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Neurophysiological studies of decision-making have focused primarily on

elucidating the mechanisms of classic economic decisions, for which the rel-

evant variables are the values of expected outcomes and action is simply the

means of reporting the selected choice. By contrast, here we focus on the

particular challenges of embodied decision-making faced by animals inter-

acting with their environment in real time. In such scenarios, the choices

themselves as well as their relative costs and benefits are defined by the

momentary geometry of the immediate environment and change continu-

ously during ongoing activity. To deal with the demands of embodied

activity, animals require an architecture in which the sensorimotor specifica-

tion of potential actions, their valuation, selection and even execution can all

take place in parallel. Here, we review behavioural and neurophysiological

data supporting a proposed brain architecture for dealing with such scen-

arios, which we argue set the evolutionary foundation for the organization

of the mammalian brain.
1. Introduction
Studies of human behaviour have historically been distributed across very

diverse disciplines, whose practitioners seldom spoke with one another or

exchanged ideas and insights. The earliest psychologists such as Wundt studied

mental phenomena at a purely abstract level, undaunted by the sparseness of

biological knowledge of their time. Likewise, the cognitive psychology of the

late twentieth century was focused largely on mental function, often explicitly

not concerned with brain structure (e.g. [1]). At the same time, studies of

rational choice were largely the province of economic theory that focused

primarily on understanding what the rational behaviour of Economic Man
should be [2]. It could be said that this disciplinary division of labour reflected

the three levels of analysis famously described by Marr [3]: economics studied

the computational level of the problem, psychology studied the brain’s algor-

ithms and functional organization, and neurology was concerned with the

details of implementation.

All that has changed in recent decades, and in almost all aspects of the be-

havioural sciences, there is now a trend to bring disciplines together and to

build theories that at once address the phenomena in question at all three

levels of analysis. While this is certainly a step in the right direction, marrying

long estranged fields is a precarious business. Some caution must be taken in

choosing which conceptual components are most valuable for guiding the

fields towards a unified direction that is a fruitful one, rather than merely

entrenching them all towards the same limiting assumptions.

Here, we take a cautionary look at the recent convergence of studies in be-

havioural economics and the neuroscience of decision-making, a field often

called neuroeconomics [4,5]. As a new field, it is in great flux and difficult to

characterize with a consistent set of agreed-upon axioms. Nevertheless, certain

themes are repeatedly emphasized and at least lead to convergence on the

questions that are being asked.

At the computational level, one persistent question inspired by economic

theories is the degree to which human (and animal) behaviour is rational. For
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example, it is obviously irrational (a violation of ‘transitivity’)

to prefer A to B and B to C, but then choose C over A.

VonNeumann & Morgenstern [6] formalized the concept

of expected utility to describe how humans should make

choices under conditions of risk, allowing for nonlinear

relationships between objective quantities (amount of money)

and their subjective utility to a decision-making agent.

However, Simon [7] famously showed that humans do not

behave in accordance with prescriptive economic theory, that

they exhibit ‘bounded rationality’. This was echoed even

more strongly by Kahneman & Tversky’s [8] seminal work

on the heuristics and biases that drive human choices away

from what is expected of purely rational thinking. While to

some, the use of heuristics reveals flaws in human reasoning,

others argue that heuristics actually do better than prescriptive

statistical methods in real-world scenarios in which sample

sizes are too small to ever usefully estimate the necessary

probability distributions [9].

At the algorithmic level, a critical question concerns the

representations and mechanisms that determine decisions.

A classic model suggests that when presented with a choice,

people compute the subjective utility of each option using a

‘common currency’ that integrates payoffs, costs, risks and

any relevant variable [4,10–13]. The option with the highest

value is selected as the goal, which is then ultimately trans-

formed into an action plan. We may refer to the processes of

calculating values (which may be prolonged in complex situ-

ations) as ‘deliberation’, and the process of goal selection as

‘commitment’. According to classic psychological theories,

both of these processes take place within a central executive

system [14,15] that presumably resides in the frontal lobes

and is separate from sensorimotor control [16–19].

Recent studies seek to connect these principles to the level

of neural implementation. For example, neural activity in the

orbitofrontal cortex (OFC) and ventromedial prefrontal cortex

behaves very much like an abstract representation of

economic value [12,20–23]. In particular, activity in the

OFC correlates with the value of an option independent of

other options [24] and adjusts its gain to reflect the full

range of values presented in a given block of trials [25].

The transformation of the chosen goal to a plan of action

may take place in lateral prefrontal cortex [26], which projects

to the premotor and motor regions that control movement

[27]. Even departures from prescriptive economic theories

can be studied using neuroscientific methods, which may

explain differences of behaviour between individuals. For

example, Tobler et al. [28] showed that the idiosyncratic dis-

tortions of probability estimates of individual subjects are

correlated with activity patterns in the dorsolateral prefrontal

cortex. Likewise, individual subjective policies of temporal

discounting can be correlated with individual patterns of

activity in ventral striatum, medial prefrontal cortex and pos-

terior cingulate cortex [29]. In summary, questions posed by

economic theory can be addressed with neuroscience, and

some have argued that economic theory itself should be

increasingly based on neuroscientific data [4].
2. Beyond economics
Despite the undeniable attraction of economic formalisms

for interpreting neural data, all formalisms have a limited

domain of applicability whose edges are important to
acknowledge. Economic theory is no exception, and here

we focus on three of its limitations.

First, it has long been recognized that the most quantifiable

formalisms of economic theory are designed to deal with only

the most circumscribed situations, raising questions about

their ‘external validity’ to the real world. For example, to quan-

tify utility in the VonNeumann and Morgenstern sense, one

needs to know the probabilities associated with the payoffs

of different choices. Such probabilities may be known when

presented with explicit gambles—what Savage [30] called

‘small worlds’—but that is rarely the case in the real world.

Real choices are almost always made in ‘large world’ situations,

where the number of samples is much too low to capture the

variance along all of the potentially relevant dimensions. Stat-

istical methods, Bayesian or otherwise, do not function well in

such scenarios because their assumptions cannot be met [31],

and simple heuristics often produce superior performance

(see [9] for review). Thus, normative economic theories do not

apply to all economic choice behaviour, and savvy marketers

and advertisers often ignore them in practice.

Second, many theories of economic choice (particularly

those currently studied in neuroscience) are aimed at the pro-

blem of how we decide between simultaneously presented

offers, such as between two brands of peanut butter in a

supermarket. In natural behaviour, however, simultaneously

offered goods are relatively rare. Much more common are

‘sequential’ choices between either taking an opportunity

that is encountered versus looking for other opportunities

that might (or might not) be encountered within the current

environment [32]. Because of this, the reinforced value of

given options is strongly dependent on context—finding a

small fruit during the dry season is more subjectively reward-

ing than finding a large fruit during times of plenty. Because

animals presumably evolved to deal with the more common

sequential choice scenarios, their learning mechanisms

exploit the particularities of such situations. Consequently,

when faced with the rare occurrence of a simultaneous

choice, animals often make what appear as objectively

irrational choices (i.e. choose the smaller fruit). An extensive

series of studies by Kacelnik and co-workers [32–34] has

shown that this is precisely the case, even when the offer

value is unambiguously defined using temporal discounting.

Such apparently irrational behaviour is also exhibited by

humans. A classic example is the phenomenon of preference

reversals [35]: when humans are simultaneously presented

with two gambles with similar expected values (e.g. 90%

chance of winning $8 versus 50% chance of winning $16),

they tend to prefer the one with a higher probability of

payoff (e.g. the former). However, if the same gambles are pre-

sented sequentially and subjects are asked to assign to them

a monetary value, they tend to put a higher price on the one

they had previously rejected (e.g. the latter). This may occur

because of inference errors about probability [36], overpricing

of low-probability high-payoff bets [35] or because in both

situations the subjects use completely different heuristics that

are not congruent [37].

The above examples reveal well-known limitations of

prescriptive economic theory as a general formalism for under-

standing all decision-making behaviour. Here, however, we

wish to focus on a third limitation, which to our knowledge

has not been widely acknowledged in neuroscience, and yet

which may be the most relevant to linking behaviour with

the functional neural architecture that implements it.
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3. The challenges of embodied decisions
The brain is a product of evolution, which rests on two

fundamental principles: natural selection; and descent with

modification. The first of these is widely acknowledged in econ-

omic theory, motivating the search for mechanisms that confer a

selective advantage. The second principle, however, is even

more valuable for developments of theories that span across

levels of analysis. This is because evolution is remarkably

conservative, powerfully constrained by phylogenetic history.

Evolution can only work with an existing ancestral system,

and only make modifications that maintain the system’s

integrity. In the language of optimization theory, it does not

perform an exhaustive search but is highly myopic and con-

strained to local regions whose basins may be separated from

other classes of solutions by impassable crevasses. Major

evolutionary change is primarily driven by changes in the

environment, not by sudden creative leaps in the genome.

The consequences of phylogenetic constraints cannot be

overemphasized. Contrary to persisting opinions among

many psychologists and economists, brain evolution is not

characterized by the addition of new structures or modules.

The idea that the brain proceeds by superimposing a ‘mam-

malian’ cerebral cortex over a neopallium and ‘reptilian’

midbrain [38] has long ago been rejected by studies of com-

parative neuroanatomy [39,40]. Evolution cannot simply

invent a new structure, complete with a full developmental

schedule, and connect it up to an existing system. Instead,

brain evolution involves the elaboration and specialization

of existing structures and elongation of ancestral circuits

whose neuroanatomical topology is remarkably conserved

[41]. For example, circuits interconnecting the striatum, palli-

dum and cerebral cortex/neopallium are effectively the same

in both mammals and birds [42], despite the fact that their

respective lineages diverged about 310 Ma [43]. Indeed,

such major features of the human telencephalon are shared

with teleost fishes, which diverged from the lineage leading

to humans about 450 Ma.

Because the neuroanatomical organization of these circuits

was laid down so long ago, we obviously should not attempt

to explain their functional roles from a perspective that focuses

exclusively on human cognitive behaviour. Instead, we should

first consider the kinds of behavioural challenges that were

faced by our distant ancestors. This even pertains to the cer-

ebral cortex, which is by no means a mammalian invention

but a structure homologous to the dorsal pallium that is

shared among nearly all terrestrial tetrapods [39,44]. Thus,

even when we address the mechanisms of more modern

cognitive functions, we can benefit by considering them as

elaborations of ancient behavioural abilities. For example,

as the mammalian brain evolved, the architecture of simple

decisions may have been recapitulated towards progressively

more anterior cortico-striatal circuits that serve progressively

more abstract decision-making behaviour [45].

Acknowledging and addressing the phylogenetic con-

straints of any evolved system may appear as a burden for

theorists, another challenge to what is already a challenging

field of study. We are of precisely the opposite opinion. What

theoretical neuroscience needs most are more constraints, not

fewer, for they provide guidelines for effectively choosing

which conceptual path is most promising. Even the most ele-

gant and optimal theory is a dead-end if it is incompatible

with the constraints of phylogenetic descent. By contrast, the
outline of an evolutionarily grounded theory is a promising

topic for further study. Furthermore, we believe that an evol-

utionary perspective also helps us choose what kinds of

questions to ask, and which to ask first.
With respect to decision-making, the evolutionary per-

spective motivates us to build theories of decision-making

that are fundamentally aimed at addressing the challenges

of the kinds of decisions faced by our very distant ancestors,

whose behaviour was primarily interactive and not delibera-

tive. Here, we will take this approach and focus on what may

be called ‘embodied decisions’—decisions between actions

during ongoing activity.

For example, an animal escaping from a predator is con-

tinuously making decisions about the direction to run,

ways of avoiding obstacles [46], and even foot placement on

uneven terrain [47]. Of course, humans also engage in such

embodied decision-making during our daily lives, whether

we are walking through a crowd or playing a sport.

Importantly, embodied decisions have properties that are dra-

matically different from the economic choices that have

dominated decision theories. First, the options themselves are

potential action opportunities that are directly specified by

the environment—what Gibson [48] called ‘affordances’.

The variables relevant to evaluating these options are over-

whelmed by geometric and biomechanical contingencies and

not merely related to offer values. Consequently, evaluation

of the sensorimotor contingencies becomes the major challenge

for the neural mechanism, whereas pure offer value estimation

is computationally relatively trivial. Second, the options them-

selves are not categorical, like button presses in a psychology

experiment. Instead, they are specified by spatio-temporal

information, highly dependent on geometry, and even their

identity is extended and blurry at the edges. Third, embodied

decisions are perhaps the primary and archetypical kind of

simultaneous decision. Animals encounter goods sequentially,

but they are always surrounded by simultaneous action

opportunities between which they must select.

Finally, embodied decisions are highly dynamic. As an

animal moves through its world, available actions themselves

are constantly changing, some are vanishing while others

appear, and all the relevant variables (outcome values, success

probability, action cost) are always in flux. This precludes

any mechanism relying on careful deliberation about static

quantities or estimation of probabilities from similar examples,

because each embodied decision is a single-trial situation

with unique settings. Consequently, the mechanisms that

serve embodied decisions must process sensory information

rapidly and continuously, specifying and re-specifying avail-

able actions in parallel while at the same time evaluating the

options and deciding whether to persist in a given activity or

switch to a new one. Thus, the temporal distinction between

thinking about the choice and then implementing the response,

so central to economic theory and laboratory experiments on

decisions, simply does not apply to decisions made during

interactive behaviour.

Consider the very simple example shown in figure 1. At

the beginning (point a) environmental constraints present the

mouse with a distribution of potential running directions that

may be averaged into a single central forward path. As the

mouse runs forward (point b) the obstacle in front begins to

be relevant, but the choice between turning left versus right

is not yet necessary and the distribution of potential directions

can still be averaged into the forward path. As that obstacle is
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Figure 1. Schematic embodied decision-making scenario. Dotted line arrows
indicate possible paths for the mouse to move between obstacles depicted by
shaded rectangles. Solid curves indicate the distribution of potential directions
at three points in time. At point (a), the distribution can be averaged into a
single central direction. At point (b) the distribution begins to separate, but
averaging is still possible. At point (c), however, the average is no longer a
viable direction and a decision must be made between directions to the right
or left.
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approached, however (point c), the forward path becomes

increasingly undesirable, splitting the distribution of potential

directions into two distinct choices, between which a decision

must now be made. Note that in this scenario the processes

of specifying potential actions and selecting between them

have to take place in parallel during overt activity. While com-

plete preplanning of running trajectories may seem acceptable

in some situations, it will fail if the obstacles themselves can

move unpredictably.

A formal description of such dynamic situations is diffi-

cult, but we believe it is both possible and necessary if we

are to understand decision-making in the context within

which it evolved. Some progress towards a description of

embodied decision-making has been made in ecological psy-

chology [49,50], in which decisions are seen as emerging

within the dynamical system describing an agent’s inter-

action with the world. In this view, the environment at a

given moment defines a potential field through which the

state of the agent may flow. Goals are attractors towards

which the state tends to move and decision points are the

ridges between the basins of attraction defined by different

goals (mathematically, decisions are made on the unstable

manifolds between different stable attractors of a dynamical

system). Importantly, however, the flow field is not static

but changes continuously as the agent moves and as the

world changes around him/her. Considering again figure 1,

the dynamical system at point b still contains a single attrac-

tor but as the mouse moves forward a bifurcation occurs and

the new dynamical system contains two regions of attraction

between which a decision must be made. Analysis of behav-

iour in sports shows that it exhibits properties characteristic

of this kind of dynamical description [49].

While such work provides a formal language for describ-

ing embodied decision-making situations, it does not propose

hypothetical mechanisms for how the brain may deal with

them. What we desire is a theory that spans analysis levels
from descriptions of the problem all the way to neural data

on the mechanisms involved in implementing the solutions.

However, to date, most neurophysiological studies of the

neural mechanisms of decisions use economic concepts, not

dynamical system concepts, to define the experimental para-

digm and interpret the data. Consequently, they do not even

address the kinds of embodied decisions that, we would

argue, defined the challenges faced by the vertebrate nervous

system at the time, many millions of years ago, when its basic

functional architecture was being established.

We have recently proposed that a great deal of neurophy-

siological data is in fact more naturally interpretable from an

ecological and embodied perspective than from traditional

cognitive perspectives [51,52]. In particular, the traditional dis-

tinctions between separate systems for perceiving the world,

storing and retrieving memories, thinking about an abstract

goal, and acting upon it do not find strong support in neuro-

physiological and neuroanatomical data [52–54]. Instead,

more conducive to making sense of neural data may be a dis-

tinction between processes related to specifying potential

opportunities for interaction with the world versus processes

related to selecting between these. Here, we briefly review

this proposal before describing some recent experiments

relevant to its predictions and implications.
4. A mechanism for embodied behaviour
The ‘affordance competition hypothesis’ [51] suggests that

during interactive behaviour, the brain is continuously proces-

sing sensory information to specify a set of potential actions

(affordances) currently available in the world, while at the

same time collecting information to help select between these

(see also [55–59]). For visually guided action, the specification

takes place along the occipito-parietal ‘dorsal’ visual stream

[60], while selection uses information from the occipito-

temporal ‘ventral’ stream and its projections through the lateral

prefrontal cortex [61]. From a computational perspective,

action specification involves reciprocally interconnected sen-

sorimotor maps in parietal and frontal cortex, each of which

represents potential actions as peaks of activity in tuned

neural populations and obstacles as valleys [62,63]. Within

such maps, distinct potential actions compete against each

other through mutual inhibition, through direct cortico-cortical

connections or competing cortico-striatal loops [64], until one

potential action suppresses the others and the decision is

made. This distributed competition is continuously influenced

by a variety of biasing inputs, including rule-based inputs from

prefrontal regions [20,22,23,65–69], reward predictions from

basal ganglia [70,71] or any variable pertinent to making a

choice. While these diverse biases may contribute their

‘votes’ to different loci along the distributed fronto-parietal

sensorimotor competition, their effects are shared across the

network owing to its reciprocal connectivity. Consequently,

the decision is not determined by any single central executive,

but simply depends upon which regions are the first to commit

to a given action strongly enough to pull the rest of the system

into a ‘distributed consensus’ [72]. Simultaneous recordings

across the cerebral cortex suggest that during simple decisions,

such a consensus is reached in a diversity of brain regions at

approximately 150 ms [73].

A role of cortical regions in action selection does not imply

that subcortical regions are not also involved. In particular,
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there is ample evidence that the basal ganglia play a significant

role in action selection [64,74–76]. One possibility is that the

basal ganglia played a major role in action selection in early

vertebrates, which did not have an elaborate cortex, but over

time the cortical part of the cortico-striatal system grew in

complexity and took on a larger role in selection. A large topo-

logically organized structure such as the cerebral cortex is

particularly well-suited to performing selection between

spatially distinct potential actions within a single effector

system (e.g. selecting between reaching to different objects),

while a centralized ‘hub’ like the basal ganglia may be most

involved in selecting between different types of action

(e.g. selecting whether to reach or to run, or to do nothing at

all). Such a division of labour may provide a way to reconcile

proposals that the basal ganglia are involved in selection

with recent experiments showing that inactivation of the

main output nuclei does not impair selection, but instead

reduces movement vigour [77,78]. Perhaps disrupting the

basal ganglia output to the reaching system did not interfere

with a cortical selection of ‘where to reach’, but simply reduced

a bias signalling ‘whether to reach’.

We refer the reader to earlier work reviewing the neuro-

physiological basis of the affordance competition hypothesis

[51,52,72] as well as other theoretical frameworks that share

similar features [55,59,79]. Here, we describe some of the empiri-

cal predictions made by such parallel frameworks, as well as

some recent studies whose results bear upon these predictions.
5. Implications and predictions of an embodied
brain architecture

The affordance competition hypothesis makes a number of

testable predictions at the neurophysiological level. For

example, it predicts that neural activity within the sensorimo-

tor system will not only represent multiple potential actions,

as previously shown [80–86], but that these representations

will also be modulated by any factor relevant for making

the choice. Decision-related modulation has of course been

found throughout frontal and parietal regions of both the

oculomotor and arm reaching systems [83,87–93], but the

affordance competition hypothesis suggests more specific

predictions. In particular, neural activity in the sensorimotor

system should be modulated by all factors relevant for the

animal’s choice, including offer values, action costs, temporal

discounting or anything related to the subjective desirability

of an action [87]. Furthermore, neural activity in regions clo-

sest to movement initiation should be strictly related to

relative desirability. That is, neural activity related to a given

potential action should be modulated by the desirability of

that option relative to other options, and show no decision-

related modulation at all when only a single option is present

or when all are equally desirable. The reason for this is simple:

the neural activity does not itself represent the desirability of

options, but merely reflects the competition between options,

biased by their desirability, that results in a choice. Finally, the

strength of the competition between options should depend

on their geometric relationship.

The last point deserves more explanation. The hypothesis

that the competition between actions occurs within sensorimo-

tor maps, which reflect the geometry of the environment,

predicts that the mutual inhibition between two actions is

stronger when they are further apart. The reason for this is
straightforward. When faced with two families of actions that

are similar (e.g. turning by 58 to the right versus 58 to the left,

as in point b in figure 1) the decision can be gradual, only

slightly veering towards one option versus another. By con-

trast, when faced with very different response options (e.g. at

point c in figure 1), a weighted-average solution is not accep-

table anymore and an all-or-none decision has to be made.

A simple way for a neural population to implement this sensor-

imotor contingency is for the inhibitory interaction between

cells to depend on the similarity of the actions to which those

cells are tuned [63]. Such an architecture makes the specific pre-

diction that if one records from cells related to a given option

while modulating the desirability of a different option, the

gain of that modulation will be the strongest when that other

option is most dissimilar to the one coded by the recorded cell.

We tested these predictions through neural recording

experiments in dorsal premotor cortex (PMd) of monkeys

trained to move a cursor to one of two potential targets

with different reward values (figure 2a; [88]). When allowed

a free choice the monkeys nearly always chose the target with

a higher value, and we were interested in the patterns of

neural activity in PMd prior to the GO signal. The results

are shown in figure 2. To summarize, neural activity in

PMd was indeed modulated by relative reward values

when two targets were presented (figure 2b, centre and

right), but these same cells never showed any reward-related

modulation in trials with only one target (figure 2b, left). This is

consistent with a purely relative code (or ‘full divisive normaliza-

tion’), as predicted by the hypothesis of a recurrent competitive

network that is biased by inputs carrying information about

absolute values [63].

Most importantly, the gain of the interaction between targets

was the strongest when they were furthest apart (figure 2c). This

result is critical, in our opinion, because it specifically supports

the hypothesis that embodied decisions are made within the

space of a sensorimotor map [51], as opposed to being made

in the space of outcome values [21]. The dependence of

neural activity on the spatial separation between targets is

not predicted by any theory based on economic principles,

because the spatial separation has no bearing whatsoever on

the benefits or the costs of either of the respective movements,

or on their relative desirability. Receiving three drops of juice is

better than receiving two drops to exactly the same extent

regardless of the spatial separation between the targets that

yield these rewards. Thus, spatial separation does not enter

into any economic equation. And yet, the neural activity

that appears to determine the choice of the target is strongly

influenced by it (figure 2c). Admittedly, one could modify

an economic model so as to incorporate notions of spatial

separation between targets and to explain such data, but we

believe that would be a post-hoc solution. What we really

need from theories are motivated predictions.

If the competition between options takes place within a sen-

sorimotor map, then the spatial relationships between the

options should have behaviourally relevant effects. In particu-

lar, if the two competing actions are similar and their neural

representations overlap, as proposed by Erlhagen & Schoner

[95] and Cisek [63], then reaction times (RTs) should be slightly

shorter and there should be more intermediate movements

(especially with the shortest RTs) than when the candidate

movements are further apart. Indeed, when we examined

trials in which both targets were medium-valued, RTs were

slightly but significant shorter when the targets were 608
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border style indicated the expected size of reward (see legend at top right) and then given a GO signal to execute the movement. In the 2-Target (2T) task, the
monkeys were presented with two possible targets. In 67% of trials ( free), they could move to either of these after the GO signal, but in 33% of trials ( forced) one
disappeared, forcing them to move to the remaining target. (b) Comparison of activity of an example PMd neuron, as a function of reward size, during trials in
which the cell’s preferred target (PT) was present. In each pair of rasters and peri-event histograms, data are aligned on target onset and GO signal, with a break
between them due to delay period variability. Black symbols in the rasters depict target onset, GO signal, and movement onset and offset. If the preferred target
was the only one shown (1T task, right), neural activity showed no difference whether its value was low (blue), medium (red) or high (green). However, if two
targets were present (2T task), then the same cell showed a strong effect of relative value, both when the value of the preferred target (PT) or the other target (OT)
was varied (centre and right). (c) Analysis of the activity of a PMd cell when the PT value was medium and the OT value was varied, done separately depending on
the angular distance between targets. Data are aligned on target onset. Note that the modulatory effect of OT value is much stronger when the distance between
targets is 1208 or 1808, than when they are only 608 apart. (d ) Cumulative distributions of the latency with which PMd cells become tuned (green), reflect spatial
interactions between targets (blue) and reflect relative value (red). (e) Activity of a PMd cell (aligned on the GO signal) comparing 2T trials in which the monkey
was free to choose the higher valued target (free) that was either in the cell’s preferred direction (red) or not ( purple), and 2T trials in which the monkey was
forced to go to the lower valued target (forced low) that was either in the cell’s preferred direction (blue) or not (green). Note that activity prior to the GO
signal, while both targets were still present, strongly indicates the monkey’s preferred plan and activity after the GO signal switches abruptly in forced low
trials. Panels (b – d) adapted from Pastor-Bernier & Cisek [88] and panel (e ) from Pastor-Bernier et al. [94].
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apart (mean 265 ms) than when they were 1208 apart (273 ms).

This difference was small because we used a delay period, but

it was nevertheless highly significant (KS test, p , 10210).

When subjects are free to react right away, much larger effects

of target separation can be seen. For example, Bock & Ever-

sheim [96] showed that RTs in target selection tasks depend

much more on the angular range spanned by the distracters

than by the number of distracters themselves. Several studies

have shown that when subjects are forced to select quickly,

they often launch their movements in-between targets that

are close, but choose randomly between targets that are far

apart [97–99].

The affordance competition hypothesis suggests that

during visuo-motor decisions, the spatial information defin-

ing the options is processed along the dorsal visual stream,

which is known to be remarkably fast [73,100]. Thus, if two

options suddenly appear, there will a fast feedforward
sweep of information that defines their spatial parameters

in fronto-parietal cortex. Because competition occurs within

each region along this route, spatial interactions between tar-

gets should be evident as soon as cells become tuned. By

contrast, because selection biases often take longer to com-

pute, especially if they involve arbitrary mappings between

stimulus features and reward size, then their influence on

fronto-parietal activity should appear significantly later.

Figure 2d illustrates this phenomenon in our PMd study. Of

course, such a discrete sequence of events is only expected

in the artificial situation of a laboratory experiment. During

natural behaviour, spatial information specifying potential

actions is constantly provided by the environment along

with cues pertaining to their selection, and all of these

processes must take place in parallel.

This brings us to the second critical property of embodied

decisions: their dynamic nature. As the animal moves around
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its environment, the available opportunities and demands for

action are continuously changing, both in their spatio-tem-

poral properties as well as their potential costs and payoffs.

Consider again the situation faced by the mouse (figure 1).

As it moves along a particular path, the relative cost of turn-

ing to the right or left is changing, and depends upon the

animal’s own momentum. Obviously, relevant objects in

the world are also moving, redefining the options and motiv-

ating the re-evaluation of their relative desirability. This

dynamic nature of embodied behaviour makes it challenging

to study, especially through single-electrode neural recording

experiments in which the data from individual trials is extre-

mely noisy. Great progress is being made in developing

methods to record activity from a much larger number of

neurons [101] as well as methods to analyse that data [102],

raising the possibility that in the future we may be able to

conduct studies in which animals are faced with the kinds

of dynamic, unique situations for which their nervous sys-

tems evolved. To date, however, we must be satisfied with

more humble approaches for making sense of the dynamic

nature of decisions.

Nevertheless, certain issues are clearly critical once we

begin to examine decision-making in a dynamic world. One

is the mechanism of how sensory information is treated

during the process of deliberation. Most models suggest

that sensory information pertinent to a choice is integra-

ted over time until the accumulated information reaches

a threshold [103–107]. This is usually called the ‘drift diffu-

sion’ or ‘bounded accumulation’ model. Originally, it was

conceived as a model of the deliberation that takes place

within a purely cognitive system [104,106], but more recently

it has also been suggested as a model of how action decisions

are made within the sensorimotor system [105]. This rela-

tively simple model explains the timing and accuracy of

choices as a function of deliberation time and speed-accuracy

trade-off conditions, and explains stimulus-dependent build-

up of neural activity over time in a wide range of decision tasks

[91,105,108,109]. Consequently, drift diffusion is currently one

of the most influential models of decision-making.

However, if the world can suddenly change, then inte-

gration is highly sub-optimal. If you have collected evidence

in favour of moving towards a particular goal (e.g. a tasty

fruit) but suddenly the world changes (e.g. a threat appears

near the fruit), then you should change your mind quickly

and not have to ‘integrate away’ the previously collected

evidence. Instead, you should always process information

quickly, with time-constants appropriate for a given type of

situation. This motivates the hypothesis that during dynamic

decision-making the brain does not use a slow integration

process to estimate the state of the world but instead uses a

low-pass filter with a fairly short time-constant (short enough

to respond quickly to changes on the relevant timescale,

while long enough to filter out irrelevant high-frequency fluctu-

ations in sensory input). The typical duration of fixations

suggests that the time-constant of visual decisions is about

100 ms [110], predicting that neural estimates of sensory infor-

mation should equilibrate within about 300 ms after stimulus

onset, even in highly noisy tasks. But then what could be

responsible for the neural activity build-up seen in so many

decision-making tasks?

One possible answer comes from considering that during

natural behaviour, what matters most is not the accuracy of

choices but the reward rate [111,112]. Recent work has
shown, both numerically [113] and analytically [114], that

to maximize rewards the brain should use a decision criterion

that decreases over time within each trial, in a task-dependent

manner. The intuition behind this is simple: if you quickly

receive good information for making a decision then you

should make the choice right away, but if you are not sure

then it may be worthwhile to wait in case new information

presents itself. However, if nothing happens and time is run-

ning out, you may need to just go with your current best

guess. In other words, you should drop your standards

over time.

Suppose now that we have a decision-making system in

which potential actions compete against each other, biased

by evidence in favour of each, and a decision is made when

one of these gets strong enough to suppress the others. One

simple way to implement a decreasing confidence criterion

is to add to this system a non-specific ‘urgency’ signal that

increases over time. When the urgency is low, only an

option with very strong evidence will win the competition.

As the urgency grows, however, the tension between the

options increases (the basins of attraction become steeper)

and a smaller difference in evidence may be sufficient to tip

the scales [115]. Several neural experiments have suggested

that such an urgency signal exists during decision-making

in a number of brain regions, including frontal [116,117]

and parietal cortex [118]. Indeed, it has been proposed that

perhaps it is the urgency signal, not evidence accumulation,

which may be responsible for the build-up of neural activity

seen in most decision-making experiments [114,119–121].

To summarize, in dynamically changing situations the

brain is motivated to process sensory information quickly

and to combine it with an urgency signal that gradually

increases over time. We call this the ‘urgency-gating model’,

and some recent experiments in our laboratory set out to test

its predictions. In these experiments, subjects were faced with

decision tasks in which information about the correct choice

changes continuously and the decision can be taken at any

time [114,117,119]. In one series of studies, humans [119] or

monkeys [117] have to guess which of two reaching targets

will receive the majority of small circular tokens that jump

into one or the other target every 200 ms (figure 3a). The sub-

jects can decide at any time, and after they reach the selected

target the remaining token jumps accelerate and reward is

delivered if the correct guess was made. Thus, subjects are

faced with a trade-off: either wait until there is enough infor-

mation for choosing with confidence, or take an early guess

and save some time (improving the reward rate). Importantly,

the design of the task allows us to calculate the sensory evi-

dence in favour of each target at each moment in time, and to

characterize trials on the basis of the profile of this ‘success

probability’ over time (figure 3b).

At the behavioural level, the results from both humans

[119] and monkeys [117] are consistent with predictions of

the urgency-gating model. In particular, during dynamic

decision-making the sensory information appears to be

processed quickly, with previous history of the state of evi-

dence quickly ‘forgotten’ and updated. This was observed

even in a task using noisy motion stimuli [114]. Further-

more, when we calculated the level of evidence available to

subjects at the time of decision we found that it decreased

as a function of decision duration, consistent with the

hypothesis that an urgency signal pushes the system to

commit with less and less sensory information as time is
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Figure 3. An experiment on the neural mechanisms of decisions in dynamic situations. (a) Task design. Monkeys were presented with two targets on either side of
a central target in which 15 tokens were randomly placed (first row). During each trial, these tokens jumped one-by-one every 200 ms into one or the other target,
randomly (second row). The monkeys had to decide which target would receive the majority of the tokens but could make this guess at any time, and after the
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ability that a target would be correct, during three different trials: in easy trials (blue) probability tended to quickly converge to a target; in ambiguous trials (green)
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schematic ‘decreasing threshold’ which explains behaviour in the task (see text). (c) Decision time distributions in easy (blue), ambiguous (green) and misleading
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jump and, to prevent averaging artefacts, truncated at the estimated movement of decision. (e) Average activity of the same PMd and M1 cells aligned on move-
ment onset. Note the prominent peak of activity in PMd cells tuned to the selected target, which occurs approximately 280 ms before movement onset regardless of
the trial type (grey line). Note also that around the same time, there is a sharp suppression of activity in the M1 cells tuned to the unselected target, and a later
peak of activity (140 ms before movement onset) in M1 cells tuned to the selected target. Adapted from Thura & Cisek [117].
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passing—i.e. that subjects drop their standards over time (see

the grey line in figure 3b).

At the neural level, these results were confirmed more

explicitly [117]. As shown in figure 3d, neural activity in

PMd reflected the temporal profile of the sensory information

provided by the token movements, together with a trend for

increasing activity over time. Similar results were found even

in the primary motor cortex (M1), a structure normally seen

as merely reflecting the output of decisions taken elsewhere.

These observations are consistent with the ‘continuous flow’

model of Coles et al. [122] whereby the motor system is

continuously receiving sensory information pertinent to

actions, even long before movement onset. What we found

in PMd and M1 appears to reflect the changing competition

between potential action plans, playing out close to the

edge of motor execution.

Importantly, the use of a dynamic decision task allows us to

distinguish the process of deliberation from the moment of

decision commitment. This lets us conclude that neural activity

in the motor system (PMd and M1) reflects decision-making
processes prior to the moment of commitment and does not

simply spill in from higher regions as proposed by serial

models [21]. Furthermore, it allows us to examine the neural

events that occur at the moment that, we estimate, the subjects

commit to their choice.

As shown in figure 3e, if we align neural activity to the

time of movement onset, we see a striking phenomenon

occurring in PMd and M1. Approximately 280 ms before

movement onset, the activity of PMd cells tuned to the

selected target reaches a level of activity that is remarkably

consistent across different trial types both in terms of

timing and amplitude. At about the same time, the activity

of M1 cells tuned to the unselected target is rapidly sup-

pressed. This is exactly what one would predict from a

biased competition taking place within the reciprocally con-

nected PMd–M1 network: a sudden phase transition in the

dynamical system that represents potential actions. Shortly

after this putative ‘moment of commitment’, M1 cells related

to movement production become active and presumably

launch the selected action. It should be noted that the

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130479

9

 on February 10, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
phenomenon observed in PMd–M1 (figure 3e) cannot be

simply related to movement execution, because it occurs

much too early (280 ms is close to the monkeys’ total RTs

in a simple instructed task). Furthermore, it is virtually

absent in a task in which both the choice of target and the

timing of movement are externally instructed [117].

The results shown in figures 2 and 3 suggest that, consist-

ent with the affordance competition hypothesis and the

demands of embodied behaviour, when deciding between

actions the brain represents the options within sensorimotor

regions. These representations compete against each other

through spatially dependent mutual inhibition (figure 2c),

biased by a continuous flow of sensory information related

to the choice as well as a growing signal related to the urge

to act (figure 3d ). Furthermore, these results suggest that

what determines the choice that is made as well as the

timing of commitment is the resolution of this competition

within the sensorimotor system (figure 3e). This contradicts

the proposal, made on the basis of classical economic theories

that all decisions are made within a neural representation of

outcome values [21].

Of course, not all decisions are the same. Obviously,

nobody would suggest that a banker decides between two

investments through a competition between the potential

actions of signing on two different dotted lines! Here, we

are explicitly talking about real-time, embodied decisions

made between concrete action choices, such as choices

between two directions to run from a predator. For such scen-

arios, it makes good sense that the resolution of competition

between choices takes place in a space of actions. First, action

costs must be taken into account [123–125], along with the

geometrical relationship between options [88], and the

motor system is best suited to combine these kinds of infor-

mation. Second, the consequences of embodied decisions

only begin to play out after an action is initiated, and so it

makes good sense to commit to one action or another only

in the latest stages of processing. Finally, even after the

choice is taken and initiated, it makes sense to keep other

options represented in case the world changes.

An analysis of neural responses to changes in the environ-

ment is illustrated in figure 2e. In some trials, the more

valuable of two targets disappeared at the time of the GO

signal, forcing the monkey to change its mind and reach for

the remaining target. Importantly, the same PMd cells that

appear to be involved in the initial choice between actions

continue to be involved in changing the monkey’s movement

trajectory online (figure 2e). Similar results have been

observed during ‘target jump’ experiments [126–128] and

instructed switching tasks [129], suggesting that neurons in

the motor system respond to changes of a target or goal

within 150 ms of the relevant visual stimulus. The ability to

rapidly respond to changes is of course of great survival

value during natural behaviour in a dynamic environment.

Dramatic demonstrations of such rapid responses can be

seen in recent studies by Scott and co-workers [130,131].

For example, Nashed et al. [131] compared electromyographic

(EMG) responses to mechanical perturbations during move-

ments made either with or without obstacles. They found

that the mid-latency (45–75 ms) EMG response to pertur-

bations was significantly stronger when the perturbation

pushed the arm towards an obstacle, even though the

obstacle was not in the path to the target. This means that

when obstacles are present, the motor system is somehow
primed to resist perturbations that might cause collisions. Fur-

thermore, a more recent study [130] shows how the motor

system can select between different paths among obstacles, or

even switch targets when necessary (figure 4a). With a small

perturbation, the muscles quickly resisted and brought the tra-

jectory back to its initial path (blue). By contrast, after a large

perturbation, such resistance was absent and the limb was

allowed to pass around the obstacle to a different target

(red), which was an acceptable solution. Most interestingly,

with medium-sized perturbations the muscle response was

highly state-dependent, sometimes resisting and returning to

the straight path, but sometimes ‘giving in’ and going

around the obstacle and to a different target. What is critical

to emphasize is that these task and state-dependent responses

occurred about 45–75 ms after the perturbation (figure 4b,c).

They were much too fast to allow any kind of re-planning or

re-evaluation of decisions made in putatively cognitive regions

and could involve only a single pass through the transcortical

loop. Interestingly, with large perturbations there were two

levels of corrective response evident in the data. In particular,

in some trials when the arm was pushed around the obstacle

to a new target (figure 4a, left), the trajectory first transiently

returned towards the original central target (red arrow), as if

the motor system selected a new path (around the obstacle)

but had not yet selected a new target, and then only later a

new target was selected.

In summary, the results of Nashed et al. [130] demonstrate

that the mere presence of obstacles in the environment sets up

the gains of the motor system’s resistance to perturbations in a

highly task-dependent manner. It appears that even the short-

est transcortical loops are sensitive to the layout of objects in

space, and are capable of quickly ‘deciding’ between alterna-

tive solutions (e.g. which way to go around an obstacle) and

even to decide between different goals. From a dynamical sys-

tems perspective, such rapid online corrections could evolve

over a potential flow field in which obstacles define unstable

equilibria and decision points emerge as the edges between

basins of attraction of desirable potential actions. Indeed, if

we consider what human athletes (or wild monkeys) are

capable of, then perhaps it should be no surprise that online

sensorimotor control is this flexible and sophisticated.
6. Concluding remarks
In this review, we have argued that attempts to understand

decision-making at both behavioural and neurophysiological

levels would benefit by addressing the particular challenges of

embodied decisions. Motivating this proposal are the assump-

tions that the brain evolved first and foremost to deal with

such challenges, and that the resulting functional architecture

has been highly conserved even to the present day.

The affordance competition hypothesis [51] suggests a can-

didate mechanism for dealing with the challenges of embodied

behaviour. It proposes that sensory information is continu-

ously used to specify the parameters of several potential

actions in parallel, and these compete against each other

under the influence of biases coming from a variety of sources,

including the basal ganglia and prefrontal cortex. This differs

from classical psychological models in several ways. Most

importantly, classical models assume that all processes of

deliberation and commitment occur within a prefrontal central

executive [16,19,21] and their results are then relayed to motor
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systems. By contrast, we propose that, at least in the case of

embodied decisions, commitment takes place through a distrib-

uted consensus within sensorimotor systems. Deliberation

involves both the dynamics of the sensorimotor competition as

well as the computation of relevant biases in regions tradition-

ally considered ‘cognitive’. Our hypothesis is quite compatible

with recent proposals about activity in these regions. For

example, computation of absolute economic value in OFC [22]

would clearly be useful for biasing the competition between

actions that yield different outcomes. A variety of stages may

exist where relevant variables converge to form representations

of stimulus value or action value, perhaps in OFC and anterior

cingulate cortex, respectively [132,133]. However, a single

‘common currency’ is not strictly necessary because the biases

can ultimately be integrated within the sensorimotor

competition itself.

A major difference between our hypothesis and classical

models is that there is no need for a value-to-action trans-

formation [26]. Information about affordances is always

available in sensory input and the dorsal stream and parieto-

frontal systems are exquisitely good at extracting that infor-

mation to specify potential actions. There is no need to

convert these into abstract representations, make decisions

to choose a goal, and then convert that goal back into an

action plan. Instead, what is necessary is a way to map

biases such as outcome value onto the (already specified)

corresponding actions. While this may involve complex pro-

cesses such as those ascribed to lateral prefrontal cortex

[26,65,134], in many cases the mapping may be solved

through very simple strategies. For example, creatures able
to move their gaze may use it to direct the processing of

both the ventral and dorsal streams to the same spatial

locus, allowing ventro-prefrontal mechanisms to simply

instruct the dorsal sensorimotor systems to ‘grasp whatever

is in the fovea’ [135].

Despite our emphasis on embodied decisions and the

mechanisms that meet their particular challenges, we do

not argue against the usefulness of studying the neural mech-

anisms of pure economic choices. Obviously, humans are

capable of making decisions that have nothing to do with

action, and understanding such abilities is of great scientific

and clinical interest. In fact, it is quite possible that the dis-

tinction between different kinds of decisions, such as

abstract versus embodied decisions, is paralleled by a distinc-

tion between different neural structures and circuits that

subserve these scenarios. There is a wealth of theoretical

work suggesting such distinctions, in psychology [136]

as well as economics [4,137], and neural data suggest that

different kinds of decisions involve different brain regions

[45,132,133,138,139]. Indeed, phylogenetic continuity motiv-

ates us to consider how abstract decisions such as economic

choice evolved within a system originally adapted for real-

time embodied choices, and how the architectures subserving

these abilities may be related.

In particular, the concept of affordances can generalize to

higher levels of interaction. As long as the world contains

reliable causal structure, the brain should be able to discover

that structure and learn to detect opportunities for exploiting

it [140]. For example, high-level causal structure exists in

both social (if I show my teeth, you back off) and economic
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domains (if I deposit money in a savings account, I can buy a

house later), and it is possible that representations of potential

high-level choices compete against each other under the influ-

ence of high-level biases. Along the primate lineage the

expansion of the frontal lobes, together with the corresponding

cortico-striatal and cortico-cerebellar systems, may correspond

to a differentiation and specialization of the basic architecture

of biased competition towards increasingly abstract domains

of interaction [45,141]. Indeed, identifying and understanding

the phylogenetic history of this process may be the single

most valuable future research direction for understanding the

fundamental architecture of human cognition.
 i
In conclusion, our emphasis on embodied behaviour is not

incompatible with studies of the neural bases of economic

choice. Our goal here is simply to point out what neuroeco-

nomic approaches do not address—the particular challenges

of embodied decisions. We believe that addressing these chal-

lenges is critical for understanding a brain whose evolution

was dominated by the demands of embodied behaviour, and

for building theories that span the ecological, behavioural

and neural levels.
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