prediction was barely right, and one was
barely wrong.

As in Experiment 1, half of the participants presented with each
scenario provided a brief explanation of their choice. Labeling of the
theories (and the order of the options) was also reversed for half of
the participants.

Results and Discussion

The bottom panel in Figure 1 shows the percentage of
participants selecting the theory that made the wrong pre-
diction as most likely to be the true theory. The left bar
corresponds to participants presented with the extreme
scenario and not asked for an explanation. Analogous to
the results of Experiment 1, more than half of these par-
ticipants (54%) preferred the theory that made the incor-
rect bold prediction to the theory that made the correct
timid one. The second bar, corresponding to those pre-
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sented with the extreme scenario and asked for an expla-
nation, shows a slightdecrease in selecting the theory that
made the incorrect bold prediction. This decrease also
replicates the finding in Experiment 1 and again suggests
that it might be difficult to explain selecting the theory
that made the wrong prediction (leading some to choose
the correct timid theory). Nonetheless, 43% selected the
theory that made the incorrect bold prediction, and, of
these 11 participants, 8 mentioned in their explanations
that earthquakes measuring greater than 6.0 are rare.

The two rightmost bars show that, when both predic-
tions were moderate, relatively few participants selected
the theory that made the wrong prediction, although more
participants did so when asked for an explanation. A sce-
nario (extreme vs. moderate) X explanation (yes vs. no)
log-linear analysis on the number of participants selecting
each theory revealed an effect of scenario [ x2(1, N =
113)=17.3, p < .001]. There was also an interaction be-
tween scenario and explanation[ y2(1,N=113)=3.9,p =
.047]: Relative to those not asked, participants asked for
an explanation were less likely to select the theory mak-
ing the wrong prediction in the extreme scenario and were
more likely to do so in the moderate scenario. The reason
for the interaction is unclear.

As in Experiment 1, these results show that the bold-
ness of a prediction matters. This time, however, the find-
ing occurred in the contextof evaluating the truth of a the-
ory. Despite the change in context and in the question
posed to participants, a comparison of the top and bottom
panels in Figure 1 reveals that the results were similar
across the two experiments.

EXPERIMENT 3

Though it might seem peculiar to believe that the the-
ory making the wrong prediction is most likely the true
one, this belief can be made normatively coherent by mak-
ing some simple assumptions. A general assumption re-
quired by our account is that participants treat the predic-
tions as probabilistic. That is, participants might not
interpret a prediction of an outcome (Q) as “there is a
100% chance that Q,” but instead as “there is an X%
chance that Q,” where X << 100. In a separate study, we
asked 75 participants how they interpreted the earthquake
predictions presented in Experiment 2. Most (79%) pre-
ferred a probabilistic interpretation (e.g., “There is a very
good chance thattoday’s earthquake will be larger/smaller
than 6.0”) to a deterministic one (“Today’s earthquake will
definitely be larger/smaller than 6.0”).

A further assumption is needed, however. As we will
discuss in more detail later, a normative account of the re-
sults is feasible if participants consider the timid predic-
tion to be made with more confidence than the bold one
but consider the two moderate predictions to be made with
aboutequal confidence. Although bold predictions regard
rare events, this does not necessarily imply that they are
perceived to be made with low confidence; bold predictions
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could be seen as being accompanied by at least as much
confidence as timid predictions. To examine this issue em-
pirically, in Experiment 3 we presented participants with
either the extreme or the moderate scenario used in Exper-
iment 1 (regarding the height of the next person to enter
the room) and asked them which of the two predictions
was made with greater confidence, or whether both predic-
tions were made with about the same level of confidence.

Method

There were 126 participants, about half of whom were drawn from
the population used in the earlier experiments, and about half of
whom were paid for participating. The two scenarios were the same
extreme and moderate ones used in Experiment 1, but the actual
height of the next person to enter the room was eliminated. The par-
ticipants simply read the introductory paragraph and the two pre-
dictions and then answered the question, “Which student do you
think is more confident that his/her prediction will be correct?”
There were three options, one corresponding to each of the students
and a third stating, “The two students are about equally confident in
their predictions.” In addition to assigning participants to either the
extreme or moderate scenario, we controlled for the order of the
three options.

Results and Discussion

When participants were presented with the extreme sce-
nario, the modal response (52% of the participants) was to
select the “under 6 ft 8 in.” forecaster as more confident,
while 17% selected the “over 6 ft 8 in.” forecaster, and 31%
reported that both forecasters were about equally confi-
dent. When they were presented with the moderate sce-
nario, however, the modal response (53%) was that both
forecasters were about equally confident; 34 % selected the
“under 5 ft 8 in.” forecaster as more confident,and 13% se-
lected the “over 5 ft 8 in.” forecaster. A scenario (extreme
vs. moderate) X compensation (course credit vs. pay) log-
linear analysis on the number of participants selecting the
“under,” “over,” and “equal” responses revealed only an ef-
fect of scenario [ x2(2, N = 126) = 6.4, p = .041]. Those
presented with the extreme scenario were more likely to
select the “under” forecaster as more confident and were
less likely to select the “equal” option relative to those pre-
sented with the moderate scenario.

A NORMATIVE ACCOUNT

The results of Experiment 3 make a normative account
of our earlier results rather straightforward. In terms of
Experiment 2, we will show that, given some reasonable
assumptions, the theory making the incorrect bold pre-
diction should be seen as more likely true than the theory
making the correct timid prediction.

Uncertainty in the predictions can be represented by
probability distributions. Panel A in Figure 2 shows two
normal distributions, the one on the left corresponding to
hypothetical confidence in the timid earthquake predic-
tion (“smaller than 6.0”), and the one on the right corre-
sponding to hypothetical confidence in the bold predic-
tion (“larger than 6.0”).! (Normal distributions are not

necessary for making our points, but they are sufficient.
Our goal here is not to provide a complete analysis, but to
illustrate our points in a simple manner.) The two distrib-
utions have the same variance, differing only in their means.
Consistent with the geophysical theories’ predictions,
most of the timid distribution is below 6.0 and most of the
bold distribution is above 6.0, about 69% in both cases.
Given these probability distributions, one can ask which
theory should be believed more strongly, given an observed
earthquake magnitude. The answer is the theory whose
curve is highest at the observed magnitude (assuming
equal prior probabilities that each theory is true, which
seems reasonable in our experiments). The vertical line
shows that the distribution corresponding to the timid pre-
diction is the highest distribution at the 5.9 magnitude.
Note that the two theories are equally likely to be true
where the curves intersectat 6.0. Any magnitude less than
that is evidence in favor of the theory making the timid
prediction, and any magnitude greater than that is evi-
dence in favor of the theory making the bold prediction.

The results of Experiment 3 show, however, that partic-
ipants generally expected the timid prediction to be made
with more confidence, meaning that the timid distribution
will have more of its area below 6.0 than the bold distrib-
ution will have above 6.0. Panel B shows the timid distri-
bution with about 98% of its area below 6.0, correspond-
ing to 98% confidence in the accuracy of the prediction,
while the bold distribution maintains 69% of its area
above 6.0, just as in panel A. Now the bold prediction’s
curve is highest at the observed 5.9 value, making the the-
ory that made the wrong prediction most likely the true
one. Given the current assumptions, this signal-detection
analysisis equivalentto a Bayesian one (Birnbaum, 1983;
Luce, 1963; McKenzie, Wixted, Noelle, & Gyurjyan, 2001),
and therefore, believing more strongly in the theory that
made the incorrect prediction is Bayes optimal.

There is another factor that will likely work in favor of
the theory making the bold prediction. The variances of the
distributions are equal in panels A and B, but it is plausible
thata bold prediction’s distribution will be assumed to have
less variance than that of a timid prediction. The timid pre-
diction’s distribution will probably have a wider range to
cover and therefore be more diffuse. The bold prediction,
occupying an extreme end of the scale, is unlikely to cover
as wide a range. Panel C shows the bold distribution with de-
creased variance while holding constant the area above 6.0
for the bold distribution and below 6.0 for the timid distrib-
ution at 69%. As the panel illustrates, the result is that, given
an earthquake magnitude of 5.9, the theory making the in-
correct bold prediction is most likely the true one.

It is conceivable that bold predictions are perceived as
being made with less confidence and as having tighter dis-
tributions. Such a case is shown in panel D. As can be seen,
the theory that made the incorrect bold prediction is even
more likely to be the true one under these circumstances.

In contrast to the expected asymmetry in confidence
between the bold and timid predictions, recall that the
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Figure 2. Panel A shows possible probability distributions corresponding to the timid prediction of earth-
quake magnitude (“<6.0”) on the left and the bold prediction on the right (“>6.0"). The two predictions
are perceived to be made with the same level of confidence and intersect at 6.0. The timid distribution is
therefore the highest distribution at the observed magnitude of 5.9 (vertical line), making the theory that
made the correct timid prediction most likely the true theory. Panel B shows the two distributions when
the bold prediction is made with lower confidence than is the timid prediction (see Experiment 3). The bold
distribution has less of its area above 6.0 than the timid distribution has below 6.0, which results in their
intersecting below the observed magnitude of 5.9. Thus, the curve corresponding to the bold prediction is
higher at the observed magnitude, making the theory that made the incorrect prediction most likely the
true theory. Panel C shows the two predictions made with equal confidence, but the bold distribution has
decreased variance. This also results in the theory making the incorrect bold prediction most likely the true
one. Panel D shows that when the bold prediction is made with less confidence and the distribution has de-
creased variance, the theory making the incorrect prediction is even more likely to be the true one. Panel
E shows possible probability distributions for the two moderate predictions, “<2.0” and “>2.0”. Because
both predictions are expected to be made with the same amount of confidence (Experiment 3), the distri-
butions intersect at 2.0, and the distribution corresponding to the theory making the correct prediction is
highest at the observed value of 1.9 (vertical line). Panel F shows possible probability distributions for two
judges’ interval responses to a general knowledge question. Judge A’s relatively flat distribution corre-
sponds to a wide interval ($20 billion to $40 billion) and Judge B’s tall distribution to a narrow interval ($18
billion to $20 billion). The vertical line represents the true value of $22.5 billion. Although the true value
falls inside A’s interval and outside B’s interval, B’s distribution is higher at the true value. Thus, B con-
siders the true value more likely than A does.

modal participantin Experiment 3 expected the moderate ~ “smaller than 2.0” prediction should be about equal to the
predictions to be made with roughly equal confidence.In  amount of area above 2.0 for the “larger than 2.0” predic-
the present context, this implies that the amount of area tion. Panel E illustrates two such distributions. Because of
below 2.0 for the distribution corresponding to the the symmetry in confidence (as in panel A), the curves in-
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tersect at 2.0, and if the observed magnitudeis below 2.0, the
“smaller than 2.0” theory is most likely true, and if it is above
2.0, the “greater than 2.0” theory is most likely true. Hence,
the actual magnitude of 1.9, shown by the vertical line, in-
dicates that the “smaller than 2.0” theory is most likely true.

In short, this post hoc analysis shows that both prefer-
ring the theory that made the incorrect bold prediction and
preferring the theory that made the correct moderate pre-
diction might be normatively coherent. We are not sug-
gesting that our participants behaved optimally—this
would depend on, among other things, the means, vari-
ances, and shapes of participants’ subjective probability dis-
tributions, along with their subjective prior probabilities—
only that it is plausible that their behavior makes norma-
tive sense. One key factor, empirically confirmed by Ex-
periment 3, is that the bold prediction is perceived to be
made with less confidence than the timid prediction, and
that the two moderate predictions are perceived to be
made with about equal confidence.

A NORMATIVE ACCOUNT
OF RELATED RESULTS

The normative accountalso provides an alternative way
to view similar results reported by Yaniv and Foster
(1995), who demonstrated that precise interval estimates
are sometimes viewed as superior to broad interval esti-
mates, even when only the latter contain the true value.
For example, imagine that two judges are asked how much
money was spent on education by the US federal govern-
ment in 1987. Judge A responds “$20 billion to $40 bil-
lion,” and Judge B responds “$18 billion to $20 billion.”
The true value is $22.5 billion. Which judge is better?
Most participants selected B, although the true value falls
outside B’s interval and inside A’s. Yaniv and Foster (1995)
asked participants many such questions and explained the
pattern of preferences using a descriptive model that
trades off accuracy and informativeness (where normal-
ized error is defined as the absolute difference between
the true value and the interval’s midpoint, divided by the
interval’s width, and informativeness is defined as the log
of the interval’s width). The tradeoff occurs because wider
intervals improve accuracy (i.e., decrease normalized error)
butdecrease informativeness. In the example above, though
Judge A is more accurate, Judge B is more informative.

Yaniv and Foster (1995) did not consider a normative
approach to the problem, but our earlier normative analy-
sis is applicable. Panel F in Figure 2 shows possible prob-
ability distributions for the two judges’ answers to the
question above. Each distribution has about 42% of its
area within the corresponding specified interval (e.g.,
42% of the area of B’s distribution is contained in the in-
terval between $18 billion and $20 billion). The value of
42% is based in part on Yaniv and Foster (1997), who
found that, when participants were asked for intervals cor-
responding to uncertain quantities, the intervals contained

the true value between 43% and 46% of the time across
three studies (see also Alpert & Raiffa, 1982; Lichtenstein,
Fischhoff, & Phillips, 1982). Thus, it is reasonable to as-
sume that participants expect others’ intervals to contain
the true value about this often. The vertical line corre-
sponds to the correct value of $22.5 billion. Note that B’s
curve is higher than A’s at that point. That is, although the
true value falls outside B’s interval, B is nonetheless seen
as assigning a higher probability to the true value. A cru-
cial assumption here is that the intervals reported by the
judges are perceived to be relatively low confidence in-
tervals. If, for example, participants perceive the intervals
as containing the true value 98 % of the time, then a higher
degree of belief in the true value could not be attributed to
B. As mentioned, though, participants’ own intervals typ-
ically contain the true value less than 50% of the time.

We are not claiming that Yaniv and Foster’s (1995) ac-
countis incorrect. Instead, our analysis makes two points.
First, a normative model of Yaniv and Foster’s task is fea-
sible. This is important because it can lead to a deeper un-
derstanding of why participants behave as they do in such
a task. This, in turn, can help guide the building and test-
ing of descriptive models.

Second, it is possible that the normative account does
predict behavior well. Yaniv and Foster (1995) found that
their accuracy—informativeness tradeoff model outper-
formed several alternative models, but they did not test a
normative model (probably because it was not obvious
that a normative model was applicable). They also found
that some alternative models performed almost as well as
theirs and concluded that what all the good performing
models had in common was that they traded off accuracy
and informativeness. The normative model makes a sim-
ilar tradeoff. Bold predictions have the advantage of tall
distributions, but the disadvantage of having to be near the
mark because their distributions fall away fast. Timid pre-
dictions have the advantage of maintaining some height
of their curve far from the true value, but they have the
disadvantage of having only modest heights even when
the true value is close to their mean. In terms of the rarity
principle, narrow intervals are bold predictions in that they
are relatively unlikely, a priori, to contain the true value.

Althoughit is possible that the normative accountis the
best descriptive model, itis not very plausible. Not only is
there much evidence indicating that people are not opti-
mal Bayesians (e.g., McKenzie, 1994), Bayesian models
are notorious for their enormous complexity even when
applied to modestly complicated real-world problems
(Charniak & McDermott, 1985; Dagum & Luby, 1993),
making them poor candidates for models of psychological
processes. Yaniv and Foster’s (1995) relatively simple
model, which is descriptively plausible, might capture the
cognitivesystem’s efficient solution to the complex Bayesian
problem (McKenzie, 1994). Thus, the two accounts of
Yaniv and Foster’s (1995) results are probably best seen as
complementary rather than competitive.
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GENERAL DISCUSSION

The three experiments and the normative analysis make
four points. First, Experiments 1 and 2 show that partici-
pants are highly sensitive to the rarity of data when testing
hypotheses. Not only are correct bold predictions (correct
predictions of rare events) seen as more supportive than
correct timid predictions (correct predictions of common
events; McKenzie & Mikkelsen, 2000; see also McKen-
zie, Ferreira, Mikkelsen, McDermott, & Skrable, 2001;
Oaksford & Chater, 1994, 1996; Oaksford et al., 1997),
but the present results show that incorrectbold predictions
can be seen as more supportive as well. We see this as
strong evidence in favor of recent views of lay inferential
behavior that have postulated that people are sensitive to
the rarity of data (McKenzie & Mikkelsen, 2000; Oaks-
ford & Chater, 1994).

Second, the results of Experiments 1 and 2 are not nec-
essarily the result of participants’ applying the normative
rarity principle to situations where it is inappropriate. We
have shown that incorrect bold predictions are norma-
tively more supportive than correct timid ones under cer-
tain conditions. An important assumption in our post hoc
analysis was that bold predictions are expected to be made
with less confidence than are timid predictions, which Ex-
periment 3 confirmed empirically. This means that even if
the bold prediction is off the mark, it might nonetheless
arise from the theory most likely to be true, or be made by
the forecaster most likely to provide the correct prediction.

Third, the normative account provides an alternative
way of viewing Yaniv and Foster’s (1995) finding that pre-
cise interval estimates that do not contain the true value
are sometimes seen as superior to broad interval estimates
that do contain the true value. Their account centered on
apurely descriptive model that traded off accuracy and in-
formativeness. The present perspective is that a judge pro-
ducing a precise interval estimate that does not contain the
true value might nonetheless be more likely to produce the
correct answer. A key assumption here is that the reported
intervals are seen as relatively low-level confidence inter-
vals (e.g., of around 50% rather than 98%), and this ap-
pears reasonable given that participants’ own intervals
contain the true value less than 50% of the time (Alpert &
Raiffa, 1982; Lichtenstein et al., 1982; Yaniv & Foster,
1997). A disadvantage of the normative accountis that as-
sumptions have to be made about the underlying proba-
bility distributions. It is possible that Yaniv and Foster’s
(1995) model, which is simpler and psychologicallymore
plausible than the normative Bayesian account, captures
the cognitive system’s efficient solution to the complex
normative problem. Regardless of its descriptive status,
the normative analysis deepens our understanding of the
task and of why participants behave as they do.

Finally, these results suggest that scientists and fore-
casters are even better off making bold predictions than
they perhaps realize: Making a bold prediction is less
risky than it appears because it can be wrong and still be
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convincing. People are more willing, for good reason, to
tolerate inaccuracy when a prediction is bold, which can
lead an otherwise disconfirmatory outcome to be per-
ceived as confirmatory.
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