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According to Bayesian theories in psychology and neuroscience, minds and brains are (near) optimal in
solving a wide range of tasks. We challenge this view and argue that more traditional, non-Bayesian
approaches are more promising. We make 3 main arguments. First, we show that the empirical evidence
for Bayesian theories in psychology is weak. This weakness relates to the many arbitrary ways that priors,
likelihoods, and utility functions can be altered in order to account for the data that are obtained, making
the models unfalsifiable. It further relates to the fact that Bayesian theories are rarely better at predicting
data compared with alternative (and simpler) non-Bayesian theories. Second, we show that the empirical
evidence for Bayesian theories in neuroscience is weaker still. There are impressive mathematical
analyses showing how populations of neurons could compute in a Bayesian manner but little or no
evidence that they do. Third, we challenge the general scientific approach that characterizes Bayesian
theorizing in cognitive science. A common premise is that theories in psychology should largely be
constrained by a rational analysis of what the mind ought to do. We question this claim and argue that
many of the important constraints come from biological, evolutionary, and processing (algorithmic)
considerations that have no adaptive relevance to the problem per se. In our view, these factors have
contributed to the development of many Bayesian “just so” stories in psychology and neuroscience; that
is, mathematical analyses of cognition that can be used to explain almost any behavior as optimal.
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In recent years there has been an explosion of research directed
at a surprising claim: namely, that minds and brains are (near)
optimal in solving a wide range of tasks. This hypothesis is most
strongly associated with Bayesian theories in psychology and
neuroscience that emphasize the statistical problems confronting
all organisms. That is, cognitive, motor, and perceptual systems
are faced with noisy and ambiguous inputs (e.g., a three-
dimensional world is projected on a two-dimensional retina), and
these systems are designed to carry out or approximate Bayesian
statistics in order to make optimal decisions given the degraded
inputs. Typical conclusions include the following:

It seems increasingly plausible that . . . in core domains, human
cognition approaches an optimal level of performance. (Chater, Te-
nenbaum, & Yulle, 2006, p. 289)

These studies . . . have shown that human perception is close to the
Bayesian optimal suggesting the Bayesian process may be a funda-
mental element of sensory processing. (Körding & Wolpert, 2006, p.
321)

One striking observation from this work is the myriad ways in which
human observers behave as optimal Bayesian observers. This obser-

vation . . . has fundamental implications for neuroscience, particularly
in how we conceive of neural computations and the nature of neural
representations of perceptual and motor variables. (Knill & Pouget,
2004, p. 712)

Our results suggest that everyday cognitive judgments follow the
same optimal statistical principles as perception and memory. (Grif-
fiths & Tenenbaum, 2006, p. 767)

These conclusions are exciting, not only because they are coun-
terintuitive (who would have thought we are optimal?), but also
because they appear to constitute novel claims about mind and
brain. In the standard view, cognitive, perceptual, and motor
systems are generally good at solving important tasks, but the
limitations of the systems were always salient. For example, var-
ious heuristics are often thought to support high-level reasoning
and decision making. These heuristics are adaptive under many
conditions but not optimal (in fact, how far from optimal is a
matter of some dispute; e.g., Gigerenzer & Brighton, 2009; Gig-
erenzer, Todd, & the ABC Research Group, 1999; Kahneman,
Slovic, & Tversky, 1982; Kahneman & Tversky, 1996). In a
similar way, perception is often characterized as a “bag of tricks”
(Ramachandran, 1990). That is, the perceptual systems rely on
heuristics that generally work well enough but in no way approx-
imate Bayesian solutions. More generally, it is often assumed that
evolution produces systems that satisfice (Simon, 1956) or melior-
ize (Dawkins, 1982). That is, selective adaptation produces “good
enough” solutions, or “better than alternative” solutions, but not
optimal solutions. The Bayesian approach, by contrast, appears to
claim that evolution has endowed us with brains that are exqui-
sitely good at learning and exploiting the statistics of the environ-
ment, such that performance is close to optimal.
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In this article we challenge the Bayesian approach to studying
the mind and brain and suggest that more traditional, non-Bayesian
approaches provide a more promising way to proceed. We orga-
nize our argument as follows. In Part 1, we introduce Bayesian
statistics and summarize three ways in which these methods have
influenced theories in psychology and neuroscience. These differ-
ent approaches to Bayesian theorizing make quite different claims
regarding how the mind works. In Part 2, we highlight how there
are too many arbitrary ways that priors, likelihoods, utility func-
tions, etc., can be altered in a Bayesian model in order to account
for the data that are obtained. That is, Bayesian models are difficult
to falsify. Our concern is not just hypothetical concern; we de-
scribe a number of Bayesian models developed in a variety of
domains that were built post hoc in order to account for the data.
In Part 3, we show how the predictions of Bayesian theories are
rarely compared to alternative non-Bayesian accounts that assume
that humans are reasonably good at solving problems (e.g., heu-
ristic or adaptive theories of mind). This is problematic given that
the predictions derived from optimizing (Bayesian) and adaptive
(non-Bayesian) theories will necessarily be similar. We review a
number of cases in a variety of domains in which data taken to
support the Bayesian theories are equally consistent with non-
Bayesian accounts.

Next, in Part 4, we consider the claim that collections of neurons
perform Bayesian computations. We argue that the data in support
of this claim are weaker still. There are impressive mathematical
analyses showing how populations of neurons should compute in
order to optimize inferences given certain types of noise (variabil-
ity) in neural responding, but little or no evidence exists that
neurons actually behave in this way. Finally, in Part 5, we chal-
lenge the general scientific approach that characterizes most
Bayesian theorizing in cognitive science. A key premise that
underlies most Bayesian modeling is that the mind can be studied
by focusing on the environment and the task at hand, with little
consideration of what goes on inside the head. That is, the most
important constraints for theories of mind can be discovered
through a rational consideration of what a mind ought to do in
order to perform optimally. We question this claim and argue that
many of the important constraints come from processing (algorith-
mic), biological, and evolutionary considerations that have no
adaptive relevance to the problem per se. Not only does this
“rational” approach to cognition lead to underconstrained theories,
it dissociates theories of cognition from a wide range of empirical
findings in psychology and neuroscience.

In our view, the flexibility of Bayesian models, coupled with
the common failure to contrast Bayesian and non-Bayesian
accounts of performance, has led to a collection of Bayesian
“just so” theories in psychology and neuroscience: sophisti-
cated statistical analyses that can be used to explain almost any
behavior as (near) optimal. If the data had turned out otherwise,
a different Bayesian theory would have been carried out to
justify the same conclusion, that is, that the mind and brain
support near-optimal performance.

Part 1: What Is a Bayesian Theory in Psychology
(and Neuroscience)?

At the most general level, Bayesian theories in cognitive
psychology and neuroscience assume that the mind and brain

perform Bayesian statistics, or something functionally similar
in a given context. The premise is that cognitive and perceptual
systems need to make decisions about unique events on the
basis of noisy and ambiguous information. Bayesian statistics
are the optimal method for estimating probabilities of unique
events, and the mind and brain are assumed to apply or approx-
imate this method in order to make optimal (or near-optimal)
decisions.

Most Bayesian theories are developed at a computational
rather than an algorithmic level of description (Marr, 1982).
That is, Bayesian theories describe the goal of a computation,
why it is appropriate, and the logic of the strategy, but not the
mental representations and processes that are employed in solv-
ing a task. Bayesian theories in psychology typically adopt the
“rational analysis” methodology described by Anderson (1991).
That is, the focus is on understanding the nature of the envi-
ronment (e.g., what information is available to an organism)
and the nature of the task being performed. Together, these
factors, when combined with Bayesian probability theory, de-
termine what an optimal solution should look like. Critically,
this solution is thought to provide important constraints on
theories of mind and brain.

To avoid any confusion, it is important to note that our criticism
of the Bayesian approach has nothing to do with Bayesian statistics
or Bayesian decision theory per se. That is, we do not take issue
with the claim that Bayesian methods provide optimal methods for
determining probabilities of specific events. Nor do we dispute the
promise of Bayesian analysis methods in the evaluation of cogni-
tive models (e.g., Lee, 2008; Rouder & Lu, 2005; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010). What we do question,
however, is the relevance of this statistical approach to theories of
mind and brain.

Bayesian Probability

Before considering the virtues of Bayesian theories in psychol-
ogy and neuroscience, it is perhaps worth reviewing the basics of
Bayesian statistics and their use in optimal decision making. Al-
though specific Bayesian methods can be quite complicated, it is
important to have a general understanding of Bayesian statistics,
given the claim that the mind and brain in some way implement or
approximate these methods.

Bayes’s theorem specifies the optimal way of combining new
information with old information. More specifically, if we have
some hypothesis about the world, possibly based on prior infor-
mation, Bayes’s rule tells us to how to reevaluate the probability of
this hypothesis in the light of new evidence. The rule itself is quite
straightforward, and may be written in the form

P�H�E� � P�H� � P�E�H�/P�E�. (1)

Here H is the hypothesis under investigation and E is the new
evidence. The left-hand side of the equation, P(H�E), is called the
posterior probability. This represents the probability that the hy-
pothesis is true given the new evidence (the symbol � means
“given”). The first term on the right-hand side of the equation,
P(H), is called the prior probability. This represents the prior
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probability that the hypothesis is true before the new evidence is
taken into account. The second term on the right-hand side of the
equation, P(E�H), is called the likelihood function. This represents
how likely it is that the new evidence would have been obtained
given that the hypothesis H is true. Finally, the denominator P(E)
represents the probability of the new evidence. Because this term
is constant with respect to the hypothesis H, it can be treated as a
scaling factor, and we can write the following:

Posterior probability � Likelihood function

� Prior probability,

where the symbol � is read “is proportional to.”
To illustrate the components of this formula and how Bayes’s

rule is used to estimate the posterior probability, consider the
following concrete example. Imagine that the hypothesis under
consideration is that a 30-year-old man has lung cancer, and the
new evidence is that he has a cough. Accordingly, the posterior
probability we want to calculate is the probability that the man has
cancer given that he has a cough, or P(cancer�cough). Adapting
Equation 1 to the current situation, we have

P�cancer�cough� � P�cancer� � P�cough�cancer�/P�cough�.

(2)

For this example, let us assume we have exact values for the priors
and likelihoods. Namely, the prior probability of a 30-year-old
man in the relevant population having lung cancer is .005, the
probability of coughing when one has cancer is .8 (likelihood), and
the overall probability of coughing is .2. Note that the symptom of
coughing can have many different causes, most of which are not
related to lung cancer, and the probability of .2 ignores these
causes and simply represents how likely it is that someone will
have a cough for whatever reason. Plugging these numbers into
Equation 2 leads to the following:

P�cancer�cough� � .005 � .8/.2 � .02.

The point to note here is that the estimated probability of cancer
has only gone up from .005 to .02, which makes intuitive sense
given that coughing is not a strong diagnostic test for cancer.

However, the resulting posterior probabilities are not always so
intuitive. Imagine that instead of relying on coughing, the relevant
new data is a patient’s positive result on a blood test that has a
much higher diagnostic accuracy. To evaluate this evidence, it is
helpful to decompose P(E) as follows:

P�E� � P�H� � P�E�H� � P(�H) � P�E��H�, (3)

where � means “not true.” That is, there are two possible expla-
nations of the positive result. The first possibility is that the result
is a correct detection. The probability of this is P(cancer) �
P(positive test � cancer), where P(positive test � cancer) represents
the hit rate (or sensitivity) of the test. Suppose that this hit rate is
.995. The second possibility is that the result is a false alarm. The
probability of this is P(�cancer) � P(positive test � �cancer),
where P(positive test � �cancer) represents the false-alarm rate of
the test, that is, the probability of the test’s being positive when
one does not have cancer. Suppose that this false-alarm rate is .01.
We can infer from these rates that the overall probability of a

positive test result is P(cancer) � Hit rate � P(�cancer) �
False-alarm rate � .005 � .995 � .995 � .01 � .015.

Plugging these numbers into Bayes’s rule leads to the following:

P�cancer�positive test� � .005 � .995 / �.005 � .995 � .995

� .01� � .33.

That is, even though the test has 99.5% detection accuracy when
cancer is present, and has 99% accuracy when it is not, the
probability that the patient has cancer is only 33%. Why is this? It
reflects the fact that posterior probabilities are sensitive to both
likelihoods and prior probabilities. The reason that the estimate of
cancer given the blood test is higher than the estimate of cancer
given a cough is that the likelihood has changed. And the reason
that P(cancer � positive test) is much lower than 99% is that the
prior probability of cancer is so low. To see the influence of the
prior, consider the same test result when the prior probability of
cancer is much higher, say, 1 in 3 (e.g., imagine that the person
being tested is a 90-year-old lifetime smoker). Then the computed
probability is

P�cancer�positive test� � .333 � .995/�.333 � .995 � .667 � .01�

� .98.

The important insight here is that the very same test producing the
same result is associated with a very different posterior probability
because the prior probability has changed. The necessity of con-
sidering prior probabilities (base rates) is one that most people find
quite counterintuitive. Indeed, doctors tend to perform very poorly
at determining the correct posterior probability in real-world prob-
lems like the above. For example, Steurer, Fischer, Bachmann,
Koller, and ter Riet (2002) found that only 22% of general prac-
titioners were able to use information about base rate and test
accuracy to correctly estimate the (low) probability of a patient
having a disease following a positive test result. Indeed, the
authors suggested that their findings might overestimate the aver-
age performance of general practitioners, as their participants were
recruited from doctors attending courses on evidence-based med-
icine. Similarly, Eddy (1982) reported that 95 out of 100 doctors
estimated the posterior probability to be approximately equal to the
likelihood P(E�H), apparently ignoring the prior probability P(H).
This assumption would be equivalent to reporting a 99.5% prob-
ability instead of a 33% probability (see Gigerenzer, Gaissmaier,
Kurz-Milcke, Schwartz, & Woloshin, 2007, for discussion of the
conditions that facilitate Bayesian reasoning).

In the Bayesian models discussed in this article it is often the
case that there are multiple hypotheses under evaluation. For
example, in a model of word identification, there may be separate
hypotheses corresponding to each possible word. We can then
make use of the law of total probability, which says that if the set
of hypotheses H1, H2, . . . , Hn is exhaustive, and each of these
hypotheses is mutually exclusive, then

P�E� � �i�1
n P�Hi� � P�E	Hi�. (4)

That is, the probability of the evidence can be found by summing
the joint probabilities over all hypotheses (where the joint proba-
bility is the prior probability times the likelihood), a process
referred to as marginalization. In practice, it may not be possible to
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guarantee the exclusivity and exhaustivity of a set of hypotheses.
However, for many practical purposes this does not matter, as we
are typically interested in the relative probability of different
hypotheses (i.e., is this new evidence best explained by H1 or H2?),
meaning that the absolute value of the scaling factor P(E), which
is independent of any specific hypothesis Hi, is not critical.

The value of using Bayes’s rule to make rational judgments
about probability is clear in the case of clinical examples like
cancer diagnosis. The strong claim made by proponents of Bayes-
ian inference models of cognition and perception is that humans
make use of the same rule (or close approximations to it) when
perceiving their environment, making decisions, and performing
actions. For example, while walking across campus, suppose you
see someone who looks like your friend John. In the Bayesian
formulation, “looks like John” might correspond to a specific
likelihood, such as P(E�John) � .8. Is it actually John? A rational
answer must take into account your prior knowledge about John’s
whereabouts. If John is your colleague, and you often see him on
campus, the chances are quite high that the person you have seen
is in fact John. If John is your next-door neighbor, and you have
never seen him on campus, the prior probability is lower, and you
should be less confident that the person you have seen is John. If
your friend John died 20 years ago, the rational prior probability is
0, and thus you should be perfectly confident that the person you
saw is not John, however much he may resemble him (i.e., what-
ever the likelihood). Of course, the idea that previous knowledge
influences perception is not novel. For example, there are abundant
examples of top-down influences on perception. What is unique
about the Bayesian hypothesis is the claim about how prior knowl-
edge is combined with evidence from the world, that is, the claim

that humans combine these sources of information in an optimal
(or near-optimal) way, following Bayes’s rule.

There are a number of additional complications that should
briefly be mentioned. First, unlike the simple examples above, the
priors and likelihoods in Bayesian theories of the mind generally
take the form of probability distributions rather than unique esti-
mates, given noise in the estimates. For example, the estimate of
the likelihood of a given hypothesis might be a distribution cen-
tered around a probability of .8, rather than consist of a single point
estimate of .8. This is illustrated in Figure 1, in which there is
uncertainty associated with both the likelihood and the prior,
resulting in a distribution for the posterior probability; as can be
seen, the posterior distribution is pulled in the direction of the prior
(or, to put it another way, the prior is updated to the posterior by
being shifted in the direction of the data). Thus, Bayesian methods
enable decision makers to go beyond point estimates and take into
account the uncertainty associated with a test in order to make
optimal decisions. As we show below, however, the practice of
estimating priors and likelihoods is fraught with difficulties.

Second, posterior probabilities do not always determine what
the optimal decision is. Imagine that the posterior probability of
cancer is best characterized as a probability distribution centered
around 10%. What is one to make of this fact? It obviously
depends on other factors (life expectancy associated with the
cancer, the risks and benefits associated with treatment, costs,
etc.), as well as the shape of probability distribution (e.g., how
tightly centered around 10% is the probability distribution? Is the
distribution skewed?). Accordingly, in Bayesian optimal decision
theory, the posterior probability is combined with a utility func-
tion, so that all the relevant variables (including the probability of

Figure 1. Separate probability distributions are shown for the prior, posterior, and likelihood function. The
posterior probability effectively revises the prior probability in the direction of the likelihood function.
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cancer) can be considered when making a decision. The optimal
decision is the one that maximizes utility—or equivalently, min-
imizes loss. However, this decision will depend on which variables
affect the utility function and how the resulting utility function
relates to the probability of cancer. For example, surgery may be
the best option if the probability of cancer is very high, whereas
some other treatment may maximize utility if the probability is
moderate. If the best estimate of the probability of cancer is .02,
the best decision is to have no treatment. As noted below, the
estimation of utility functions in psychological models is not
straightforward, as both the variables that affect utility and the
shape of the function relating these variables to utility tend to be
unknown.

A Possible Confusion Regarding “Optimality”

Undoubtedly one of the reasons that Bayesian theories have
gathered such attention in psychology and neuroscience is that
claims of optimality are counterintuitive. Indeed, such claims
might at first sound absurd. If humans are optimal, why are we
unable to outrun a cheetah, outswim a dolphin, or fly? Indeed, why
don’t we run, swim, and fly at the limits set by physics? What
needs to be emphasized is that optimality means something quite
specific in the Bayesian context. The core claim is that the mind
makes or approximates optimal decisions given noisy data. The
noise that the brain has to deal with is the product of not only the
physical world itself but also suboptimal human design (e.g., it is
suboptimal that photoreceptors are located at the back of the retina
and that neurons fire differently to the same stimulus on different
occasions). But bad design is not problematic for Bayesian theories
claiming that human cognition approaches optimality. In principle,
there is no limit on how badly designed systems are, except in one
respect. The decision stage that interprets noisy, suboptimal inputs
is hypothesized to be near optimal.

In sum, Bayesian statistics provide a method of computing the
posterior probability of a hypothesis, which provides the best way
to update a prior belief given new evidence. Bayesian decision
theory defines how our beliefs should be combined with our
objectives to make optimal decisions given noisy data.

Three Types of Bayesian Theorizing in Psychology and
Neuroscience

Three approaches to Bayesian theorizing in psychology and
neuroscience can be distinguished; we refer to these as the ex-
treme, methodological, and theoretical approaches. The difference
concerns how Bayesian theories developed at a computational
level of description relate to the algorithmic level. On the extreme
view, psychology should concern itself only with developing the-
ories at a computational level. Questions of how the mind actually
computes are thought to be intractable and irrelevant. For instance,
Movellan and Nelson (2001) wrote:

Endless debates about undecidable structural issues (modularity vs.
interactivity, serial vs. parallel processing, iconic vs. propositional
representations, symbolic vs. connectionist models) may be put aside
in favor of a rigorous understanding of the problems solved by
organisms in their natural environments. (pp. 690–691)

We do not have much to say about this approach, as it dismisses
the questions that are of interest to most cognitive psychologists.

This approach might make good sense in computer science or
robotics labs, but not, in our view, cognitive science. In any case,
such extreme views are rare.

More common is the methodological Bayesian approach. Meth-
odological Bayesians are not committed to any specific theory of
mind, at any level of description. Rather, they use Bayesian models
as tools: The models provide a measure of optimal behavior that
serves as a benchmark for actual performance. From this perspec-
tive, the striking result is how often human performance is near
optimal, and this is considered useful for constraining a theory
(whatever algorithm the mind uses, it must support behavior that
approximates optimal performance). But this approach is in no
way committed to the claim that the mind and brain compute in a
Bayesian-like way at the algorithmic level. For example, Geisler
and Ringach (2009) wrote:

There are a number of perceptual and motor tasks where humans
parallel the performance predicted by ideal Bayesian decision theory;
however, it is unknown whether humans accomplish this with simple
heuristics or by actually implementing the machinery of Bayesian
inference. (p. 3)

That is, the methodological approach is consistent with qualita-
tively different theories of mind. On the one hand, the mind might
be Bayesian-like and compute products of priors and likelihoods
for all the possible hypotheses (as in Equation 1). On the other
hand, the mind might be distinctly non-Bayesian and carry out
much simpler computations, considering only a small subset of the
available evidence to reach a near-optimal decision.

Theoretical Bayesians agree that Bayesian models developed at
the computational level constitute a useful method for constraining
theories at the algorithmic level (consistent with the methodolog-
ical Bayesian approach), but claim that the mind carries out or
approximates Bayesian computations at the algorithmic level, in
some unspecified way. For example, when describing the near-
optimal performance of participants in making predictions of un-
certain events, Griffiths and Tenenbaum (2006) wrote: “These
results are inconsistent with claims that cognitive judgments are
based on non-Bayesian heuristics” (p. 770). Indeed, Bayesian
models developed at a computational level are thought to give
insight into how neurons compute. For instance, Körding and
Wolpert (2006, p. 322) wrote: “Over a wide range of phenomena
people exhibit approximately Bayes-optimal behaviour. This
makes it likely that the algorithm implemented by the [central
nervous system] may actually support mechanisms for these kinds
of Bayesian computations.” When Chater, Oaksford, Hahn, and
Heit (2010) wrote that “Bayesian methods . . . may bridge across
each of Marr’s levels of explanation” (p. 820), we take it that they
were adopting a theoretical Bayesian perspective in which com-
putational, algorithmic, and implementational descriptions of the
mind may all be Bayesian.

Again, theoretical Bayesians are not committed to specific
claims regarding how the mind and brain realize Bayesian com-
putations at the algorithmic and implementational levels. But in
some way a Bayesian algorithm must (a) store priors in the forms
of probability distributions, (b) compute estimates of likelihoods
based on incoming data, (c) multiply these probability functions,
and (d) multiply priors and likelihoods for at least some alternative
hypotheses (the denominator in Equation 1). It is a commitment to
the above four claims that makes a theory Bayesian (as opposed to
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simply adaptive), and a novel claim about how the mind and brain
work.1

In principle, the contrast between methodological and theoreti-
cal Bayesian theories is straightforward. However, two factors act
to blur this distinction in practice. First, theoretical Bayesians are
not committed to the claim that the algorithms of the mind are
perfectly Bayesian. Many problems are computationally intracta-
ble when framed in pure Bayesian terms, and thus it is necessary
to rely on various approximations to the prior and likelihood
distributions, as well as approximations to the hypothesis space.
Accordingly, the challenge from the theoretical perspective is to
develop psychologically plausible algorithms that provide good
estimates of priors, etc., while relying on limited resources. Al-
though these approximations are sometimes called heuristics (e.g.,
Sanborn, Griffiths, & Navarro, 2010), they are qualitatively dif-
ferent from the heuristics as envisaged by, for example, the “bias
and heuristics” paradigm (e.g., Kahneman & Tversky, 1982) or the
“ecological rationality” approach (Gigerenzer et al., 1999), accord-
ing to which the mind relies on simple (sometimes nonprobabilis-
tic) shortcuts in lieu of priors, likelihoods, and optimal methods of
combining probability distributions. Again, the output of a good
heuristic model might approximate the decisions of a Bayesian
model in a given context, but it will not approximate the under-
lying processes.

Second, researchers are often inconsistent or unclear with regard
to their position. For instance, in various passages in various
publications, Oaksford and Chater (2003, 2007) argued that the
mind is most likely a probabilistic device, cited findings from
neuroscience that suggest that the collections of neurons can carry
out probabilistic calculations (see Part 4 below), and argued that
human everyday reasoning is too flexible for heuristic solutions:
“The onus is on the advocates of an across-the-board view that
human reasoning is no more than a collection of reasoning heu-
ristics to show how the flexibility of human reasoning is possible”
(Oaksford & Chater, 2007, p. 278). At other times, they claimed
that Bayesian and heuristic theories are quite consistent with one
another. Indeed, in places, they have endorsed algorithmic models
that are non-Bayesian and constrained by satisficing rather than
optimality criteria:

We suspect that, in general, the probabilistic problems faced by the
cognitive system are simply too complex to be solved directly, by
probabilistic calculation. Instead, we suspect that the cognitive system
has developed relatively computationally “cheap” methods for reach-
ing solutions that are “good enough” probabilistic solutions to be
acceptable. (Oaksford & Chater, 2007, p. 83)

The failure to clearly distinguish between the methodological
and theoretical approaches is not inconsequential, for at least two
reasons. First, it makes it difficult to appreciate what theoretical
issues are at stake. Indeed, it is not always clear whether any
theoretical issues are salient. For example, according to Chater
(2000), “rational methods can be views as compatible with the
‘ecological’ view of rationality outlined in Gigerenzer” (p. 746),
whereas Brighton and Gigerenzer (2008) strenuously disagreed. It
is hard to have a useful debate if the nature of the disagreement is
unclear. Second, it makes it difficult to evaluate current claims
given that the methodological and theoretical Bayesian approaches
need to be tested in different ways. If researchers are claiming that
Bayesian models constitute an important methodological tool for

formulating and evaluating theories, then it is necessary only to
evaluate how this method provides important constraints for the-
orizing above and beyond previous methods. However, if the claim
is that perception, cognition, and behavior are supported by
Bayesian-like algorithms, then it is necessary to show that Bayes-
ian theories are more successful than alternative theories. Below
we review the literature in the context of the methodological and
theoretical Bayesian distinction and challenge the contribution of
both approaches.

Part 2: Bayesian Theories Are Flexible Enough to
Account for Any Pattern of Results

Bayesian theories of mind and brain have been developed in a
wide range of domains, from high-level cognition to low-level
perception and motor control. It is our contention that the evidence
presented in support of Bayesian theories in these various domains
is much overstated, for two reasons. The first reason, considered in
this section, is that there are too many arbitrary ways that priors,
likelihoods, utility functions, etc., can be altered in a Bayesian
theory post hoc. This flexibility allows these models to account for
almost any pattern of results.

Speed Perception

Weiss, Simonceilli, and Adelson (2002) developed a Bayesian
model of motion perception that accounts for an illusion of speed:
Objects appear to move more slowly under reduced or low-
contrast conditions. To accommodate these findings within a
Bayesian framework, Weiss et al. assumed that bottom-up evi-
dence is degraded under poor viewing conditions and, accordingly,
the likelihood function is associated with greater uncertainty. The
second assumption is that objects tend to move slowly in the world
and, accordingly, the prior is biased toward slow movement.
Together, these two assumptions can explain why objects appear to
move more slowly under poor viewing conditions (because the
prior plays a larger role in the computation of the posterior prob-
ability). Weiss et al. related this analysis to a variety of findings,
including the tendency of automobile drivers to speed up in foggy
conditions.

Clearly, the prior is playing a key role in the model’s ability to
account for the illusion. The question, then, is whether this prior is
motivated independently of the phenomenon the model is trying to
explain. The answer is no, as articulated by Weiss et al. (2002):

We formalized this preference for slow speeds using a prior proba-
bility distribution. . . . We have no direct evidence (either from first
principles or from empirical measurements) that this assumption is
correct. We will show, however, that it is sufficient to account
qualitatively for much of the perceptual data. (p. 599)

1 Our distinction between methodological and theoretical Bayesian the-
ories is similar to the distinction that Brighton and Gigerenzer (2008) made
between “broad” and “narrow” senses of the probabilistic mind. Jones and
Love (2011) categorized Bayesian theories somewhat differently, subdi-
viding theories into what they called Bayesian fundamentalism and Bayes-
ian enlightenment. The Bayesian fundamentalism category is similar to
what we call the extreme Bayesian approach, whereas Bayesian enlight-
enment could encompass both the methodological and theoretical ap-
proaches (cf. Bowers & Davis, 2011).
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Furthermore, to account for perceptual data in a quantitative rather
than qualitative manner, Weiss et al. introduced a nonlinear “gain
control” function that mapped stimulus contrast into perceived
contrast. They provided no justification for this new likelihood
function other than that it improved the fit of the model.

It should be noted that Weiss et al. (2002) assumed that the same
motion prior is used when estimating the speed of computer
generated gratings as when viewing natural objects from a moving
car. But it would at least be possible that an optimal Bayesian
system might conditionalize speed priors to different contexts,
such that the speed prior of an oncoming car is not the same as for
a leaf blowing in the wind. Indeed, many Bayesian models capi-
talize on different priors for different categorizes of objects in
order to make their predictions (e.g., Hemmer & Steyvers, 2009),
and Seydell, Knill, and Trommershäuser (2010) highlighted how
quickly priors can change through experience. Assuming that all
things move slowly, as in Weiss et al.’s prior, seems decidedly
suboptimal.

More problematically, the illusion that objects appear to move
slowly under poor illumination conditions does not occur under all
conditions. For example, Thompson, Brooks, and Hammett (2006)
found that although perceived speed is reduced for slow rates of
movement, it is often overestimated for faster speeds. Similar
increases in perceived speed at low contrast have been reported by
Hammett, Champion, Thompson, and Morland (2007), who noted
that this poses a challenge for Weiss et al.’s (2002) Bayesian
theory. In response to these findings, Stocker and Simoncelli
(2006) noted that their Bayesian theory of speed perception could
account for this phenomenon as well: “If our data were to show
increases in perceived speed for low-contrast high-speed stimuli,
the Bayesian model described here would be able to fit these
behaviors with a prior that increases at high speeds” (p. 583). But
again, they do not provide any motivation for this new prior, other
than to account for the data. In sum, there is little evidence for
Weiss et al.’s assertion that humans perceive motion in the manner
of ideal observers (for recent evidence regarding the “remarkable
inefficiency” of humans’ motion perception, see Gold, Tadin,
Cook, & Blake, 2008).

Word Identification

Norris and colleagues (Norris, 2006, 2009; Norris & Kinoshita,
2008; Norris, Kinoshita, & van Casteren, 2010; Norris & Mc-
Queen, 2008) have published a series of theoretical and empirical
articles taken to support a Bayesian account of visual (and spoken)
word identification. The models assume that readers and listeners
are Bayesian decision makers, making optimal decisions on the
basis of the available (noisy) evidence and their knowledge of the
prior probabilities of words. Indeed, compared with alternative
theories, the Bayesian reader is claimed to provide a better and
more principled account of a range of phenomena, including the
impact of word frequency on response times to identify words
(Norris, 2006), the impact of form similarity on word identification
in different tasks (Norris et al., 2010), and various priming phe-
nomena (Norris & Kinoshita, 2008). However, the choices of
priors, likelihoods, and decision rules are critical to the model’s
performance, and the specific choices of these parameters that
have been adopted have been driven by empirical rather than
rational considerations.

In the initial formulation of the Bayesian reader model, the prior
probability for each word was based on its frequency in the
language, enabling the model to provide a good account of word
frequency effects. However, although word frequency is a large
contributor to the time it takes to identify a word, it is not the only
contributor. For example, another variable that influences word
identification is age of acquisition (AoA; e.g., Brysbaert, Lange, &
Van Wijnendaele, 2000; Morrison & Ellis, 1995; Stadthagen-
Gonzalez, Bowers, & Damian, 2004). Norris (2006) argued that
such variables can be incorporated into the priors, noting that “the
Bayesian account is neutral as to the exact mechanism responsible
for calculating prior probabilities” (p. 347); “frequency is not the
only factor that can influence the prior probability of a word” (p.
331); and factors such as cumulative frequency, AoA, and context
“can be thought of as simply influencing the psychological esti-
mate of a word’s prior probability” (p. 334). That is, the Bayesian
model can postdict AoA effects by putting AoA into the priors. At
the same time, the model also explains masked priming effects via
changes in the priors (Norris & Kinoshita, 2008). For example, the
50-ms presentation of the prime table is thought to temporarily
increase the prior of the word target TABLE, leading to the pre-
diction that table primes TABLE. A flexible approach to setting the
priors ensures that the model can provide a good fit to a range of
empirical data. Nevertheless, this ability to describe the data ac-
curately comes at the cost of falsifiability.

A similar flexibility in the specification of the Bayesian reader
is evident in the choice of the likelihood function, which plays a
critical role in the performance of the model. This function de-
pends on assumptions about both the nature of input coding and
the algorithm for matching this input representation against famil-
iar words. Both of these components have undergone multiple
iterations in the various articles describing the ongoing develop-
ment of the Bayesian reader. For example, the original model
assumed the same coding scheme used in the original interactive
activation model (McClelland & Rumelhart, 1981), but this pre-
vented the model from accounting for a number of key priming
results, including the masked priming obtained between primes
and targets that differ in a letter transposition (e.g., prime � talbe,
target � TABLE; cf. Davis, 2006). To address this problem in a
subsequent version of the model, Norris and Kinoshita (2007)
assumed the same coding scheme and matching algorithm used in
the overlap model (Gomez, Ratcliff, & Perea, 2008). In a more
recent article, Norris et al. (2010) advocated a coding scheme
similar to the spatial coding model (Davis, 2010) in order to
recognize familiar words in novel contexts (e.g., CAT in the
TREECAT), as well as various behavioral results that reveal the
perceptual similarity of words that share a subset–superset relation
(e.g., Bowers, Davis, & Hanley, 2005; Davis, Perea, & Acha,
2009; Grainger, Granier, Farioli, Van Assche, & van Heuven,
2006; cf. Bowers & Davis, 2009). This coding scheme has yet to
be implemented in the Bayesian model.

We do not intend to criticize modelers for adopting a flexible
approach that enables them to reject unsatisfactory solutions in
favor of coding schemes and/or algorithms that work better. Nev-
ertheless, this flexibility, which is characteristic of the Bayesian
reader, highlights the way in which critical aspects of Bayesian
models are driven by the constraints provided by empirical data,
rather than by rational analysis or fundamental Bayesian princi-
ples. Accordingly, statements like the following are not justified:
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One of the most important features of the Bayesian reader is that its
behavior follows entirely from the requirement to make optimal
decisions based on the available information. . . . The model has not
been influenced or changed in any way by consideration of the data.
(Norris, 2006, p. 351)

For more discussion of these issues, see Bowers (2010a, 2010b)
and Norris and Kinoshita (2010). For evidence regarding the
“remarkable inefficiency” of visual word identification, see Pelli,
Farell, and Moore (2003).

High-Level Cognition

High-level cognition would seem to be least amenable to a
Bayesian interpretation given the vast catalogue of results suggest-
ing that humans are poor (irrational) in making judgments, rea-
soning, and decision making. Kahneman et al. (1982, p. 60)
concluded that “in his evaluation of evidence, man is apparently
not a conservative Bayesian; he is not a Bayesian at all.” However,
there has been a resurgence of research suggesting that we are near
optimal in reasoning and decision making. But as above, these
theories rely on post hoc assumptions that weaken any conclu-
sions. We briefly review three examples.

Decision making in soccer. Bar-Eli, Azar, and Lurie (2009)
considered the apparently irrational behavior of elite soccer play-
ers during penalty kicks. Statistical analysis shows that goalkeep-
ers are most successful in blocking penalty kicks when they wait
to see in which direction the ball has been kicked before choosing
which way to jump. Nevertheless, the vast majority of the time,
goalkeepers’ jumps anticipate the kick. In addition, Bar-Eli et al.
found that kickers are most likely to succeed when they shoot to
the upper left or right of the net and, nevertheless, most often shoot
to the bottom half of the net. Bar-Eli et al. noted that these choices
seem irrational, particularly given that goalkeepers and kickers are
highly trained athletes with large financial incentives to succeed.
Why, then, do they not respond optimally to the statistics of
penalty kicks?

Bar-Eli et al. (2009) answered this question by arguing that
goalkeepers and kickers are in fact responding optimally, but that
the utility function of goalkeepers is not to minimize goals and the
utility function of kickers is not to maximize goals. Instead, their
behavior is designed to optimize a “social rationality” utility
function. In the case of a goalkeeper, the utility function includes
not only the outcome (goal vs. no goal) but also his or her reaction
to the outcome. That is, a goalkeeper might feel worse following
a goal when he or she did not jump than when he or she did jump.
This is not implausible: A goalkeeper wants to appear as though he
or she is trying hard to stop the ball; trying one’s best is an
important value. Similarly, the utility function of the kicker also
includes his or her reaction to the outcome (goal vs. nongoal). A
kicker is likely to feel worse following a missed goal if he or she
missed the net compared with when the goal was saved by the
goalkeeper. In the former case, the missed goal is likely to be
entirely attributed to the failure of the kicker, whereas in the latter
case, the failure will be attributed, to some extent, to the skills of
the goalkeeper. So in both cases, the behavior of goalkeepers and
kickers does not maximize the likelihood of saving or scoring
goals but may maximize the social rationality utility function.

This seems a reasonable analysis, but the flexibility of the utility
function undermines the strength of the conclusions. That is, if the

results had been otherwise, and goalkeepers and kickers behaved
in a fashion that maximized the utility function of goal outcome,
then the same conclusion would obtain, namely, that soccer play-
ers act in an optimal fashion, just with different utility functions.
Another example in which different utility functions lead to radi-
cally different outcomes is discussed by Nelson (2009), who noted
the consequent difficulties in model comparison when optimal
models can be outperformed by nonoptimal strategies.

The Wason card sorting task. A classic example of poor
human reasoning comes from the Wason card sorting task. In the
standard example, participants see cards with an A, K, 2, and 7
face up, and are asked which cards they should turn over in order
to test the hypothesis that “if there is an A on one side of a card,
then there is a 2 on the other.” Participants often turn over the card
with the 2 (confirming the consequent), which is irrelevant, and
rarely select the 7, which is relevant. This finding has been taken
as strong evidence that people do not reason according to the rules
of logic and, more generally, highlights humans’ poor reasoning
ability.

However, Oaksford, and Chater (1994) argued that performance
is close to optimal when the normative standard is Bayesian
rationality rather than logic, and they explained human perfor-
mance with their optimal data selection (ODS) model. Very
briefly, this model treats the Wason task as a conditional reasoning
task. The question that participants are answering is whether there
is a conditional relation between the antecedent (p) and the con-
sequent (q), such that p(q�p) is higher than p(p) or p(q), or
alternatively, whether (p) and (q) are independent, such that p(q�p)
is similar to p(p) or p(q). On the basis of this theory, participants
turn over the cards that provide the most information in distin-
guishing these two hypotheses. Critically, the model can account
for the pattern of results in this task if a rarity assumption is
adopted: namely, that p (the card with the A in this example) and
q (the card with the 2) are rare in the world. Under these condi-
tions, the ODS model predicts that the two cards that lead to the
greatest expected information gain are A and 2—precisely the
cards that subjects most often select.

There are reasons, however, to question this analysis. First, as
noted by Evans and Over (2004) and Sloman and Fernbach
(2008), the A and the 2 are not rare in the context of the cards
set before the participants, and it is not clear why participants
should adopt the rarity assumption in this context. Second, the
rarity assumption needs to be rejected in related cases. For
example, Schroyens and Schaeken (2003) reported a meta-
analysis of 65 experiments in which participants were asked to
judge the validity of conditional inferences. For instance, a
participant might be given the problem

�1� If A then 2,

�2� A,

�3� 2?

That is, participants were required to determine whether or not the
answer in 3 follows from 1 and 2. To fit these data with the ODS
model, it was necessary to assume that the probabilities of the
antecedent and consequent were relatively high, contradicting the
rarity assumption. That is, the rarity assumption must be invoked
to explain performance on the Wason task, but must be rejected to
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explain conditional inferences in other tasks. Third, as noted by
Wagenmakers (2009), each card in the Wason task reduces the
expected uncertainty to some extent in the ODS model. Why, then,
do participants not select all four cards rather than one or two?

Oaksford and Chater (2007) argued that their model succeeds
when various pragmatic considerations are taken into account.
With regard to the rarity assumption, they argued that judging the
validity of conditional inferences (as in the studies reviewed by
Schroyens and Schaeken, 2003) and selecting the relevant cards in
order to test the validity of conditional inferences (as in the Wason
card task) provide different contexts for interpreting the condition-
als. That is, according to Oaksford and Chater, the conditionals are
introduced as assertions in the former case, conjecture in the later
case. These contexts are thought to encourage participants to reject
and accept the rarity assumption, respectively. Oaksford and
Chater also noted that the pragmatics of the situation led the
participants to pick some but not all the cards. One can agree or
disagree with the force of the responses, but what is clear is that
Bayesian principles per se do not account for human performance
in these conditional reasoning tasks. Rather, ancillary assumptions
need to be added to the model in response to the behavioral data.

Indeed, Oaksford and Chater (2007) agreed that it is necessary
to complement their computational-level theory with a theory at
the algorithmic level that incorporates various processing assump-
tions. Furthermore, their response to Schroyens and Schaeken’s
(2003) critique indicates that the algorithmic level need not simply
be an implementation of the computational theory, but may con-
tribute explanatory power in its own right. Oaksford and Chater
(2003) wrote:

Oaksford et al. (2000) presented an account of conditional reasoning
in which the computational level theory is provided by Bayesian
probability theory. Consequently, Schroyens and Schaeken’s single
predictive failure only hits its target on the auxiliary assumption that
the algorithmic level has no work to do. Oaksford et al. (2000)
carefully avoided this assumption. . . . Consequently, the one explan-
atory failure Schroyens and Schaeken found . . . does not mean that
CP [the conditional probability model] is false. (p. 151)

This response raises separate questions, however. If explanatory
failures in a Bayesian model can be minimized by attributing the
performance in question to processes occurring at the algorithmic
level and outside the scope of the computational theory, is it ever
possible to falsify Bayesian models, situated at the computational
level? And if the behavior of the model may differ when the
specific processing assumptions of the algorithmic level are im-
plemented, how much weight should be attached to the successes
of the computational theory? Might not these “correct” predictions
be modified when the algorithm is implemented?

In sum, we have outlined several examples where priors, like-
lihoods, utility functions, and other considerations were introduced
in response to the data (we review further examples in the next
section). As noted by Sloman and Fernbach (2008), Bayesian
models developed in this manner should be considered descriptive,
not rational. Indeed, given the flexibility of these models to de-
scribe a wide range of outcomes, their successes provide little
evidence that the mind computes in a Bayesian-like way, and
furthermore, it undermines the use of these models as benchmarks
for optimal behavior. If theorists want to claim that behavior
approaches optimal performance, then it needs to be shown that

Bayesian models capture human performance when the models
were developed in response to the problem that needs to be solved,
the environment, and perhaps some additional independent con-
straints derived from processing limitations (e.g., short-term mem-
ory) and biology—that is, when the priors, likelihood functions,
etc., are developed without regard to the data themselves.

Falsification in Bayesian and Non-Bayesian Theories

One possible reaction to the above critique is that it is unfair,
because much the same criticisms could be leveled at all models.
Non-Bayesian models often include many free parameters, and
they too can fit a wide range of potential outcomes, including those
that were not observed. Thus, it could be argued that our criticisms
concerning model falsifiability should be directed at modeling in
cognitive science full stop and not at Bayesian theories per se.

We have two general responses to this point. First, we agree that
many non-Bayesian models are hard to falsify because they can
account for a wide range of possible outcomes (including out-
comes that do not in fact occur). Indeed, the flexibility of many
standard processing models has been the focus of much discussion
(e.g., Pitt, Myung, & Zhang, 2002; Roberts & Pasher, 2000).
Nevertheless, we have emphasized the flexibility of Bayesian
models because it is often assumed (and claimed) that Bayesian
models are more constrained than the non-Bayesian alternatives.
For instance, when comparing a Bayesian model of spoken word
identification to previous non-Bayesian models, Norris and Mc-
Queen (2008) argued that the Bayesian model includes many
fewer free parameters:

So, where have all the parameters gone? Remember that our claim
here is that people approximate optimal Bayesian recognizers, and
that this determines the functions that must be computed. . . . What
allows us to dispense with so many free parameters are the strong
principles underlying the theory. (pp. 387–388)

Geisler (2011) wrote: “Thus, a powerful research strategy is to use
the ideal observer to guide the generation of hypotheses and
models of real performance. . . . Models generated this way are
principled and often have very few free parameters” (p. 772). But
this is a mischaracterization of the flexibility of Bayesian models,
as highlighted above. The choice of prior (as in motion percep-
tion), the likelihood function (as in the various versions of the
Bayesian reader), the utility function (as in soccer players), and the
alternative hypotheses that are considered (as in the Wason card
sorting task) are all free to vary, and this is often exploited in order
that the Bayesian model matches human performance. This weak-
ens the value of a Bayesian approach both as a methodological tool
and as a theory of mind.

Our second point is that Bayesian models are less easily falsified
than non-Bayesian models because they generally make fewer
predictions. That is, models developed at a computational level do
not make predictions about phenomena that can be directly attrib-
uted to the algorithmic or implementational levels of analysis. For
instance, Oaksford and Chater (2007) wrote:

There will clearly be aspects of cognition for which a rational expla-
nation is not appropriate—the detailed cognitive effects of brain
lesion can hardly be predicted from rational principles alone, after
all—knowledge of the algorithms that the brain uses and their neural
implementation will, of course, be crucial here. (p. 269)
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Or as noted by Griffiths, Kemp, and Tenenbaum (2008):

Some phenomena will surely be more satisfying to address at an
algorithmic or neurocomputational level. For example, that a certain
behavior takes people an average of 450 milliseconds to produce,
measured from the onset of a visual stimulus, or that this reaction time
increases when the stimulus is moved to a different part of the visual
field or decreases when the same information content is presented
auditorily, are not facts that a rational computational theory is likely
to predict. (p. 61)

Although neuropsychological and response time data are often not
considered relevant when developing Bayesian models at a com-
putational level, these data are considered critical in the develop-
ment and evaluation of standard information processing models. It
stands to reason that it is harder to falsify the Bayesian accounts.
Again, this weakens the strong conclusions often advanced by
methodological and theoretical Bayesians.

Do Bayesian Theories Provide Unique Insight Into the
Why Question?

The flexibility of Bayesian theories also compromises what is
often considered to be one of their key advantages, which is that
they are claimed to provide unique insight into the why question.
In fact, there are two ways in which theorists have asserted the
advantage of Bayesian approaches in answering the why question.
The first, more common argument is that computational-level
Bayesian theories are able to explain all the data of interest without
invoking arbitrary mechanistic explanations. For example, Oaks-
ford and Chater (2009) wrote:

A good deal of empirical data about human reasoning (and indeed,
human cognition more generally) can be understood as arising from
the structure of the problem itself—that is, the nature of the problem
drives any reasonable algorithmic solution to have particular proper-
ties, which may be evident in the data. This idea is a core motivation
for the rational analysis approach. . . . (p. 84)

Regarding this approach, if behavior approximates the predictions
that can be derived from a purely rational analysis, it provides an
answer to the why question: Behavior is as it is because it is close
to optimal. For present purposes, we will call this the Type 1
answer to the why question.

A second, rather different argument starts from apparent devi-
ations from optimality. The assumption is that performance is in
fact optimal, despite appearances, and the goal is to identify
assumptions (e.g., priors, likelihoods) that make the observed
behavior (near) optimal. That is, theorists should compare different
Bayesian models to the data (e.g., models that make different
assumptions about the mind and world), and the success of a
particular Bayesian model is thought to provide insight into what
assumptions the mind works with. The critical point for present
purposes is that these assumptions play a key role in answering the
why question: People act in a certain way because they are rational
and have specific assumptions about the world. This view is nicely
captured by Griffiths and Tenenbaum: “Bayesian models require
making the assumptions of a learner explicit. By exploring the
implications of different assumptions, it becomes possible to ex-
plain many of the interesting and apparently inexplicable aspects

of human reasoning” (2006, p. 772). For present purposes, we refer
to such assumptions as Type 2 answers to the why question.

Although both types of answers to the why question have been
characterized as Bayesian, they are quite different, most notably
with respect to whether the data themselves are supposed to
contribute to the development of explanations. In our view, neither
approach provides a reason to prefer Bayesian over non-Bayesian
theorizing.

The key problem with the Type 1 answers is that Bayesian
models are rarely, if ever, constructed on the basis of rational
analysis alone. Rather, as demonstrated above, modelers are free to
vary many aspects of their model, and they often need to make
arbitrary assumptions about priors, likelihood functions, etc., in
order to capture the data. A rational analysis informed by human
performance is every bit as arbitrary as a mechanistic model built
around the data, and the predictions of such models should be
considered descriptive rather than normative. As descriptive the-
ories, they lose their capacity to provide Type 1 answers to the why
question.

Type 2 answers are more subtle. A good illustration of this
approach is offered by McKenzie (2003), who described a number
of instances in which performance in the laboratory appears to
deviate from optimality but where a rational model with the
appropriate assumptions can explain behavior. One of his exam-
ples is the so-called framing effect in which logically equivalent
descriptions of a problem lead to very different decisions (Tversky
& Kahneman, 1981). Consider the standard example of evaluating
a medical treatment. Participants are told to imagine that they have
a terrible disease and have to decide whether to accept a specific
treatment option. Some participants are told that the treatment has
a 20% mortality rate within 5 years, whereas other participants are
told that the treatment has an 80% survival rate after 5 years. A
reliable finding is that participants are more likely to accept the
treatment described in “survival” terms (e.g., Marteau, 1989; Wil-
son, Kaplan, & Schneiderman, 1987). This would seem to be
irrational given that the two problems are logically equivalent.
However, McKenzie argued that framing effects are rational when
the appropriate assumptions are added to the analysis. That is, in
the real world, the way a problem is framed is often informa-
tive—it reflects knowledge of the person who posed the prob-
lem—and accordingly, it should be given some weight. If, for
example, a doctor frames a treatment in a positive light (it has an
80% chance of success), he or she is implicitly suggesting that it
is a good option and should be taken. According to McKenzie,
people often pick up on this information in the real world and
mistakenly use the same strategy in a laboratory context in which
framing cues should (logically) be given no weight. So, according
to McKenzie, the Type 2 answer to the why question is that it is
rational in the real world for choices to be influenced by the
framing of a problem, and participants take this assumption with
them into the laboratory.

We see two limitations of this latter approach. First, it is subject
to the same concerns of too much flexibility: It will always be
possible to find some, perhaps many different, assumptions that
will allow a Bayesian model to accommodate human performance.
Indeed, as noted by Jones and Love (2011), Bayesian theorists
rarely compare alternative Bayesian models (that adopt different
assumptions), and accordingly, some quite different set of assump-
tions may provide an equally good or even better Type 2 answer.
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Second, and more important, there is nothing unique or novel
about Bayesian Type 2 answers to the why question. The most
obvious parallel is with the explanations offered by evolutionary
psychologists. Theories in this discipline attempt to explain irra-
tional or surprising behavior in an adaptive manner by looking for
assumptions that the brain carries from our evolutionary past. For
example, there are a number of studies showing that mutual
exposure during childhood weakens sexual attraction among
adults. Why is this? It might at first be expected that familiarity
and a common history would increase the likelihood of mutual
attraction. The answer from evolutionary psychology is that it is
important to avoid inbreeding, and accordingly, we have evolved
a system for detecting genetic relatedness that prevents us from
being sexually attracted to persons we grew up with (e.g., Lieber-
man, Tooby, & Cosmides, 2007). The Type 2 answers advanced in
evolutionary psychology are often criticized (sometime fairly,
sometimes not, in our view) as “just so” stories, and we do not see
any way in which Bayesian theories are more immune to these
criticisms.

Part 3: Bayesian Theories Are Rarely Compared With
Alternative (Non-Bayesian) Hypotheses

Theoretical Bayesians make a stronger claim than methodolog-
ical Bayesians, and their models require stronger evidence. In
particular, in order to provide some evidence in support of the
claim that the mind relies on Bayesian-like algorithms, it is nec-
essary to show that these algorithms do a better job than non-
Bayesian models in accounting for human performance. However,
this is rarely done. Instead, theoretical Bayesians generally take the
successful predictions of a Bayesian model as support for their
approach, ignoring the fact that alternative theories might provide
an equally good fit to the data. Below we review a number of
examples from different domains in which evidence taken to
support Bayesian theories could also be interpreted as support for
non-Bayesian heuristic theories.

Optimal Predictions in Everyday Cognition

As noted already, there is a vast literature highlighting the many
conditions in which people are poor at reasoning, judgments, and
decision making (compared with some normative standard). Given
this context, Griffiths and Tenenbaum’s (2006) claim that people
make optimal predictions in everyday cognition is surprising.
Their claim is based on the results of an experiment in which
students were asked to make predictions about the duration or
extent of eight phenomena given partial information as described
in a short passage. For example, one question was as follows, with
the numbers (queries) in brackets varying for different groups of
students:

Insurance agencies employ actuaries to make predictions about peo-
ple’s life spans—the age at which they will die—based upon demo-
graphic information. If you were assessing an insurance case for an
[18, 39, 61, 83, 96] year old man, what would you predict for his life
span?

In each of these scenarios, Griffiths and Tenenbaum (2006)
were able to develop an optimal Bayesian estimate given the query
(e.g., the current age of the person in the above question), an

empirically derived prior probability (e.g., the distribution of ac-
tual life expectancy), a likelihood function (assumed to be a
uniform function between 0 and the participant’s prediction), and
a decision criterion (the median of the posterior probability func-
tion). The critical finding was that the students’ predictions often
matched the optimal prediction. This result was taken to suggest
that their judgments were informed by prior distributions that are
accurately calibrated to the statistics of relevant events in the world
and, further, that these priors are used in Bayesian computations in
order to make nearly optimal decisions. Griffiths and Tenenbaum
concluded: “These results are inconsistent with claims that cogni-
tive judgments are based on non-Bayesian heuristics that are
insensitive to priors” (p. 770).

In order to support the conclusion that judgments in this study
were the product of Bayesian processes informed by detailed and
accurate priors, it is necessary to show that alternative non-
Bayesian models are not just as good. Accordingly, it is significant
that Mozer, Pashler, and Homaei (2008) developed a simple heu-
ristic model that accounted for the data just as well on the basis of
highly impoverished knowledge of the relevant statistics of the
world: Each decision was based on a sum total of two memories
rather than detailed and accurate priors. This model was not
intended to provide a psychologically plausible theory of decision
making, but rather was developed to show that the strong conclu-
sions of Griffiths and Tenenbaum (2006) were unjustified. It
succeeded in this respect. Subsequently, Lewandowsky, Griffiths,
and Kalish (2009) showed that the Bayesian model fared better
than Mozer et al.’s heuristic model in accommodating the results
of a new set of experiments, but they still did not attempt to
contrast their hypothesis with plausible alternative theories.

In fact, it is not hard to imagine that a non-Bayesian theory
could account for performance in this task. For example, in re-
sponse to the life-span question, it seems plausible that the students
did not rely on memories of dead individuals at all, but instead
knew (as a fact) that life expectancy was about 75 and discounted
as largely irrelevant the information that the person in the query
was currently 18, 39, or 61 years old. But when the person in
question was 83 or 96, the participants necessarily knew that the
person would live over 75, and presumably some extra time
beyond his or her current age (i.e., it is unlikely that the person was
interviewed on the day of his or her death). In short, a serious
examination of alternative hypotheses is needed before the strong
conclusions of Griffiths and Tenenbaum (2006) and Lewandowsky
et al. (2009) are accepted. This is particularly important in the
current context given that a wide range of findings in the field of
behavioral economics suggest that human judgment and decision
making are often quite poor (cf. Kahneman, 2003; Kahneman &
Tversky, 1996). That is, there is a low prior probability that
humans make optimal predictions in everyday life, and so strong
evidence is required to support a conclusion to the contrary.

Memory

The hypothesis that human memory is close to optimal might
also appear to be surprising given its many limitations, including
our tendency to forget, and the frequency with which we misre-
member information. Schacter (2001) noted seven ways that mem-
ory seems to let us down. Nevertheless, it is commonly claimed
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that human memory can be characterized as exemplifying optimal
Bayesian inference.

Xu and Griffiths (2010) recently developed a Bayesian model of
serial reproduction memory in which one person’s recall (recon-
struction) of a stimulus is presented to the next person as the
to-be-remembered stimulus. In a behavioral study, the participants
were trained to distinguish images of two categories of fish: simple
drawings of farm fish and ocean fish. The critical manipulation
was that the distribution of the sizes of the farm fish varied across
two groups, such that the participants in these two groups were
expected to learn different priors for the width of farm fish. In the
reproduction phase, a target farm fish stimulus was flashed for 500
ms and disappeared, followed by probe fish of a random size.
Participants had to adjust the width of the probe fish to match the
target. The first participant in each group saw a target fish of
variable width, and subsequent participants were presented with
the reproductions. The critical finding was that performance of the
two groups diverged over iterations, such that recall (i.e., the
ultimate adjusted width) in the later iterations was strongly influ-
enced by the priors. This work extended previous findings of
Huttenlocher, Hedges, and Vevea (2000) and provided a formal
replication of the classic work of Bartlett (1932).

Xu and Griffiths (2010) provided a rational analysis account of
this pattern of results. In this view, a memory system should
attempt to store accurate information about the world given noisy
sensory data. That is, during perception, people seek to recover the
true state of the world that generated the noisy stimulus and then
store this estimate in memory. Memory retrieval is characterized as
retrieving this estimate (rather than the noisy sensory data), and in
the context of this experiment, the retrieved memory serves as the
stimulus for the next participant. Xu and Griffiths showed that
such an iterative process in a Bayesian model results in memory
retrieval that converges on the model’s prior, consistent with the
data. This was taken to support their model. The problem with this
conclusion, however, is that non-Bayesian theories could account
for this pattern of results as well. As long as memory of an event
is biased toward preexisting knowledge, it is likely that memory in
a serial reproduction task will converge to this knowledge; errors
will tend to fall in the direction of the bias. That is, these data do
not distinguish Bayesian from non-Bayesian theories, unless
Bayesian theories are trivialized to the point of meaning that
memory is biased by preexisting knowledge.

Similar concerns apply to a Bayesian model of memory for
object size proposed by Hemmer and Steyvers (2009). The authors
showed that memory for the size of an object was influenced by
priors (e.g., prior knowledge that strawberries tend to be small
influenced memory for the size of strawberries), and the authors
took this to support a Bayesian theory of memory. But again, a
non-Bayesian theory that assumes that memory is biased by pre-
existing knowledge would likely be able to accommodate this
general trend as well, as errors would tend toward the bias.
Furthermore, in order to fit the data successfully, it was necessary
to add more noise to the memory process under some conditions
(i.e., when retrieving unfamiliar objects within a familiar cate-
gory). Although this choice of likelihood function was successful
for Hemmer and Steyvers’s data, it is not clear how adding noise
to the memory process is compatible with other findings, such as
the finding that recognition memory is better for low- compared
with high-frequency words (Balota & Neely, 1980). If more noise

is added to the process of retrieving less familiar things, then the
obvious prediction would be that recognition memory is worse for
low-frequency words, which is contrary to fact. To account for the
memory advantage of low- compared with high-frequency words,
Shiffrin and Steyvers (1997) developed a Bayesian model of
recognition memory in which high-frequency words were more
similar to one another compared with low-frequency words. They
did not provide any motivation for this assumption in their model
other than to account for the effect. If this assumption was applied
to the Hemmer and Steyvers context, then it would no longer be
clear that the modified model could account for their results. In
short, the successes of these Bayesian models of memory are either
quite general (in the sense that non-Bayesian models would likely
succeed as well) or have little to do with their Bayesian principles.

Perhaps the most salient failure of memory is our tendency to
forget. Anderson and Schooler (1991) advanced a Bayesian theory
that explains why it is optimal to forget. In this view, given the vast
amount of information that we have encountered and the limited
resources of the mind to retrieve information, the adaptive thing is
to forget things we are unlikely to need in the future. The optimal
form of forgetting is one in which memories that are most likely to
be needed are retained and memories least likely to be needed are
forgotten. Critically, Anderson and Schooler reported evidence for
just this pattern of forgetting. They analyzed the probability of a
word being included in the front-page headlines in the New York
Times as a function of the number of days since the word was last
included. They observed that word usage followed a power func-
tion over time, and this was taken to characterize the likelihood
that someone will need to remember something. Consistent with
these results, various studies have reported that episodic memory
deteriorates as a power function of the interval (Rubin & Wenzel,
1996; Wixted & Ebbensen, 1991; but see Wixted & Carpenter,
2007). Anderson and Schooler took this as evidence that forgetting
is optimally suited for the environment we live in.

There are some problems with this conclusion, however. First,
as noted by Becker (1991), headlines in newspapers are the prod-
ucts of the human mind. Accordingly, it is not surprising that an
environment produced by the human mind parallels human mem-
ory performance; indeed, in this case, forgetting may not conform
to the nature of the environment, but instead the environment
conforms to forgetting. Second, non-Bayesian models can account
for power function forgetting curves (e.g., Sikström, 1999). Ac-
cordingly, this finding alone provides no evidence for Bayesian
theories. Third, and perhaps most important, forgetting can dra-
matically deviate from a power function over time, as in retrograde
amnesia (where older episodic memories are better preserved than
more recent ones; cf. McClelland, McNaughton, & O’Reilly,
1995) or AoA effects, where early acquired aspects of language
show an advantage over later acquired aspects (e.g., Bowers,
Mattys, & Gage, 2009; Johnson & Newport, 1989; Juhasz &
Rayner, 2006; Scherag, Demuth, Rösler, Neville, & Röder, 2004;
Stadthagen-Gonzalez et al., 2004). These phenomena have been
modeled in non-Bayesian models that derive their predictions from
processing constraints at the algorithmic level (e.g., Ellis & Lam-
bon Ralph, 2000; McClelland, 2006; McClelland et al., 1995). It is
unclear how a Bayesian theory could provide a principled account
of these deviations from a power function.
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Motor Control

A large literature has highlighted how motor control is close to
optimal in a variety of contexts (cf. Wolpert, 2007). For example,
Trommershäuser, Maloney, and Landy (2003) asked participants
to touch a briefly displayed green target region on a computer
monitor while avoiding one or more partially overlapping red
regions. The experiment manipulated the relative benefits and
costs of touching green and red regions. The challenge for the
participants, then, was to strike an appropriate balance between the
goal of hitting the target and the goal of avoiding the penalty
region. Trommershäuser et al. then compared the performance of
the participants with a model that included the same variability in
responding but was designed to maximize the mean expected gain.
In most cases it was not possible to discriminate the performance
of the participants from the model, leading Trommershäuser et al.
to conclude that human motor planning is close to optimal.

However, Wu, Trommershäuser, Maloney, and Landy (2006)
reached a different conclusion when comparing a Bayesian to a
non-Bayesian account of motor control in more complex environ-
ments. In the Trommershäuser et al. (2003) study the configuration
of the goal and penalty areas ensured that the point of mean
expected gain always fell on an evident axis of geometric symme-
try, which reduced the difficulty of the task. Wu et al. noted that
if the participants used the axis of symmetry to constrain respond-
ing, then the behavior might be better characterized as a “motor
heuristic” rather than an optimal Bayesian strategy. To contrast
Bayesian and heuristic approaches, Wu et al. developed more
complex arrangements of goal and penalty areas, such that the
point that maximized mean expected gain fell outside an evident
axis of symmetry. As predicted by a heuristic account, perfor-
mance fell off dramatically when the point of maximal expected
gain fell far from the evident axis of symmetry.

In contrast with this work, most studies have not evaluated
Bayesian motor control theories in the context of alternative plau-
sible theories. For example, in a classic study taken to highlight the
Bayesian nature of motor control, Körding and Wolpert (2004b)
asked participants to point to a target when given distorted visual
feedback via a virtual reality setup. Specifically, for each move-
ment there was a lateral shift randomly drawn from a prior distri-
bution with a mean shift of 1 cm to the right, and the feedback was
either provided clearly or blurred to increase the uncertainty of the
feedback. Critically, participants took into account both the distri-
bution of lateral shifts and the clarity of the feedback in order to
respond in close to an optimal manner, in keeping with a Bayesian
model. Körding and Wolpert did compare human performance to
two alternative models that did not incorporate any information
about the prior distribution or visual clarity of the feedback and
found that the Bayesian model provided a better fit to the data.

But it is hardly surprising that participants learn something
about the distributions of displacements during training and use
this knowledge to inform their responses, and further, that they are
sensitive to the quality of the feedback on a given trial. The
question is whether plausible alternative heuristic models can
account for behavior, but this was not tested. Nevertheless, on the
basis of the relative success of their Bayesian model, Körding and
Wolpert (2004a) suggested that human performance might be
optimal in a wide range of conditions: “Although we have shown
only the use of a prior in learning hand trajectories during a

visuomotor displacement, we expect that such bayesian process
might be fundamental to all aspects of sensorimotor control and
learning” (p. 246).

These strong conclusions are difficult to reconcile with a grow-
ing set of behavioral studies that have reported striking subopti-
malities in motor control. For example, Zhang, Wu, and Maloney
(2010) found that participants performed suboptimally on a task
that involved touching two targets in a specified order, even after
extensive training. Given the common failure to contrast Bayesian
and heuristic accounts of motor control (for a nice illustration of
the contrast between Bayesian and non-Bayesian theories of motor
control, see Gigerenzer and Selten, 2001) and recent demonstra-
tions of suboptimal performance (e.g., Burr, Banks, & Morrone,
2009; Mamassian, 2008; Wu, Dal Martello, & Maloney, 2009;
Zhan et al., 2010), we conclude that there is little evidence that
motor behavior is mediated by Bayesian as opposed to non-
Bayesian process.

Multisensory Perception

Many studies have highlighted how our perceptual systems
are near optimal in combining inputs from multiple modalities
in order to estimate properties of the world. In order to combine
evidence in an optimal manner, the relative noise (uncertainty)
associated with the inputs needs to be considered so that greater
weight can be given to more reliable inputs. Various behavioral
studies have demonstrated that human performance in such
conditions is extremely similar to a model that optimally com-
bines information from different modalities (e.g., Alais & Burr,
2004; Ernst & Banks, 2002). For example, Ernst and Banks
(2002) asked participants to look at and/or feel a raised ridge
and judge its height. The authors measured the accuracy of each
modality alone by asking participants to carry out discrimina-
tion experiments (which ridge was taller) in either the visual or
haptic modality alone. In the visual modality, the reliability of
the input was varied across four conditions, with various
amounts of visual noise added. In the joint condition, partici-
pants made further discriminations when the visual and haptic
information was combined. In some trials the visual and haptic
information matched, and in other trials the visual and hapti-
cally specified heights of the ridges differed. The estimates of
the reliability of the visual information (that varied with noise)
and haptic information alone provided estimates of optimal
performance in the multimodal condition, and human perfor-
mance was “remarkably similar” (p. 431) to optimal in the
combined condition. After reviewing the literature on integrat-
ing perceptual information both within and between modalities,
Körding and Wolpert (2006) concluded that “people exhibit
approximately Bayes-optimal behaviour. This makes it likely
that the algorithm implemented by the [central nervous system]
may actually support mechanisms for these kinds of Bayesian
computations” (p. 322).

The problem with this conclusion, however, is that non-
Bayesian algorithms can also combine cues in ways that approx-
imate optimal performance (e.g., Gigerenzer & Brighton, 2009;
Juslin, Nilsoon, & Winman, 2009), and despite the dozens of
studies that have highlighted the near optimality of cue integration
in multisensory perception, there has been little or no consideration

401BAYESIAN JUST-SO STORIES



of alternative non-Bayesian solutions. Accordingly, the conclusion
of Körding and Wolpert (2006), among others, is unwarranted.

In sum, given the computational complexity of implementing
Bayesian computation in the brain, we would argue that the onus
is on theoretical Bayesians to show that models that do implement
such computations can explain human performance better than
non-Bayesian models. This, as far as we are aware, has never been
demonstrated.

Non-Bayesian Approaches Sometimes Provide a
Better Account of Human Performance Than Bayesian
Theories

As detailed above, Bayesian models are rarely compared to
non-Bayesian models, and when they are, there is little evidence
that Bayesian models perform better. Indeed, non-Bayesian mod-
els sometimes provide a better account of human performance, as
we briefly review in the following example.

Consider the phenomenon of probability matching. When asked
to make predictions about uncertain events, the probability with
which observers predict a given alternative typically matches the
probability of that event occurring. For instance, in a card guessing
game in which the letter A is written on 70% of the cards in a deck
and the letter B is written on 30%, people tend to predict A on 70%
of trials (e.g., Stanovich, 1999; West & Stanovich, 2003; for
related examples, see Estes, 1964). This behavior is irrational, in
the sense that it does not maximize utility. The optimal (Bayesian)
strategy would be to predict the letter A every time, as this leads to
an expected outcome of 70% correct, whereas perfect probability
matching would predict an accuracy rate of only .70 � .70 �
.30 � .30 � 58%.

Why would observers adopt a selection strategy that is subop-
timal? There have been attempts to explain this pattern of results
within a Bayesian framework. For instance, Wozny, Beierholm,
and Shams (2010) took what we referred to above as a Type 2
approach to answer the why question. That is, the claim is that
observers are near optimal but come to the task with the implicit
(and incorrect) assumption that the sequence of experimental trials
contains predictable patterns (see Gaissmaier & Schooler, 2008,
for a related account). Under these conditions, Wozny et al. argued
that it is optimal for the brain to sample from a distribution over
hypotheses, where each hypothesis corresponds to a different
causal model. Although such a sampling procedure would indeed
give rise to the observed probability-matching behavior, there are
problems with the argument that probability matching reflects
pattern-seeking behavior. For instance, Koehler and James (2009)
obtained no evidence that participants who showed probability
matching were in fact looking for sequences: When the task was
changed so that patterns could not in principle be exploited to
support predictions, participants continued to probability match.
Furthermore, this rational account of probability matching is hard
to reconcile with the finding that a small subset of more intelligent
participants rejected probability matching in favor of the optimal
strategy (West & Stanovich, 2003). If it is rational to probability
match, why are the most intelligent participants acting differently?
Of course, it might be argued that the group of probability match-
ers and the group of optimizers are both Bayesian but adopt
different assumptions (i.e., the more clever participants do not look

for hidden patterns). But this again highlights how Bayesian the-
ories are always flexible and often built post hoc around the data.

In our view, a more promising explanation of probability-
matching behavior of the majority of participants is offered by an
adaptive network approach. For example, consider a simple neural
network with one stimulus node and two response nodes corre-
sponding to the two possible outcomes of the letter A or B. Assume
that the response nodes laterally inhibit each other so that the
network predicts either A or B. On any given trial, the winning
node is the one that receives the largest noisy input, where the
nonstochastic component of the input to a response node depends
on the adaptable weight that connects it to the stimulus node.
These weights z1 and z2 are updated by a simple learning rule that
modifies the weights based on the accuracy of the network’s
predictions:


zi � ��oi � yi�x. (5)

In this equation, the term oi � yi is an error-correction rein-
forcement signal that reflects the difference between the observed
outcome oi (i.e., whether the card was an A or a B) and the
predicted outcome yi; � is a learning rate parameter. Thus, learning
occurs when the relevant stimulus is present (x � 1 denotes the
presence of a card) and the network’s prediction is wrong. When
learning does occur, the weight zi decreases if the network incor-
rectly predicted outcome yi or increases if this outcome occurred
when it was not predicted. This simple learning rule, which is
known as the perceptron learning rule (Rosenblatt, 1962) or the
delta rule (Widrow & Hoff, 1960), is capable of learning a broad
range of pattern discriminations. It can also be directly related to
the classic Rescorla-Wagner (1972) model of associative learning
and can explain many of the well-known aspects of associative
learning.

For present purposes, the interesting aspect of this simple net-
work is that its predictions perfectly mirror the observed proba-
bilities; that is, the mean response rate for yi is asymptotically
equal to the mean observed rate of oi. This is true even when the
number of possible outcomes is increased from two to an arbi-
trarily large value. The reason for this is that the network approx-
imates a simple heuristic strategy called win–stay, lose–shift (Rob-
bins, 1952), in which the individual tends to stay with an
alternative that provides a reward but switches randomly to an-
other alternative when he or she does not receive a reward. Indeed,
in the absence of input noise, the network follows this strategy
exactly. The win–stay, lose–shift strategy leads to probability
matching because the pattern of responses follows the pattern of
observed outcomes, shifted by one trial. Note that the win–stay,
lose–shift strategy is one that people frequently adopt (e.g.,
Steyvers, Lee, & Wagenmakers, 2009) despite the fact that such a
strategy is profoundly non-Bayesian (in that it does not take into
account the distribution of reward rates for each option).

In sum, an adaptive network account can provide a simple
explanation of the apparently irrational probability-matching be-
havior. Note that this approach does not attempt to store all the
instances that have been encountered; learning is influenced by the
sampling distribution, but there is no explicit encoding of this
distribution. It is also the case that no new assumptions were
introduced in response to the data in order to account for the data:
Probability matching and the win-stay, lose-shift response pattern
directly follow from the delta rule that was introduced to account
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for unrelated phenomena in a biologically plausible manner. By
contrast, the attempt to reconcile the observed behavior with an
optimal Bayesian account, according to which the brain samples
from a distribution over causal hypotheses on each trial, strikes us
as ad hoc and unparsimonious. Although Bayesian calculations are
optimal for updating the probabilities of events, much simpler
adaptive learning algorithms are also able to learn such probabil-
ities and, critically, can explain why observers’ exploitation of
probability information is suboptimal (for similar arguments in
another context, see Goldstein & Gigerenzer, 2002).

Confirmation Bias in Bayesian and
Non-Bayesian Theories

The key point that we have tried to make in Part 3 is that
advocates of Bayesian theories often show strong confirmation
bias: Theorists take the successful predictions of a Bayesian model
as support for their approach and ignore the fact that alternative
non-Bayesian theories might account for the data just as well, and
sometimes better. We take this to weaken the theoretical Bayesian
position according to which the mind computes in a Bayesian-like
way, just as we took the flexibility of Bayesian models as com-
promising methodological and theoretical Bayesian positions in
Part 2.

A possible objection to this argument is that confirmation bias is
ubiquitous in science and that the criticisms outlined above apply
to non-Bayesian theories just as well. However, we would suggest
that this bias is more problematic in the Bayesian case. Bayesian
theories always predict that performance on a task is near optimal,
and the predictions of these models are often similar to what one
would expect from a satisficing (but non-Bayesian) solution. At
first it seems impressive that Bayesian models can approximate
performance in all variety of domains, from low-level perception
to high-level word and object identification as well as motor
control, memory, language, semantic memory, etc. But this im-
pression should be tempered by the fact that alternative (adaptive)
models would be likely to predict (or already have predicted) the
findings just as well. What is needed is a method of distinguishing
between Bayesian and non-Bayesian models that can both account
for near-optimal performance (cf. Maloney & Mamassian, 2009).

What would provide a powerful confirmation of a theoretical
Bayesian approach is an unexpected (counterintuitive) prediction
that is supported. In principle this could take the form of a model
doing surprisingly well—better than what would be expected on
the basis of heuristic models that satisfice as opposed to optimize.
But we are not aware of any examples in which human perfor-
mance is better than what could be accounted for with a heuristic
model. Alternatively, this could be achieved by accounting for
performance that is surprisingly poor, worse than would be ex-
pected based on a heuristic approach. In fact, Bayesian models are
often used to explain poor performance in various domains. As
noted above, Bayesian models can account for forgetting in epi-
sodic memory, poor strategy in penalty kicking by elite soccer
players, illusions of motion perception, etc. But in most (perhaps
all) cases, the models succeed in doing badly by adding constraints
in response to the data. Again, non-Bayesian models could account
for these findings in the same way—by looking at the data and
building in a set of constraints that allow the model to succeed in
accounting for poor performance.

Where, then, are the opportunities to provide a strong test of a
theory? The nonobvious and counterintuitive predictions of a
psychological model are typically derived from nonfunctional con-
straints found at the algorithmic level, a level of descriptions that
most Bayesian models avoid. For example, parallel distributed
processing (PDP) models that learn dense distributed representa-
tions are good at generalizing but poor at learning information
quickly because of so-called catastrophic interference. Accord-
ingly, McClelland et al. (1995) argued that these two functions
must be carried out in separate systems—the so-called comple-
mentary learning systems hypothesis. This is not a computational
constraint, as alternative models can generalize and learn quickly
within a single system (e.g., Grossberg, 1987a). Accordingly, it is
not clear how a rational analysis carried out at the computational
level could shed light on this issue (cf. McClelland et al., 2010).

In sum, we do not intend to hold Bayesian and non-Bayesian
models to different standards. We readily acknowledge there are
plenty of examples in which non-Bayesian modeling can be char-
acterized as a form of curve fitting. Confirmation bias is rife in all
areas of psychology and science more generally. However, models
developed at an algorithmic level often make strong (counterin-
tuitive) predictions, whereas Bayesian models rarely do (but see
Hahn & Warren, 2009, for a nice example in which a rational
analysis does in fact lead to a counterintuitive prediction). As a
consequence, Bayesian models tend to receive credit for relatively
trivial predictions, which could be derived from any theory that
assumes performance is adaptive, or else are modified with post
hoc assumptions when the data do not follow what would be
predicted on the basis of the rational analysis alone.

Part 4: Neuroscientific Evidence Supporting Bayesian
Theories Is Weak

At the same time that Bayesian theories have become so prom-
inent within psychology, Bayesian theories have become promi-
nent in neuroscience. The general claim is that populations of
neurons represent uncertainty in the form of probability distribu-
tions and perform (or approximate) Bayesian computations in
order to make optimal decisions. This view is sometimes referred
to as the Bayesian coding hypothesis (Knill & Pouget, 2004).

The Bayesian coding hypothesis is often taken as an additional
source of evidence for Bayesian theories in psychology. For ex-
ample, Chater et al. (2006) wrote:

Turning to the implementational level, one may ask whether the brain
itself should be viewed in probabilistic terms. Intriguingly, many of
the sophisticated probabilistic models that have been developed with
cognitive processes in mind map naturally onto highly distributed,
autonomous, and parallel computational architectures, which seem to
capture the qualitative features of neural architecture. (p. 290)

If neuroscience provided evidence for the Bayesian coding hypoth-
esis, it would indeed provide support for the theoretical Bayesian
perspective. The problem, though, is that advocates of the Bayes-
ian coding hypothesis often cite the psychological literature as
providing the best evidence for their hypothesis. For instance,
Knill and Pouget (2004, p. 712) wrote that “the principle [sic] data
on the Bayesian coding hypothesis are behavioral results showing
the many different ways in which humans perform as Bayesian
observers.”
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If neuroscience is to provide any evidence for the theoretical
Bayesian perspective, the key question is, what nonbehavioral
evidence exists that neurons compute in this way? The answer
is none, unless Bayesian computations are characterized so
loosely that they are consistent with almost any computational
theory.

Does Neural Noise Necessitate Bayesian Inference?

A common starting point for a Bayesian characterization of
neural computation is that neural firing is very noisy, with the
same input generating quite different neural responses (e.g., Faisal,
Selen, & Wolpert, 2008). This makes the task of a neural network
statistical, in that the network needs to infer something fixed about
the world or devise a specific motor plan based on noisy (ambig-
uous) input.

A key insight of Ma, Beck, Latham, & Pouget (2006) is that if
neurons show near-Poisson variability, then Bayesian inference
can be implemented through a simple linear combination of pop-
ulations of neural activity. A fundamental property of a Poisson
response is that the variance and the mean are the same, and a
number of experimenters have found the ratio of the variance to
the mean spike count to range from about 1 to 1.5 (e.g., Shadlen &
Newsome, 1998)—the so-called Fano factor. Indeed, this corre-
spondence has been described as “remarkable” (Beck et al., 2008,
p. 1145). It is taken not only as an existence proof that Bayesian
computations are possible by neurons but also as evidence in
support of the Bayesian coding hypothesis (e.g., Beck et al., 2008;
Jazayeri, 2008).

However, is also important to note that Fano factors are often
much smaller than 1 (e.g., Amarasingham, Chen, Geman, Har-
rision, & Sheinberg, 2006; Maimon & Assad, 2009), and some-
times approach 0 (e.g., DeWeese, Wehr, & Zador, 2003; Gur,
Beylin, & Snodderly, 1997; Gur & Snodderly, 2006; Kara,
Reinagel, & Reid, 2000), reflecting a remarkable lack of noise
in the nervous system. For example, DeWeese et al. (2003)
assessed the trial-by-trial response variability of auditory neu-
rons in the cortex of rats in response to tones. The reliability of
individual neurons was almost perfect, leading DeWeese et al.
to suggest the need for a “re-evaluation of models of cortical
processing that assume noisiness to be an inevitable feature of
cortical codes” (p. 7940). Similarly, on the basis of single-cell
recording from neurons in the inferior colliculus of guinea pigs,
Shackleton, Skottun, Arnott, and Palmer (2003) concluded that
“any pooling or comparison of activity across a population is
performed for reasons other than reducing noise to improve
discrimination performance” (p. 723). For a recent review high-
lighting the reliability of single-cell responses and an argument
that information is often represented by the firing of single
(“grandmother”) neurons, see Bowers (2009).

Of course, even if single neurons are more reliable than assumed
by Ma et al. (2006), this does not rule out the claim that collections
of neurons compute in a Bayesian-like fashion. Still, these con-
siderations challenge one of the common motivations for the
Bayesian coding hypothesis, the idea that noise that “permeates
every level of the nervous system” (Faisal et al., 2008, p. 292), as
well as one piece of evidence often taken to support this view, that
firing variability is close to Poisson in order to facilitate Bayesian
computations.

What Is the Evidence for the Bayesian Coding
Hypothesis?

Mathematical analyses have shown how Bayesian inferences
can be implemented in populations of neurons given certain types
of neural noise. The key question, though, is whether there is
evidence that neurons do in fact compute in this way. We would
suggest that the current evidence is either poor or inconsistent with
the hypothesis. We review the most relevant evidence below.

Ma and Pouget (2008) considered how multisensory neurons
should optimally combine inputs from different modalities. A
prediction of the Bayesian coding hypothesis developed by Ma and
Pouget is that multisensory neurons should fire in an additive
fashion, such that their firing rate in response to two inputs should
equal the sum of their responses when each input is presented
separately, under on the assumption of Poisson-like variability.
However, because firing rates of neurons saturate as they approach
their maximum rate, firing rates of multisensory neurons can be
subadditive as well (which, under appropriate conditions, will not
affect optimality). That is, according to Ma and Pouget, a Bayesian
theory predicts additive or subadditive firing rates. In keeping with
this prediction, Ma and Pouget noted that the majority of multi-
sensory neurons in the cat superior colliculus exhibit additivity or
subadditivity.

What is problematic for this theory, however, is that multisen-
sory neurons often respond in a superadditive manner as well.
Indeed, as Ma and Pouget (2008) noted, superadditivity is often
taken as evidence that a particular neuron is involved in multisen-
sory integration. Although Ma and Pouget suggested various ways
in which a Bayesian theory might potentially account for super-
additivity, the key point is that multisensory neurons respond in an
additive, subadditive, and superadditive fashion. Given that all
possible effects have been obtained, these results should not be
taken as evidence in support of a Bayesian account of multisensory
perception.

Another argument advanced in support of the Bayesian coding
hypothesis was summarized by Jazayeri (2008). He reviewed a
wide range of findings in which two measures of neuronal behav-
ior are found to be correlated, namely, “sensitivity” and “choice
probability.” Sensitivity refers to the reliability with which a
neuron fires to a given stimulus, whereas choice probability refers
to its ability to predict trial-to-trial behavior in a choice task. For
example, Britten, Newsome, Shadlen, Celebrini, and Movshon
(1996) trained monkeys to discriminate between two directions of
motion and found that the more sensitive the neuron, the better
able it was to predict the monkey’s response. Similar correlations
have been reported in various tasks, from visual feature discrimi-
nation tasks (Purushothaman & Bradley, 2004), perception of time
tasks (Masse & Cook, 2008), heading discrimination (Gu, DeAn-
gelis, & Angelaki, 2007), among others. Together, these findings
are taken as providing evidence that the brain combines and
weights sensory signals according to their reliability, with more
sensitive neurons given more weight, consistent with Bayesian
principles.

But this general pattern of results should be expected by any
theory, Bayesian or not. The correlation of sensitivity and choice
probability indicates simply that some neurons are more involved
in performing a task than others. Is it hardly surprising that a
neuron that responds strongly to one direction of motion and not
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another is better able to predict performance in a motion discrim-
ination task than a neuron that shows little sensitivity to this
distinction.

There is a long history of cognitive models that implement
optimal decision making between two alternatives given noisy
evidence (e.g., diffusion models by Ratcliff, 1978). These models
are optimal in the sense that they minimize response times for a
given level of accuracy. More recently, neurally inspired models of
decision making have been developed that can support optimal
performance when the parameters are set optimally (e.g., Shadlen
& Newsome, 2001; Usher & McClelland, 2001; Wang, 2002; cf.
Bogacz, 2007), and more recently still, some predictions of these
models are said to be supported by single-cell recording data. For
example, Beck et al. (2008) described a Bayesian model of deci-
sion making in the context of visual motion detection: specifically,
deciding whether a set of dots are coherently moving to the left or
right when surrounded by noise, in the form of other dots moving
randomly. According to their model, a neuron in lateral intrapari-
etal cortex that preferentially responds to movement in one direc-
tion should integrate evidence over time such that (a) the rate of
firing grows linearly with time, (b) the rate of growth should be
proportional to the strength of the signal (i.e., firing rates should
change more quickly if a higher proportion of dots are moving in
the neuron’s preferred direction), and (c) the relation between the
strength of firing and strength of signal should be maintained when
the animal is forced to make a decision in the context of four as
opposed to two directions of motion. Beck et al. cited evidence in
support of all predictions.

However, there are two general reasons to question how
strongly these findings support the Bayesian coding hypothesis.
First, contrary to the assumption that humans and monkeys per-
form optimally in these conditions, there is growing evidence for
suboptimal performance under these and similar task conditions.
For instance, Zacksenhouse, Bogacz, and Holmes (2010) asked
human participants to categorize dots moving in one of two direc-
tions and found that only �30% of the participants performed near
optimally. The authors developed a heuristic process (what they
called a robust satisficing solution) that did a better job in account-
ing for human performance (see also Bogacz, Hu, Holmes &
Cohen, 2010; for some related results, see Purcell et al., 2010).
Second, it is not clear how diagnostic the neuroscience is in
supporting the Bayesian coding hypothesis. The observation that
the rate of firing grows more quickly for relevant lateral intrapa-
rietal neurons when the signal is more robust and the fact that this
pattern obtains when monkeys need to choose among two or four
options do not seem too surprising (to us). It is likely that these
findings may be explained with alternative (non-Bayesian) theo-
ries as well. The finding that lateral intraparietal neurons show a
linear increase in firing as a function of time is perhaps a less
obvious prediction, but again, is also predicted by at least one
non-Bayesian theory (Grossberg & Pilly, 2008).

Finally, some findings appear to be inconsistent with the Bayes-
ian coding hypothesis. Most notably, Chen, Geisler, and Seide-
mann (2006) carried out optical imaging of neural firing in V1 of
monkeys trained to detect a small visual target. The key finding
was that the monkeys’ performance was worse than predicted by a
Bayesian analysis of the signal recorded in V1, suggesting that the
V1 population response is not used optimally by the visual system.
Still, Chen et al. noted two limitations of their analysis that make

it difficult to reach any strong conclusions based on their results.
On the one hand, the fact that their Bayesian analysis of V1
outperformed the monkeys does not rule out a Bayesian visual
system. That is, it is possible the performance of the monkeys was
limited by postvisual inefficiencies (perhaps vision is optimal, but
motor control is poor). On the other hand, they noted the opposite
finding (monkeys outperforming the Bayesian analysis) would not
rule out a Bayesian visual system either. Although this pattern of
results might seem unlikely, the signals recorded by the experi-
menter inevitably contain only a subset of the information avail-
able to the monkey, meaning that a Bayesian analysis on these
signals is likely to underestimate ideal performance of the organ-
ism. In short, it is difficult to relate neural firing to the Bayesian
coding hypothesis. Nevertheless, the Chen et al. data are perhaps
the most relevant evidence to date concerning the Bayesian nature
of neural processing within the visual system and suggest that
processing past V1 is non-Bayesian (for similar results and con-
clusions, see Palmer, Cheng, & Seidemann, 2007).

In sum, there is little evidence from neuroscience that popula-
tions of neurons compute in a Bayesian manner. We do not see any
reasons to update the previous assessment of Knill and Pouget
(2004), who wrote: “The neurophysiological data on the [Bayesian
coding] hypothesis, however, is almost non-existent” (p. 712).

Before concluding this section, we note one implication of the
fact that researchers often link Bayesian models in psychology to
neuroscience. As noted in Part 1, it is not always clear whether a
given researcher is advancing a methodological or theoretical
Bayesian model. However, the Bayesian coding hypothesis is
relevant only to the theoretical Bayesian perspective. That is, it
makes sense to consider the neuroscientific evidence if the claim is
that various cognitive, perceptual, and motor systems rely on
Bayesian-like algorithms, whereas the neuroscience is irrelevant if
Bayesian models are merely a yardstick to measure behavior (with
no claim regarding the processes, let alone the neural mechanisms,
that underpin performance). Accordingly, whenever someone
highlights the relevance of neuroscience to a Bayesian model, we
assume that he or she is endorsing (or at least entertaining) the
theoretical approach.

Part 5: Conceptual Problems With the Bayesian
Approach to Studying the Mind and Brain

As outlined above, there is relatively little evidence in support of
methodological and theoretical Bayesian theories in psychology
and neuroscience: Bayesian theories are so flexible that they can
account for almost any pattern of result; Bayesian models are
rarely compared to alternative (and simpler) non-Bayesian models,
and when these approaches are compared, non-Bayesian models
often do as good a job (or better) in accounting for the data; and the
neuroscience data are ambiguous at best. Indeed, the neuroscience
is largely irrelevant, given that Bayesian theories in neuroscience
are largely inspired by behavioral work in psychology.

But in our view, there is another equally serious problem with
both Bayesian approaches that we have only touched on thus far.
Bayesian theories in psychology tend to adopt the rational analysis
methodology of Anderson (1991), according to which the impor-
tant constraints on cognition come from the nature of the problem
and the information available to the organism (the environment).
That is, this approach assumes that there is a “triumphant cascade”
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(Dennett, 1987, p. 227) through Marr’s levels of analysis such that
the constraints identified at the computational level constitute the
main constraints at the algorithmic level. The implication, of
course, is that the findings from other domains (e.g., biology and
evolution) will play a relatively minor role in constraining theories
in psychology. For example, when describing the various steps in
carrying out rational analyses, Anderson wrote:

The third step is to specify the computational constraints on achieving
optimization. This is the true Achilles heel of the rationalist enterprise.
It is here that we take into account the constraints that prevent the
system from adopting a global optimum. As admitted earlier, these
constraints could be complex and arbitrary. To the extent that this is
the case, a rationalist theory would fail to achieve its goal, which is to
predict behavior from the structure of the environment rather than the
structure of the mind. (pp. 473–474)

In practice, some additional constraints are almost always added
to Bayesian models in order that they provide a better (post hoc)
account of human performance, with the constraints often de-
scribed as general capacity limitations even though specific as-
sumptions are sometimes added (cf. McKenzie, 2003). However,
in most cases, these constraints are developed independently of
any algorithmic or implementational considerations. In our view,
the result is Bayesian models that not only are massively under-
constrained but also mischaracterize cognitive, perceptual, and
motor systems.2 Below we briefly consider constraints from biol-
ogy and evolution that generally fall outside rational Bayesian
considerations.

Constraints From Biology

For the sake of illustration, we consider five constraints from
biology that should inform psychological theories of vision, the
systems most often characterized as optimal. First, the photore-
ceptors that transduce light energy to neural signals are at the back
of the retina, and as a consequence, light has to pass through a
number of layers of cells before reaching the photoreceptors,
causing shadows and other distortions. This design also results in
a blind spot where the optic tract passes through the retina on its
way to the thalamus. There is probably some adaptive explanation
for this design, but it will be found at the level of biology rather
than optics. What is critical for present purposes, however, is that
the design of the retina not only is relevant to biologists but also
has important implications for psychological theories of vision.
For instance, see Grossberg (1987b) for a theory of early vision
that is designed, in part, to rectify the distortions of the image that
result from the inverted retina.

Second, information projected to the right visual field is pro-
jected to the left hemisphere, and vice versa. Indeed, even infor-
mation projected onto the fovea is split down the middle (cf. Ellis
& Brysbaert, 2010). This fact will again provide important con-
straints for any theory of vision. For starters, it raises the question
of how information in the two hemispheres is combined—a form
of binding problem. This biological constraint has informed a
number of models of visual word identification (e.g., Monaghan &
Shillcock, 2008; Shillcock, Ellison, & Monaghan, 2000; Whitney,
2001), and ultimately all theories of high-level vision will need to
confront this constraint. Again, it is hard to see how a rational
analysis would constrain an algorithmic theory along these lines.

Third, the visual system is organized into multiple maps, such as
retinotopic, ocular dominance, orientation preference, and direc-
tion of motion. Chklovskii and Koulakov (2004) argued that a
wiring optimization economy principle plays a central role in
explaining this design. The argument is that it is costly to connect
distal neurons with long axons and dendrites, and cortical maps are
viewed as solutions that minimize wiring costs. This obviously has
important implications for theories of visual processing. For ex-
ample, once again it raises questions about how the visual system
recombines and binds this information. It is not clear that this
constraint will arise from a rational analysis.

Fourth, the metabolic cost of firing neurons is high. Lennie
(2003) estimated that these costs restrict the brain to activate about
1% of neurons concurrently, and he took these findings as provid-
ing a strong constraint on how knowledge is coded in the cortex.
Specifically, Lennie argued that these metabolic costs provide a
pressure to learn highly sparse representations of information,
consistent with what is found in the cortex (cf. Bowers, 2009).
Again, it is not clear how a rational analysis would lead to such a
conclusion, particularly given that optimal inference necessitates
integrating large amounts of information and not throwing away
information.

Fifth, the visual system can identify images of objects and faces
in about 100 ms (e.g., Thorpe, Fize, & Marlot, 1996). This pro-
vides important constraints on how information flows in the visual
system. For example, Thorpe and Imbert (1989) pointed out that
there at least 10 synapses separating the retina from object and face
selective cells in the inferior temporal cortex and that neurons at
each stage cannot generate more than one or two spikes in 10 ms.
Accordingly, they concluded that neurons at each stage of pro-
cessing must respond on the basis of one or two spikes from
neurons in the previous stage. This in turn limits the amount of
feedback that can be involved in identifying an object. These
conclusions are unlikely to be reached on the basis of rational
analysis.

Of course, there is every reason to assume that biology will be
relevant in constraining psychological theories in all domains, and
in most cases these constraints will be missed when considering
only the task at hand and the external environment. That is, we
suggest that the rationalist approach will miss many of the key
constraints required to develop a theory of how the mind works.

Constraints From Evolution

Evolution also provides insights into how the mind and brain are
organized. Natural selection is the key process by which complex
and well-designed brains (and other body parts) emerge within a
population of organisms. But selection is not constrained to pro-
duce optimal solutions. As noted above, Simon (1956) coined the
term satisficing to highlight the point that natural selection does
not produce optimal solutions but rather solutions that work well
enough. As Simon put it:

No one in his right mind will satisfice if he can equally well optimize;
no one will settle for good or better if he can have best. But that is not

2 For a similar point in the field of behavioral ecology, see McNamara
and Houston (2009).
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the way the problem usually poses itself in actual design situations. (p.
138)

In a similar way, Dawkins (1982) emphasized that natural selec-
tion is not an optimizing process, and he described the processes as
meliorizing (from the Latin melior, meaning “better”) rather than
satisficing in order to highlight the competitive nature of natural
selection. That is, natural selection looks for better solutions (bet-
ter than your competitors), but not the best solution.3

Critically, a satisficing or meliorizing process is unlikely to
produce optimal solutions for two interrelated reasons. First, evo-
lution never starts from scratch, but instead modifies structures
already in place—so-called evolutionary inertia (e.g., Marcus,
2006). Second, evolution is a blind “hill-climbing” process in
which minor variants of existing traits are selected that slightly
improve the reproductive success of the organism. This hill climb-
ing can, in principle, produce optimal designs when there is only
one hill to climb. But when the evolutionary landscape includes
multiple peaks and when one starts from the wrong place, then
selection will often produce decidedly nonoptimal solutions. That
is, a hill-climbing process combined with evolutionary inertia will
often be trapped in a local minimum in an evolutionary landscape.
A good example is provided by the three bones that were originally
part of the reptilian lower jaw and used for chewing but that, in
humans, are found in the middle ear and are used to amplify
sounds. As Ramachandran (1990, p. 347) noted:

No engineer in his right mind would have come up with such an
inelegant solution. The only reason Nature adopted it was because it
was available and it worked. It is perhaps not inconceivable that the
same sort of thing may have happened time and time again in the
evolution of visual mechanisms in the neocortex.

Not only would no engineer come up with this solution, but neither
would a rational analysis constrained only by the environment and
the task at hand (see Marcus, 2008, for a range of nonoptimal
solutions to a wide range of tasks that we face). More generally,
we would question a commitment to optimal decision making
given that the human phenotype is nonoptimal in so many respects.
Why would we be (close to) optimal in just this one respect? And
even if we were optimal, given a poor design, the standard Bayes-
ian approach is incomplete, as it does not provide an explanation
for why the design of many systems is so poor from an engineering
point of view. Presumably, evolutionary inertia and physiology
will provide the key insights here.

When Bayesian Models Do Consider Constraints
From Biology and Evolution

It should be noted that not all Bayesian models follow the
standard logic of rational analysis, that is, the attempt to under-
stand the mind by focusing on the environment and task at hand,
with little consideration of other constraint, apart from general
processing constraints and specific assumptions inferred from the
performance. But from our reading, Bayesian models that are
informed by details of biology and evolution are largely restricted
to the domain of vision, and for the most part, low-level vision
(e.g., Geisler & Diehl, 2003). Interestingly, many researchers in
this domain are better described as methodological rather than
theoretical Bayesians. For instance, when considering Bayesian

work directed at pattern detection, discrimination, and identifica-
tion, Geisler (2011) concluded that “the suboptimal performance
of human observers implies substantial contributions of central
factors” (p. 773). Indeed, Geisler and colleagues have highlighted
in various contexts that perception is often suboptimal after incor-
porating various constraints from biology (e.g., Chen et al., 2006),
and have developed non-Bayesian heuristic models to accommo-
date behavior that is near optimal (Najemnik & Geisler, 2009).

Still, Geisler is a strong advocate of the methodological Bayes-
ian approach because it provides a benchmark for evaluating
theories. For instance, Geisler (2011) wrote:

When human performance approaches ideal performance, then the
implications for neural processing can become particularly powerful;
specifically, all hypotheses (model observers) that cannot approach
ideal performance can be rejected. When human performance is far
below ideal, there are generally a greater number of models than could
explain human performance. (p. 772)

Three points merit consideration here. First, with regard to
falsifying theories, the relevance of establishing a Bayesian bench-
mark is unclear. Consider the case in which human performance is
near optimal as determined by a Bayesian model. Under these
conditions, a specific algorithmic theory can be rejected because it
cannot approach ideal performance as determined by the Bayesian
model, or more simply, a model can be rejected because it does not
capture human performance. The mismatch in accounting for data
is sufficient to rule out the model—the extra step of showing that
it does not support optimal performance is superfluous.

Second, we would question the claim that a Bayesian bench-
mark of near-optimal performance provides strong constraints on
algorithmic theories that can approximate optimal performance.
Consider a recent analysis of perception of speech sounds in noise
(Feldman, Griffiths, & Morgan, 2009). The authors are explicit in
adopting a rational analysis in which they consider the abstract
computational problem separate from any other algorithmic or
biological constraints. They showed that an optimal solution re-
sults in the reduced discriminability between vowels near proto-
typical vowel sounds—the so-called perceptual magnet effect that
is also observed in humans. At the same time, as noted by the
authors themselves, their rational analysis is consistent with algo-
rithmic models that are characterized by feed-forward processing
or that include feedback as well as models that include an episodic
lexicon or abstract lexicon. That is, the findings are consistent with
most types of algorithmic theories that have been advanced inde-
pendently of any rational analysis. More recently, Shi, Griffiths,
Feldman, and Sanborn (2010) showed how a Bayesian model of
perception can be implemented with an exemplar model that has a
limited vocabulary of items stored in memory. At the same time,
they highlighted how a previous nonexemplar model by Guenther
and Gjaja (1996) predicted highly similar results. In this case, the
rational analysis has not strongly constrained the algorithmic level,
and we are not aware of any examples in which a Bayesian theory
achieves the goal of constraining algorithmic (mechanistic) theo-
ries above and beyond the constraints imposed by the data them-
selves.

3 For three ways of viewing the relation between evolution and optimal-
ity, see Godfrey-Smith (2001).
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Third, as noted by Geisler (2011), the constraints afforded by a
Bayesian model get weaker when performance is further from
optimal. Low-level vision is presumably one of the better adapted
systems, given its long evolutionary history, and based on this
logic, Bayesian models may be best applied here. However, in
most other domains, where performance is less likely to be opti-
mal, Bayesian models will be less constraining still.

What Are the Positive Features of Bayesian Models?

In our view, the methodological Bayesian approach does not
provide a useful tool for constraining theories, and the theoretical
Bayesian perspective is unsupported. More generally, we claim
that it is a mistake to develop models that optimize at a compu-
tational level given that the mind and brain satisfice, and given that
many of the key constraints for models will be found at the
algorithmic and implementational levels. Our main thesis is that
Bayesian modeling, both in practice and in principle, is a mis-
guided approach to studying the mind and brain.

Still, it is important to recognize some key contributions of the
Bayesian literature. We will briefly highlight three. First, Bayesian
modelers have highlighted to the importance of characterizing the
environment when developing theories of mind and brain. There is
nothing new (or Bayesian) about this. Indeed, this view was taken
to the extreme by Gibson (1950) in his “ecological” theory of
perception, and more recently various (non-Bayesian) theories of
statistical learning have attempted to exploit information in the
world more thoroughly. But we would agree that a failure to fully
characterize the environment is common in non-Bayesian theories,
potentially leading to fundamental errors. In particular, researchers
from a “nativist” perspective may introduce innately specific
knowledge if it is (incorrectly) assumed the environment is too
impoverished to support learning (cf. Perfors, Tenenbaum, &
Regier, 2011).

Second, Bayesian theorists have highlighted the importance of
addressing why questions. Again, there is nothing new (or Bayes-
ian) about addressing such a fundamental issue, but we would
agree that many algorithmic theories in cognitive science have
been too focused on accommodating a set of data, with scant
attention to the important constraints and insights that can be
derived through addressing why questions head on. We think it is
unfair of Chater and Oaksford (1999) to characterize non-Bayesian
theories as “an assortment of apparently arbitrary mechanisms,
subject to equally capricious limitations, with no apparent rationale
or purpose” (p. 58), but we do take the point that too many
non-Bayesian theories in cognitive science can be characterized as
an exercise in curve fitting.

Third, and related to the second point above, Bayesian modelers
have emphasized top-down or function-first strategies for theoriz-
ing, such that theories are first constrained by the complex com-
putational challenges that organisms face (Griffiths, Chater, Kemp,
Perfors, & Tenenbaum, 2010). That is, the choice of representa-
tions and computations is initially constrained so that it can sup-
port core functions in a given domain, with detailed experimental
findings used to further constrain a given theory. By contrast,
many, if not most, non-Bayesian models are first constrained by a
limited set of data in a given domain, with the goal of elaborating
a theory to accommodate more complex phenomena after captur-
ing the more simple phenomena first. This approach might be

called a bottom-up strategy to theory building. Again, there is
nothing new (or Bayesian) about a top-down strategy per se,4 but
we would agree that a failure to give sufficient attention to top-
down constraints is a serious limitation of most algorithmic theo-
ries in cognition.

To illustrate the contrast between bottom-up and top-down
theorizing, consider two distinct schools of neural network mod-
eling, namely, the PDP and symbolic modeling approaches (cf.
Holyoak & Hummel, 2000). A key theoretical claim of the PDP
approach is that the mind and brain rely on distributed and sub-
symbolic representations (cf. Bowers, 2009; Bowers, Damian, &
Davis, 2009). These principles allow PDP models to support
performance in some restricted domains, such as naming mono-
syllable words and nonwords, and this is taken by advocates of this
approach as evidence that distributed and subsymbolic represen-
tations support all varieties of cognition, perception, and behavior.
That is, an implicit assumption that has guided much of this
research program is that it is best to study relatively simple
phenomena in great detail and only later attempt to extend any
insights to more complex questions (e.g., naming multisyllable
words). This bottom-up strategy is common to much (perhaps
most) theorizing in psychology.

The obvious danger of this approach, however, it that the
representations and processes that support relatively simple tasks
may be inadequate to support slightly more complex tasks, such as
recognizing familiar words in novel contexts (e.g., CAT in
TREECAT; Bowers & Davis, 2009; but see Sibley, Kello, Plaut, &
Elman, 2009), let alone more complex language and semantic
functions (e.g., Fodor & Pylyshyn, 1988; Pinker & Prince, 1988).
Indeed, advocates of top-down theorizing have generally argued
that more complex language functions require localist and context
independent (symbolic) representations and, on the basis of these
functional constraints, have developed “localist” and “symbolic”
networks (e.g., Davis, 2010; Grossberg, 1980; Hummel & Ho-
lyoak, 1997). Of course, the role of local and symbolic represen-
tations in cognition is far from settled, but it is interesting to note
that the position one takes on the local versus distributed and
symbolic versus nonsymbolic debates closely follows whether the
theorist adopts a top-down or bottom-up strategy of theorizing.
Perhaps it is no coincidence that Bayesian models designed to
address more complex functional problems often include struc-
tured (componential) representations in their computational theo-
ries (Kemp & Tenenbaum, 2009).

In sum, we are sympathetic with many of the research strategies
emphasized by advocates of Bayesian modeling. But if the “Bayes-
ian revolution” (Shultz, 2007, p. 357) is thought to provide a new
method or a new theory of mind, it has to be something above and
beyond these familiar (albeit too often ignored) research practices.

Conclusions

A broad range of evidence has been marshaled in support of the
claim that the mind and brain perform Bayesian statistical reason-

4 What is relatively unique about the Bayesian approach to top-down
theorizing is that it is carried out at a computational level rather than an
algorithmic level. Still, at whatever level a theory is developed, the key
point is that complex (and functional) task demands are used as an initial
constraint for theory building.
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ing (or something similar) in order to make or approximate optimal
decisions given noisy data. Yet, in our view, the evidence is rather
weak. Clearly, though, proponents of the Bayesian approach have
reached quite different conclusions on the basis of the same
evidence. To conclude, we consider some factors that might ex-
plain these discrepant views. To do so, we make use of Bayes’s
rule, which provides a rational way to evaluate the probability of
the hypothesis that humans are optimal Bayesian estimators, given
the available evidence. Our goal, of course, is not to derive a
specific probability estimate for this hypothesis. Rather, we adopt
this approach because it is helpful in highlighting where we think
there are problems in the way Bayesian theorists have evaluated
the evidence, and why these problems lead to a greatly exaggerated
assessment of the probability of the hypothesis.

The argument is sketched in Figure 2, which depicts Bayes’s
rule. The hypothesis under consideration is that humans are opti-
mal (or near-optimal) Bayesian observers; we shall refer to this
hypothesis as Hoptimal. We seek to evaluate P(Hoptimal�E), the
posterior probability of this hypothesis given the evidence (E). Our
contention is that there are three problems with the way Bayesian
theorists have evaluated this posterior probability. These three
problems are directly related to the three components of the
right-hand side of the equation in Figure 2. The first two problems
overestimate the numerator of the equation, whereas the third
problem underestimates the denominator. We consider these prob-
lems in turn.

First, Bayesian theorists have overestimated the prior probabil-
ity P(Hoptimal). This prior probability is not explicitly considered
by Bayesian theorists and seems, implicitly, to be accorded the
same probability as the alternative hypothesis P(�Hoptimal) (i.e.,
that humans are not optimal Bayesian estimators). We argue that a
rational choice of prior for Hoptimal should be very low, based on
previous evidence concerning the flaws in human reasoning and
perception, as well as the biological, evolutionary, and behavioral
constraints considered in Part 5. Indeed, it is the surprising nature
of the claim—that we are close to optimal—that has contributed to
the great interest in Bayesian theories. This surprise presumably
reflects the low prior that most people give to this hypothesis.

Second, the likelihood P(E�Hoptimal) is typically overestimated
relative to the likelihood that would be computed on the basis of
purely rational considerations. Overestimation of the likelihood is
possible because of the lack of constraint in Bayesian theories.
Indeed, as detailed in Part 2, priors, likelihoods, etc., are often
selected post hoc in order to account for the data themselves. In
effect, there is a family of Hoptimal hypotheses, corresponding to
the different choices of priors, likelihood functions, and so on, and
modelers are at liberty to choose the specific Hoptimal that maxi-
mizes the likelihood of the evidence given the hypothesis. A
related problem noted in Part 2 is the tendency to explain failures
of the optimal model by reference to auxiliary assumptions or to
effects at the algorithmic level. In such cases the likelihood
P(E�Hoptimal) is artificially maintained. These problems in the
estimation of the likelihood of the evidence undermine the claim
that human behavior approximates, in any meaningful sense, op-
timal performance.

The third problem concerns the underestimation of P(E), the
marginal probability of the evidence. This term can be expanded as
P(E) � P(Hoptimal) � P(E�Hoptimal) � P(�Hoptimal) �
P(E��Hoptimal). Bayesian theorists have focused on the first part of
this expansion, but have neglected the second joint probability,
which expresses the probability that the same evidence could be
explained by alternative, non-Bayesian hypotheses. As shown in
Part 3, there is little evidence that Bayesian theories provide a
better fit to the data than various alternative non-Bayesian ac-
counts. Accordingly, even if a Bayesian model can account for
human performance in a principled way, the conclusion that hu-
man performance is mediated by Bayesian processes is unjustified.

Together, these considerations undermine the strong claims
often made by methodological and theoretical Bayesian theorists,
claims such as those highlighted in quotes at the start of this article.
The consequence of overestimating the prior probability and like-
lihood of Hoptimal and underestimating the probability of the evi-
dence by ignoring alternative explanations is that Bayesian theo-
rists greatly overestimate the posterior probability of the
hypothesis that humans are optimal (or near-optimal) Bayesian
estimators. The result, in our view, is a collection of Bayesian

Figure 2. A Bayesian analysis of the problems with the way Bayesian computation models have used evidence
to evaluate the hypothesis that humans are optimal Bayesian estimators.
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just-so stories in psychology and neuroscience, that is, mathemat-
ical analyses of cognition that can be used to explain almost any
behavior as optimal. If the data had turned out otherwise, a
different Bayesian model would have been constructed to justify
the same conclusion that human performance is close to optimal.

More generally, it is not clear to us how methodological or
theoretical Bayesian approaches can provide additional insights
into the nature of mind and brain compared with non-Bayesian
models constrained by adaptive (rather than optimality) consider-
ations. Both Bayesian and non-Bayesian theories can offer answers
to why questions, and the relevant metric to evaluate the success of
a theory is actual behavior, not optimal performance by some
criterion. Theories in psychology and neuroscience should be
developed in the context of all variety of constraints, including
those afforded by the algorithmic and implementational levels of
description. In our view, the Bayesian approach of focusing on
optimality at a computational level of description leads to under-
constrained theories that often mischaracterize the systems that
support cognition, perception, and behavior.
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probabilistic approach to human reasoning. Behavioral and Brain Sci-
ences, 32, 69–84. doi:10.1017/S0140525X0900051X

Palmer, C. R., Cheng, S.-Y., & Seidemann, E. (2007). Linking neuronal
and behavioral performance in a reaction-time visual detection task.
Journal of Neuroscience, 27, 8122– 8137. doi:10.1523/
JNEUROSCI.1940-07.2007

Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency
of word recognition. Nature, 423, 752–756. doi:10.1038/nature01516

Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of
abstract syntactic principles. Cognition, 118, 306–333. doi:10.1016/
j.cognition.2010.11.001

Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis
of a parallel distributed processing model of language acquisition. Cog-
nition, 28, 73–193. doi:10.1016/0010-0277(88)90032-7

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting
among computational models of cognition. Psychological Review, 109,
472–491. doi:10.1037/0033-295X.109.3.472

Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., &
Palmeri, T. J. (2010). Neurally constrained modeling of perceptual
decision making. Psychological Review, 117, 1113–1143. doi:10.1037/
a0020311

Purushothaman, G., & Bradley, D. C. (2004). Neural population code for
fine perceptual decisions in area MT. Nature Neuroscience, 8, 99–106.
doi:10.1038/nn1373

Ramachandran, V. (1990). Interactions between motion, depth, color and
form: The utilitarian theory of perception. In C. Blakemore (Ed.),
Vision: Coding and efficiency (pp. 346–360). Cambridge, England:
Cambridge University Press.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85, 59–108. doi:10.1037/0033-295X.85.2.59

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonrein-
forcement. In A. H. Black & W. F. Prokasy (Eds.), Classical Condi-
tioning II (pp. 64–99). New York, NY: Appleton-Century-Crofts.

Robbins, H. (1952). Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58, 527–535.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A
comment on theory testing. Psychological Review, 107, 358–367. doi:
10.1037/0033-295X.107.2.358

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the
theory of brain mechanisms. New York, NY: Spartan Books.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical
models with an application in the theory of signal detection. Psycho-
nomic Bulletin & Review, 12, 573–604. doi:10.3758/BF03196750

Rubin, D. C., & Wenzel, A. E. (1996). One hundred years of forgetting: A
quantitative description of retention. Psychological Review, 103, 734–
760. doi:10.1037/0033-295X.103.4.734

Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approx-
imations to rational models: Alternative algorithms for category learn-
ing. Psychological Review, 117, 1144–1167. doi:10.1037/a0020511

Schacter, D. L. (2001). The seven sins of memory: How the mind forgets
and remembers. Boston, MA: Houghton Mifflin.

Scherag, A., Demuth, L. Rösler, F., Neville, H. J., & Röder, B. (2004). The
effects of late acquisition of L2 and the consequences of immigration on
L1 for semantic and morpho-syntactic language aspects. Cognition, 93,
B97–B108. doi:10.1016/j.cognition.2004.02.003

Schroyens, W., & Schaeken, W. (2003). A critique of Oaksford, Chater,
and Larkin’s (2000) conditional probability model of conditional rea-
soning. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 29, 140–149. doi:10.1037/0278-7393.29.1.140

Seydell, A., Knill, D. C., & Trommershäuser, J. (2010). Adapting internal
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