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Abstract Exercise has beneficial effects in ameliorating

metabolic disorders, and a combined therapeutic regimen

of regular exercise and pharmaceutical treatment is often

recommended. Exercise biology is complex and it involves

various metabolic and molecular changes that translate into

changes in substrate utilization, enzyme activation, and

alternatively, improvement in exercise performance.

Besides the effect of exercise on muscle metabolism, it has

recently been discovered that contracting muscle can

induce secretion of molecules called myokines. In the past

few decades, a number of myokines have been discovered,

such as interleukin-6, irisin, myostatin, interleukin-15,

brain-derived neurotrophic factor, b-aminoisobutyric acid,

meteorin-like, leukemia inhibitory factor, and secreted

protein acidic and rich in cysteine, through secretome

analysis. The existence of myokines has enhanced our

understanding of how muscles communicate with other

organs such as adipose tissue, liver, bone, and brain to exert

beneficial effects of exercise at the whole body level. In

this review, we focus on the role of these myokines in

regulating local muscle metabolism as well as systemic

metabolism in an autocrine/paracrine/endocrine fashion.

The therapeutic potential of myokines and the natural or

synthetic compounds known to date that regulate myokines

are also discussed.
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Introduction

Exercise is by far an effective way to improve health. In

contrast, physical inactivity is associated with development

of various diseases such as type 2 diabetes mellitus

(T2DM), sarcopenia, osteoporosis, cardiovascular disease,

and cancer (Tuomilehto et al. 2001; Monninkhof et al.

2007; Nocon et al. 2008; Wolin et al. 2009; Naseeb and

Volpe 2017). Moreover, exercise on a regular basis exerts

beneficial effects on metabolic health through not only

modifying the traditional risk factors, such as blood glu-

cose and lipid levels, but also by directly regulating glu-

cose transport, insulin utilization, endothelial function,

autonomic nervous system etc. (Goodyear and Kahn 1998;

Joyner and Green 2009). Therefore, studying the exercise

modality can help us discover biomarkers and therapeutic

molecules which could underpin numerous physical inac-

tivity-related disorders. However, it is difficult to dissect

the mechanisms underlying exercise-induced changes since

exercise is a highly complex process which simultaneously

involves integrative and adaptive responses in multiple

tissues and organs at the cellular and systemic level.

Studies have been performed during the past few decades

in an effort to elucidate the cellular and molecular mech-

anisms of acute and chronic exercise, but the majority of

exercise biology still remains poorly understood.

Anatomically, skeletal muscle is the largest organ which

constitutes about 40% of the total body mass, and there-

fore, it plays a major role in regulation of metabolism.

Along with the local effects of skeletal muscle on meta-

bolism, it has recently been discovered that, similar to

adipocytes, skeletal muscle is a secretory organ responsible

for the production of several hundreds of peptides classified

as ‘myokines’ (Bortoluzzi et al. 2006; Yoon et al. 2009;

Henningsen et al. 2010). The discovery of myokines has
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opened a new door for understanding the biology of

exercise, providing evidence that muscles are able to

communicate with other organs, such as bone, liver, adi-

pose tissue, brain, etc. In this review, we focus on pro-

viding an update on some of the well-known myokines as

well as the newly discovered myokines, and study their role

in mediating the beneficial effects of exercise on metabo-

lism through either an autocrine, paracrine, or endocrine

mechanism.

Exercise physiology

Adaptation to exercise is a complex process as it involves

diverse changes in transcriptional and translational

responses, mitochondrial function, metabolic regulation,

and signaling pathways that govern these changes (Egan

and Zierath 2013). In simple terms, the molecular and

metabolic responses to exercise can be first categorized

into acute exercise (single bout) and chronic exercise

training. Exercise training leads to molecular adaptations

and these responses can be further classified as adaptation

to aerobic (endurance) and resistance exercise. Acute

exercise can alter the expression of various genes (Yang

et al. 2005) and phosphorylation of proteins (Hoffman et al.

2015) to stimulate the muscle adaptation. However, a

transient response to acute exercise is insufficient to alter

the muscle phenotype. Rather, phenotypic adaptation in

response to chronic exercise training involves accumula-

tion of repeated single bout exercise-induced stimulation.

Chronic exercise causes changes in the protein content and

subsequently the enzyme function, resulting in improved

exercise performance. During acute exercise, the metabolic

pathway which provides the energy source is mostly

determined by the relative duration and intensity of exer-

cise. If exercise is performed at a low or moderate inten-

sity, glucose derived from the liver or from oral ingestion

(Coker and Kjaer 2005), and free fatty acids (FFA) from

adipose tissue (Horowitz 2003) primarily provide the fuel

needed to the skeletal muscle. If the intensity of exercise is

increased, the contribution of circulating FFA is modestly

declined while the use of circulating glucose is extensively

upregulated (van Loon et al. 2001). If the exercise is

continued for more than 1 h at a fixed intensity, the use of

energy from lipid oxidation inclines (Romijn et al. 1993).

In the case of aerobic exercise, mitochondrial biogenesis is

one of the well-known molecular adaptation processes

(Howald et al. 1985). Increased mitochondrial ATP pro-

duction, glucose transport, utilization of fatty acids, and

antioxidant capacity all reflect the enhancement of intrinsic

oxidative capacity of the muscle after endurance training

(Holloszy and Coyle 1984; Powers et al. 1994; Perseghin

et al. 1996; Talanian et al. 2010). Among various

regulators of skeletal muscle phenotype, peroxisome pro-

liferator-activated receptor gamma coactivator 1-alpha

(PGC1a) is a well-defined transcription factor responsible

for mitochondrial biogenesis, transformation of muscle

fiber type, and regulation of skeletal muscle metabolism

(Wu et al. 1999; Lin et al. 2005). On the other hand,

resistance exercise is an efficient exercise intervention to

improve muscle function in terms of its strength, power,

and size through morphological and neurological adapta-

tions (Booth and Thomason 1991; Folland and Williams

2007). The major pathway related to resistance exercise-

induced muscle hypertrophy involves p70S6K and mTOR

signaling. These pathways combine the nutrient and

metabolic stimuli to induce cellular growth and prolifera-

tion (Baar and Esser 1999; Bodine et al. 2001). Also,

anabolic hormones such as insulin-like growth factor

(IGF)-1 can induce mTOR activation and thus adaptive

hypertrophy (Adams and McCue 1998). Further details on

the molecular mechanisms related to exercise-induced

skeletal muscle adaptation have been described elsewhere

(Egan and Zierath 2013).

The skeletal muscle as an endocrine organ

More than 50 years ago, there was a notion that skeletal

muscle may secrete humoral factors. This was hypothe-

sized based on the fact that when a muscle contracts, the

physiology and metabolism of other organs are affected

(Goldstein 1961). Later through secretome profiling,

numerous myokines were discovered. Myokines are

molecules that are expressed, produced, and released by

muscle fibers which exert autocrine, paracrine, or endo-

crine effects (Pedersen et al. 2003). The autocrine and

paracrine effects of myokines are mostly involved in the

regulation of muscle physiology, such as muscle growth or

lipid metabolism, which can provide a feedback loop for

the muscle to adapt to exercise training. In contrast, the

endocrine effect of myokines is important in mediating the

whole-body effect of exercise. To date, the muscle is

known to crosstalk with adipose tissue, liver, pancreas,

bone, and brain. Among these interactions, the crosstalk

with adipose tissue is interesting as adipose tissues are also

recently discovered to exert an endocrine effect through

secretion of adipokines (Maury and Brichard 2010). During

physical inactivity, adipose tissue secretes adipokines,

which are mostly pro-inflammatory cytokines, to mediate

the pathological process (Fig. 1). It is now well recognized

that adipose tissue inflammation can lead to development

of metabolic diseases, such as T2DM and atherosclerosis

(Iyer et al. 2010). In contrast, myokines are produced

during exercise to mediate the health benefits of exercise

(Pedersen and Febbraio 2012). Therefore, it is

The role of exercise-induced myokines in regulating metabolism 15

123



hypothesized that myokines may counteract the harmful

effects of pro-inflammatory adipokines and maintain the

whole body homeostasis. In the following section, we will

focus on some of the roles of myokines that have been

discovered to date.

Interleukin-6

Interleukin-6 (IL-6) is known as the prototypical myokine

induced by contracting skeletal muscle during exercise.

During exercise, the circulating IL-6 levels derived from

the muscle fibers are elevated up to 100-fold and is cor-

related with the duration and intensity of exercise (Peder-

sen and Febbraio 2008; Raschke and Eckel 2013). As early

as after 30 min of acute exercise, IL-6 transcription is

increased (Fischer 2006), which contributes to the increase

in IL-6 secretion. It is confusing that IL-6 is generally

classified as a pro-inflammatory cytokine, while as a

myokine it is involved in the anti-inflammatory effect of

exercise. Specifically, exercise-induced IL-6 is reported to

inhibit the production of pro-inflammatory cytokines such

as TNFa and IL-1b (Steinbacher and Eckl 2015). Along

with its anti-inflammatory effect, myotube-produced IL-6

regulates satellite cell-mediated hypertrophic muscle

growth (Serrano et al. 2008), induces glycogen breakdown

and lipolysis via AMPK (Kelly et al. 2009), and enhances

GLUT4 expression and insulin sensitivity which are

canceled by injection of the IL-6 neutralizing antibody

before exercise (Ikeda et al. 2016). IL-6 seems to play a

dual role in insulin action in myotubes, where short-term

insulin exposure shows an additive effect with IL-6 and

chronic exposure produces insulin resistance (Nieto-Vaz-

quez et al. 2008). Exercise-induced IL-6 is not only capable

of regulating local muscle metabolism but it also exerts

beneficial effects on systemic glucose homeostasis and

lipid metabolism (Steinbacher and Eckl 2015). Of note, it

has been proposed that the skeletal muscle-adipose tissue

axis is important for the systemic effects of IL-6 (Pedersen

and Febbraio 2012). In humans, IL-6 increases lipolysis

and FFA oxidation in adipocytes, which suggests that IL-6

plays a critical role in regulation of fat metabolism (van

Hall et al. 2003). Interestingly, IL-6 is involved in exercise

training-induced uncoupling protein 1 (UCP1) expression

in murine inguinal white adipose tissue (WAT) and thus it

participates in adipocyte browning (Knudsen et al. 2014). It

has also been recently reported that exercise-induced IL-6

plays a role in protection against myocardial ischemia

reperfusion injury (McGinnis et al. 2015). Although

numerous studies have discovered that exercise-induced

IL-6 has a beneficial role in the regulation of metabolism,

understanding IL-6 physiology is still a complex process

due to its pro-inflammatory nature in general (Pal et al.

2014; Almuraikhy et al. 2016).

Fig. 1 Relationship between adipose tissue derived adipokines and skeletal muscle derived myokines. In the state of sedentary lifestyle, nutrient

overload results in accumulation of fat and subsequent disturbance in adipocyte metabolism, which results in secretion of adipokines which are

primarily proinflammatory cytokines. In contrast, contracting muscles in response to exercise secretes myokines, which are suggested to

counteract the effects of proinflammatory adipokines. Therefore, the metabolic homeostasis is regulated by balance between adipokines and

myokines, and are critical in development of metabolic diseases
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Irisin/FNDC5

Irisin is a PGC1a-dependent myokine suggested to mediate

the effect of exercise on adipocyte browning by increasing

the expression of UCP1 (Bostrom et al. 2012). In mice

overexpressing PGC1a specifically in muscle, PGC1a
induces the expression of a membrane protein fibronectin

type III domain-containing protein 5 (FNDC5), and exer-

cise triggers the cleavage of FNDC5 to secrete irisin into

the bloodstream, which subsequently elevates energy

expenditure in the subcutaneous adipose tissue through

adipocyte browning (Bostrom et al. 2012). While discovery

of irisin has received attention as a candidate for an exer-

cise mimetic, numerous studies that thereafter investigated

irisin came to somewhat controversial results, especially

with respect to the circulating levels of irisin post-exercise

(Bostrom et al. 2012; Huh et al. 2012; Ellefsen et al. 2014;

Norheim et al. 2014; Albrecht et al. 2015; Jedrychowski

et al. 2015). One possible reason for this discrepancy is the

technique used to measure the plasma or serum irisin level.

The concern was that human irisin antibodies used in some

of the commercial ELISA kits were not able to accurately

detect irisin, which may have caused inaccurate measure-

ment or false-positive/false-negative results regarding

exercise-induced circulating irisin levels (Perakakis et al.

2017). Recently, circulating human irisin was quantified

using mass spectrometry in an antibody-independent

manner. Through this technique, circulating irisin levels

were detected and were increased by both acute and

chronic exercise (Daskalopoulou et al. 2014; Jedrychowski

et al. 2015), which concluded the discussion on whether

human irisin exists in the circulation and whether it is

regulated by exercise. Despite controversies over the effect

of exercise on circulating irisin levels, the therapeutic

potential of irisin has been proved in numerous reports. The

beneficial role of irisin on skeletal muscle metabolism has

been proposed by our group and others, and it was shown

that irisin stimulates glucose uptake and lipid metabolism

via activation of AMPK (Huh et al. 2014a, b; Lee et al.

2015; Rodriguez et al. 2015). Irisin is also involved in

muscle growth through induction of IGF-1 and suppression

of myostatin (Huh et al. 2014b). In addition to its effects on

muscle, exogenous administration of irisin in mice induces

adipocyte browning in subcutaneous fat through p38

MAPK and ERK1/2 activation (Zhang et al. 2014). In

addition, FNDC5 overexpression in mice stimulates lipol-

ysis via the cAMP-PKA-perilipin/HSL pathway in adipo-

cytes, leading to reduced serum lipid levels (Xiong et al.

2015). In the liver, irisin stimulates glycogenesis while it

reduces gluconeogenesis and lipogenesis through regulat-

ing GSK3, FOXO1, and SREBP2 (Liu et al. 2015; Xin

et al. 2015; Tang et al. 2016). Interestingly, recent reports

have suggested that irisin is not only a myokine but also an

adipokine, although expressed to a lesser extent (Moreno-

Navarrete et al. 2013; Roca-Rivada et al. 2013). Whether

the expression of irisin in adipocytes contributes to the

local adipocyte or whole body metabolism needs to be

further examined. Although the effect of irisin has been

implicated the most often in insulin-sensitive tissues, its

beneficial effects on other organs such as bone, heart, and

blood vessel are being reported (Xie et al. 2015; Fu et al.

2016; Colaianni et al. 2017).

Myostatin

Myostatin is a myokine primarily expressed and secreted

by muscle fibers. It is unique in that myostatin is the only

myokine reduced in response to exercise (McPherron et al.

1997). Myostatin inhibits satellite cell proliferation and

differentiation in an autocrine and paracrine manner, and

conversely, genetic deletion of myostatin leads to muscle

hypertrophy in humans and mice (McPherron et al. 1997;

Lee and McPherron 2001; Schuelke et al. 2004; Rodgers

and Garikipati 2008; Relizani et al. 2014). While myostatin

activation negatively regulates muscle growth, myostatin

expression is downregulated after endurance as well as

resistance exercise (Allen et al. 2011). Therefore, it has

been proposed that the means of myostatin blockade (an-

tibodies, soluble decoy activin receptor type II B, propep-

tides) could serve as a therapeutic target for treatment of

patients with muscle dystrophies (Lebrasseur 2012). In

addition to its local effects on muscle atrophy, myostatin

can also modulate metabolic homeostasis through regula-

tion of adipose tissue function (Zhao et al. 2005; Feldman

et al. 2006; Guo et al. 2009). In mice fed a high-fat diet, it

has been reported that inhibition of myostatin using soluble

decoy activin receptor type II B ameliorates the develop-

ment of obesity and insulin resistance, through mechanisms

associated with lipolysis and mitochondrial lipid oxidation

in adipose tissue and liver (Zhang et al. 2012). Interest-

ingly, myostatin gene knockout mice show signs of fat

browning in the WAT and this effect is thought to be

mediated by AMPK activation in skeletal muscle and

subsequent induction of PGC1a, FNDC5, and irisin (Zhang

et al. 2012; Shan et al. 2013; Dong et al. 2016). On the

other hand, in vitro studies have provided evidence that

irisin downregulates myostatin gene expression in cultured

mouse myocytes and human primary myotubes, suggesting

a bidirectional regulation between myostatin and irisin in

modulation of muscle growth (Huh et al. 2014a; Rodriguez

et al. 2015). These findings highlight the myostatin-irisin

pathway as a potential therapeutic target against obesity

through adipocyte browning and subsequent induction of

energy expenditure. Apart from the effect of myostatin on
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muscle and fat, myostatin also strongly accelerates osteo-

clast formation through SMAD2 and its absence amelio-

rates rheumatoid arthritis in mice (Camporez et al. 2016).

Of note, follistatin is an endogenous inhibitor of myostatin.

Follistatin is a hepatokine, which suggests a possible

muscle-liver crosstalk in exercise physiology (Hansen et al.

2011). Recently, a phase II clinical trial has been com-

pleted using humanized monoclonal myostatin antibody

(LY2495655), and it showed improvements such as

increase in appendicular lean body mass in patients

undergoing elective total hip arthroplasty (Woodhouse

et al. 2016) and increased muscle power in older weak

fallers (Becker et al. 2015). In addition, the antibody has

shown promising results in preclinical models of tumor-

induced muscle wasting (Smith et al. 2015).

Interleukin-15

Interleukin-15 (IL-15) belongs to the IL-2 superfamily and

is expressed in human skeletal muscle (Quinn et al. 1995).

IL-15 is primarily known for its anabolic effects on skeletal

muscle. Specifically, it is known to stimulate the accumu-

lation of contractile proteins in differentiated myocytes and

muscle fibers (Quinn et al. 1995). IL-15 also modulates

glucose uptake in cultured myocytes in vitro and in isolated

skeletal muscle ex vivo through activation of the JAK3/

STAT3 signaling pathway (Busquets et al. 2005; Krolopp

et al. 2016). In addition, IL-15 exerts protective effect

against H2O2-mediated oxidative stress (Li et al. 2014) and

enhances mitochondrial activity through the PPARd-de-
pendent mechanism in skeletal muscle cells (Thornton

et al. 2016). In addition to its effects on muscle, IL-15

downregulates the accumulation of lipids in preadipocytes

and reduces the WAT mass, partly through stimulation of

adiponectin secretion (Carbo et al. 2001; Quinn et al.

2005), which suggests that IL-15 mediates the exercise-

induced muscle-fat crosstalk. Although numerous studies

have demonstrated that exercise alters the IL-15 concen-

tration in serum (Riechman et al. 2004; Tamura et al.

2011), there are somewhat conflicting data on the effect of

exercise on IL-15 protein expression and secretion from

skeletal muscle, which needs to be further studied in the

future.

Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) is primarily

known to be released from the hypothalamus and is a key

element in the regulation of neuronal development, plas-

ticity and energy homeostasis (Lapchak and Hefti 1992). In

a meta-analysis, blood concentrations of BDNF were

increased by acute exercise as well as aerobic exercise

training, but not by resistance exercise training (Dinoff

et al. 2016, 2017). It is interesting to note that the gene and

protein expressions of BDNF are upregulated in human

skeletal muscle after exercise, whereas this effect does not

seem to translate into its secretion (Pedersen et al. 2009).

Therefore, it remains to be elucidated whether skeletal

muscle directly contributes to the increased circulating

BDNF level. It has recently been reported that exercise

induces hypothalamic BDNF and subcutaneous fat

browning in mice (Cao et al. 2011). In line with this report,

overexpression of FNDC5 using an adenoviral vector in

mice upregulated circulating irisin levels, increased hip-

pocampal BDNF expression, and induced subcutaneous fat

browning (Wrann et al. 2013), suggesting that there exists

an exercise-induced PGC1a/FNDC5/BDNF pathway,

which serves as an evidence that irisin mediates the effect

of exercise on muscle to brain. In relation to learning and

memory, exercise-induced BDNF was shown to reduce the

production of toxic amyloid beta peptides, which could be

valuable in the treatment of Alzheimer’s disease (Nigam

et al. 2017). In contrast to the beneficial effect of BDNF in

the brain, the roles of BDNF in the periphery are not yet

well characterized. Nevertheless, in addition to its role in

the regulation of central metabolic pathways, studies have

suggested that BDNF may act as a metabolic regulator of

skeletal muscle. Specifically, BDNF has been shown to

increase the phosphorylation of AMPK and ACC and thus

enhance fatty acid oxidation and glucose utilization in

skeletal muscle, in an autocrine and paracrine fashion

(Matthews et al. 2009). Also, BDNF has been shown to

ameliorate insulin resistance in several diabetic mouse

models (Tonra et al. 1999; Tsuchida et al. 2001; Yamanaka

et al. 2006).

b-Aminoisobutyric acid

b-Aminoisobutyric acid (BAIBA) is formed by the cata-

bolism of thymine, and it has recently been identified in the

culture media of myocytes overexpressing PGC1a, through
metabolite screening (Roberts et al. 2014). Circulating

BAIBA levels have been reported to be significantly

increased by 3 weeks of voluntary running exercise train-

ing in mice and also by 20 weeks of supervised submaxi-

mal aerobic exercise training in humans (Roberts et al.

2014). BAIBA exerts various beneficial effects on muscle

metabolism in an autocrine/paracrine manner. First,

BAIBA increases mitochondrial FFA oxidation leading to

amelioration of insulin signaling, especially the IRS-1/Akt

pathway. In addition, BAIBA protects against inflamma-

tion in vivo through AMPK-PPARd-dependent mecha-

nisms (Roberts et al. 2014; Jung et al. 2015). Similar to its
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effects on muscle, the endocrine effect of BAIBA includes

upregulation of mitochondrial FFA oxidation in adipo-

cytes, resulting in reduced fat accumulation in mice

(Maisonneuve et al. 2004; Begriche et al. 2008). BAIBA

also interacts with liver, where it reduces hepatic de novo

lipogenesis through PPARa activation (Roberts et al.

2014). Also, BAIBA attenuates hepatic ER stress and

apoptosis via AMPK, leading to improvement in glucose/

lipid metabolic disturbance in mice with T2DM (Shi et al.

2016). Similar to other myokines, BAIBA treatment has

shown to induce fat browning through upregulation of

thermogenic gene expression in murine WAT (Roberts

et al. 2014). Recently, the therapeutic role of BAIBA in

renal fibrosis has also been demonstrated, where BAIBA

attenuates angiotensin II-induced fibroblast activation and

extracellular matrix deposition (Wang et al. 2017).

Meteorin-like

A novel form of PGC1a has been recently discovered,

which results from alternative promoter usage and splicing,

and was named as PGC1a4. PGC1a4 does not seem to

exert most of the known effects of PGC1a, such as regu-

lation of mitochondrial oxidation, but rather is upregulated

after resistance exercise, mediating the effect of exercise

on muscle hypertrophy and strength in mice and humans

(Ruas et al. 2012). Interestingly, mice with muscle-specific

overexpression of PGC1a4 produce and secrete a hormone

called meteorin-like (also known as subfatin) (Rao et al.

2014). In mice, acute exercise results in upregulation of

meteorin-like mRNA expression in muscle after 6 h and

circulating meteorin-like levels after 24 h (Rao et al. 2014).

Consistently, a single bout of combined resistance and

aerobic exercise in young healthy male subjects increases

circulating meteorin-like levels at both 1 and 4 h after

exercise (Rao et al. 2014). Meteorin-like induced by

exercise stimulates upregulation of genes related to adi-

pocyte browning and mitochondrial oxidation as well as

anti-inflammatory cytokines. It is interesting to note that

whereas other myokines directly induce adipocyte brown-

ing through upregulation of thermogenic genes such as

UCP1 in adipocytes, meteorin-like has an indirect effect on

adipocyte browning through regulation of immune cells.

Specifically, meteorin-like stimulates the eosinophils to

secrete IL-4 and IL-13, and promotes alternative activation

of adipose tissue macrophages which are required for

upregulation of thermogenic gene expression as well as

anti-inflammatory gene expression in WAT (Rao et al.

2014). A recent study has shown that meteorin-like is not

only a myokine, but also an adipokine. However, studies

have shown contradicting results regarding its role on

adipocytes. One study showed that meteorin-like promotes

adipogenesis and controls insulin sensitivity in adipocytes

through the PPARc pathway in mice (Li et al. 2015). On

the other hand, another study showed that meteorin-like

expression was higher in stromal vascular fraction com-

pared to adipocytes in humans, and that overexpression of

meteorin-like inhibits human adipocyte differentiation

(Loffler et al. 2017). Therefore, the role of meteorin-like as

an adipokine/myokine has yet to be explored.

Leukemia inhibitory factor

Leukemia inhibitory factor (LIF) has previously been

reported to have multiple biological functions in platelets,

bone, neurons, and liver (Metcalf 2003). Since LIF mRNA

expression is increased in human skeletal muscle after

resistance exercise and LIF protein is secreted when human

cultured myotubes are electrically stimulated (Broholm

et al. 2008; Broholm et al. 2011), LIF is classified as a

contraction-induced myokine. It is known that LIF plays an

important role in skeletal muscle hypertrophy and regen-

eration by enhancing cell proliferation through the JAK/

STAT and PI3K signaling pathway (Alter et al. 2008; Diao

et al. 2009). Along with its effects on muscle hypertrophy,

LIF acutely increases muscle glucose uptake through the

PI3K/mTORC2/Akt pathway (Brandt et al. 2015), sug-

gesting that LIF exerts local effects in muscle in an auto-

crine and/or paracrine manner. Even before it was

classified as a myokine, LIF was shown to stimulate

osteoblast differentiation while it was found to inhibit

adipocyte differentiation (Aubert et al. 1999; Sims and

Johnson 2012). Whether exercise-induced LIF mediates

these processes are unclear and yet to be discovered. In

terms of measuring post-exercise levels, it is difficult to

detect circulating levels of LIF protein, since LIF has a

very short half-life of 6-8 min in serum (Hilton et al. 1991).

Therefore, the expression and secretion levels of LIF pro-

tein after exercise are not well characterized.

Secreted protein acidic and rich in cysteine

Secreted protein acidic and rich in cysteine (SPARC) was

initially identified in the bone as osteonectin, but recent

studies have shown that it is also found in the muscle,

where its level increases during muscle development and

regeneration (Termine et al. 1981; Kupprion et al. 1998).

SPARC is a matricellular glycoprotein which modulates

the interaction between cells and the extracellular matrix

(ECM) proteins such as collagen and vitronectin (Brad-

shaw 2012). Interestingly, it has recently been shown that

SPARC directly interacts with actin and plays a critical role

in skeletal muscle tissue remodeling (Jorgensen et al.
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2017). The ability of SPARC to regulate tissue remodeling

also seems to play an important role in adipocyte differ-

entiation and adipose tissue turnover. SPARC inhibits

adipogenesis by activating the Wnt/b-catenin pathway (Nie

and Sage 2009), whereas higher expression of SPARC in

obesity limits the ability of adipose tissue to accumulate

lipids (Tartare-Deckert et al. 2001; Kos et al. 2009),

leading to metabolic dysregulation in obesity. Distinct from

the role of SPARC in regulating the ECM, it has been

reported that SPARC directly interacts with AMPK and is

involved in glucose metabolism in myocytes (Nie and Sage

2009; Song et al. 2010). Therefore, the relationship

between SPARC and metabolic disease is of current

interest, which needs to be further examined in detail.

Recently, it was discovered that exercise-induced SPARC

can also inhibit progression of colon tumor through

inducing colon cell apoptosis in mice, suggesting its role in

amelioration of cancer (Aoi et al. 2013).

Other myokines

Apart from the myokines discussed above, exercise-re-

sponsive myokines are continuously being discovered

through global mRNA sequencing and secretome analysis.

Apelin is a well-known adipokine upregulated in obese

individuals undergoing an 8 week endurance training, and

thus, it is identified as a novel exercise-regulated myokine

and is suggested to improve muscle metabolism and

function (Besse-Patin et al. 2014). IGF-1 and FGF-2 are

two well-known osteogenic factors, which are found to be

abundant in homogenized muscle tissue and are also

secreted from cultured myotubes in vitro (Hamrick 2011),

suggesting a muscle-bone crosstalk by exercise. Chitinase-

3-like protein 1 (CHI3L1) is another myokine whose gene

expression is increased after a single bout of strength and

aerobic exercise (Gorgens et al. 2016). Recent evidence

suggests that CHI3L1 acts in an autocrine/paracrine man-

ner to stimulate myoblast proliferation and inhibit pro-in-

flammatory signaling pathways (Gorgens et al.

2014, 2016). CXCL1 (fractalkine) and CCL2 (MCP-1) are

well-known chemokines which were induced in muscle by

acute exercise (Catoire et al. 2014). Since infiltration of

macrophages is important for exercise-induced hypertro-

phy, CXCL1 and CCL2 are believed to play a role in this

process.

The role of myokines in regulating local
and systemic metabolism and their therapeutic
potential

The identified roles of myokines have proven that myoki-

nes are involved in various processes of exercise adapta-

tion, primarily muscle growth and substrate mobilization

through regulation of whole body glucose/lipid metabo-

lism. The local effect of myokines on skeletal muscle is

summarized in Fig. 2 and Table 1. Many of the discovered

myokines mediate exercise-induced muscle growth (IL-6,

IL-15, irisin, myostatin, LIF), which implies that these

myokines stimulate muscle protein synthesis. Activation of

Akt-mTOR-p70S6 K signaling is critical for mRNA

translation, ribosomal biogenesis, and nutrient metabolism

(Coffey and Hawley 2007; Drummond et al. 2009), and

therefore, it is likely that similar pathways are associated

with these myokines. Myostatin is unique as it induces

muscle atrophy which may counterbalance the other ana-

bolic myokines. Myokines also regulate muscle metabo-

lism through enhancing muscle insulin sensitivity, either by

stimulating glucose uptake (IL-6, IL-15, irisin, BDNF, LIF)

or lipid metabolism (IL-6, irisin, BDNF, BAIBA). This is

in line with the fact that during exercise, ATP synthesis is

rapidly activated through substrate utilization (Gaitanos

et al. 1993; Parolin et al. 1999), and release of myokines

could be a response mechanism against increased glucose

demand during contraction.

The mobilization of extramuscular substrates is also

critical for maintaining skeletal muscle metabolism during

prolonged exercise (van Loon et al. 2005; Wasserman

2009). Therefore, the main target of the secreted myokines

in terms of their endocrine effects are insulin-sensitive

tissues, such as liver and adipose tissue (Fig. 3 and

Table 1). Irisin and BAIBA regulate liver glycogenesis and

gluconeogenesis, and a number of myokines have an effect

on lipolysis and FFA oxidation in adipocytes (IL-6, IL-15,

irisin, myostatin, BAIBA). These effects on adipocytes and

liver would potentially enhance whole body insulin sensi-

tivity, which would be beneficial for the treatment of

metabolic diseases. The discovery of irisin received

attention as it was suggested to mediate the effect of

exercise on adipocyte browning. Indeed, the effects of

other myokines on adipocyte browning were also shown to

be dependent on the action of irisin (BDNF, myostatin).

Meteorin-like, BAIBA, and IL-6 can also induce adipocyte

browning, but whether this is independent of irisin needs to

be investigated further. The myokines that stimulate

lipolysis and FFA oxidation in adipocytes usually have an

effect on adipocyte browning. However, in terms of myo-

kine-induced adipocyte browning, it is still not known why

exercise would induce a process that would reduce the

20 J. Y. Huh

123



storage of energy. A potential explanation is that overall

metabolism is increased to produce energy, but this point

needs to be discussed further in future studies.

Although the identified myokines share a common role

in regulating metabolism, how each myokine works and

how these myokines work together still remain to be elu-

cidated. It is also important to note that myokines seem to

regulate each other, as in the case of myostatin-irisin and

irisin-BDNF axis, which implies that myokines may work

synergistically to effectively regulate exercise-induced

adaptation. The role of myokines in mediating exercise-

induced adaptation opens a new door to their pharmaceu-

tical application, where myokines could be used to mimic

exercise-induced muscle hypertrophy and substrate mobi-

lization. Understanding the mechanism on how the muscle

communicates with other organs will advance the discov-

ery and development of pharmaceutical therapies to sup-

port certain disease groups wherein the patients are unable

to exercise. Especially, age-related muscle disorders such

as sarcopenia could benefit from the myokine-derived

drugs. Also, development of anti-obesity and anti-diabetic

drugs seems rational based on the metabolic effects of

myokines on adipocytes and liver.

Regulation of myokine synthesis and secretion
by natural or synthetic compounds

Based on the therapeutic potential of the identified

myokines described above, it is important to understand

how these myokines are regulated in terms of their

expression and secretion. Moreover, it would be valuable

to develop natural products or small compounds that reg-

ulate the myokines, independent of physical activity. So

far, a number of natural or synthetic compounds have been

reported to regulate myokines (Table 1). PDX ((10S,17S)-

dihydroxydocosa-(4Z,7Z,11E,13Z,15E,19Z)-hexaenoic

acid) is produced via sequential lipoxygenation of

docosahexaenoic acid and is reported to stimulate the

release of IL-6 from skeletal muscle (White et al. 2014).

Elocalcitol (a non-hypercalcemic VDR agonist), iono-

mycin (Ca2? ionophore), and calcineurin (Ca2?-calmod-

ulin–dependent serine/threonine protein phosphatase) also

stimulate IL-6 expression or secretion (Holmes et al. 2004;

Allen et al. 2010; Antinozzi et al. 2017). AMPK activators

AICAR and metformin have been implicated in the

upregulation of various myokines including IL-6 (Lau-

ritzen et al. 2013), irisin (Yang et al. 2015), and BDNF

(Guerrieri and van Praag 2015). This implies that activation

of AMPK signaling is critical to the mechanism of action

of myokines in regulating metabolic homeostasis. Leptin

also regulates a number of myokines including IL-6, IL-15,

and irisin (Nozhenko et al. 2015; Rodriguez et al. 2015),

indicating fat-muscle crosstalk. Regulation of irisin by

Fig. 2 The local effect of

myokines on skeletal muscle.

The exercise-induced myokines

can regulate muscle physiology

in an autocrine and paracrine

manner. The figure summarizes

the specific roles of each

myokines on muscle

metabolism and muscle growth.

In some cases where the

downstream mechanism is

known, the signaling pathways

which mediate the effect of

myokine is shown in the grey

box
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small compounds has been examined in various studies,

and showed that sodium butyrate, azacytidine, and inor-

ganic nitrate upregulate irisin (Kim et al. 2017; Roberts

et al. 2017). Interestingly, treatment with glucagon-like

peptide-1 (GLP-1) receptor agonist exenatide markedly

increased serum irisin levels (Liu et al. 2016), implying a

synergistic action of irisin with the anti-diabetic drug.

Whether this effect is directly or indirectly associated with

muscle irisin needs to be examined further. In addition,

natural product dihydromyricetin and ursolic acid stimulate

irisin secretion (Bang et al. 2014; Zhou et al. 2015). In line

with this finding, ursolic acid was also shown to decrease

the expression of myostatin (Yu et al. 2017), implying its

role in maintenance of muscle mass. Myostatin is by far the

most extensively studied myokine in terms of its regula-

tion. Small molecules and known drugs such as dorso-

morphin, LDN-193189, atomoxetine, formoterol,

fenofibrate and ghrelin analogues (Castillero et al. 2011;

Busquets et al. 2012; Lenk et al. 2013; Jesinkey et al. 2014;

Horbelt et al. 2015; Gomez-SanMiguel et al. 2016), and

natural products such as magnolol, epigallocatechin-3-

gallate, (-)-epicatechin (Gutierrez-Salmean et al. 2014;

Chen et al. 2015; Horbelt et al. 2015) all downregulated

myostatin expression and/or secretion, leading to a pro-

tective effect against muscle atrophy. In addition, myo-

statin is the only myokine for which a targeted therapeutic

molecule has been developed to date. As mentioned above,

there are numerous antibodies against myostatin

(LY2495655, ACE-031, domagrozumab, MYO-029, BMS-

986089, 10B3) and some of them have been successful in

human clinical trials and have proved their potential as

novel drugs in the treatment of skeletal muscle atrophy and

muscle weakness (Becker et al. 2015; Singh et al. 2016;

Woodhouse et al. 2016; Bhattacharya et al. 2017; Wurtzel

et al. 2017). With respect to BDNF, there are only indirect

evidences which show that BDNF upregulation by

resveratrol, loganin, rolipram, and taurine improved brain

function (Chou et al. 2013; Tseng et al. 2016; Zhong et al.

Table 1 Myokines, their metabolic effects, and compound/drug that affect their expression/secretion

Myokine Metabolic effects on muscle Metabolic effects on other organs Regulation by natural or synthetic compound

IL-6 Induce muscle hypertrophy, glucose

uptake, glycogen breakdown, and

lipolysis

Increase lipolysis and FFA oxidation in

adipocyte, induce adipocyte browning,

protect against myocardial I/R injury

Protectin DX (:), elocalcitol (:), ionomycin (:),
calcineurin (:), AICAR (:), leptin (:)

Irisin/

FNDC5

Stimulate glucose uptake and lipid

metabolism, involved in muscle

growth

Induce adipocyte browning and lipolysis,

stimulate glycogenesis and reduce

gluconeogenesis/lipogenesis in liver

Sodium butyrate (:), azacytidine (:), inorganic
nitrate (:), exenatide (:), metformin (:),
dihydromyricetin (:), ursolic acid (:), leptin
(:), myostatin (;)

Myostatin Inhibit muscle hypertrophy Inhibition of myostatin results in

adipocyte lipolysis and mitochondrial

lipid oxidation, accelerates osteoclast

formation

Follistatin (;), antibody against myostatin

(LY2495655, ACE-031, domagrozumab,

MYO-029, BMS-986089, 10B3;), ursolic
acid (;), formoterol (;), dorsomorphin (;),
LDN-193189 (;), atomoxetine (;), ghrelin
and its analogue (BIM-28125, BIM-28131;),
fenofibrate (;), magnolol (;),
epigallocatechin-3-gallate (;), (-)-epicatechin
(;),

IL-15 Stimulate muscle growth and

glucose uptake, enhance

mitochondrial activity and exert

anti-oxidative effect

Inhibit lipid accumulation in adipose

tissue through adiponectin stimulation

Leptin (:)

BDNF Enhance fatty acid oxidation and

glucose utilization

Induce adipocyte browning indirectly

through FNDC5

Resveratrol (:), loganin (:), rolipram (:),
AICAR (:), taurine (:)

BAIBA Increase mitochondrial FFA

oxidation, ameliorate insulin

signaling, anti-inflammatory effect

Increase mitochondria FFA oxidation and

browning in adipocytes, reduce hepatic

de novo lipogenesis and hepatic ER

stress

Inorganic nitrate (:)

Meteorin-

like

Unknown Induce adipocyte browning indirectly

through regulation of eosinophils

None reported

LIF Induce muscle hypertrophy and

glucose uptake

Stimulate osteoblast differentiation,

inhibit adipocyte differentiation

None reported

SPARC Regulate muscle tissue remodeling,

enhance glucose metabolism

Inhibit adipogenesis None reported
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2016; Wicinski et al. 2017). However, it is not known

whether these compounds can specifically induce muscle

BDNF expression/secretion. Only inorganic nitrate has

been reported to stimulate BAIBA (Roberts et al. 2017),

and there are no compounds known to date that regulate

meteorin-like, LIF, and SPARC. Evidence from previous

studies can help us to not only understand the mechanisms

underlying the regulation of myokines but also to provide

insights into developing therapeutic molecules that target

myokines. Since myostatin antibody has shown a good

example of myokine as a drug candidate, development of

myokine analogue seems promising.

Conclusion

Skeletal muscle is the major organ contributing to the

whole body metabolism, and identification of exercise-in-

duced myokines set a new paradigm in exercise biology

and metabolic homeostasis. The fact that muscles produce

secretory molecules provides the basis for the crosstalk

between skeletal muscle and other organs, such as adipose

tissue, bone, liver, kidney, brain, etc. Given the complexity

and variability among exercise regimens and responses at

the metabolic and molecular level, myokines that are sen-

sitive to exercise could serve as prognostic biomarkers

which reflect the improvement of whole body metabolism.

In the future, expression profiles of the identified myokines

could provide means to coordinate individual exercise

programs and to maximize the health-promoting benefits of

exercise on metabolism. Moreover, based on the role of

myokines in fine tuning the metabolic process associated

with exercise, development of exercise mimetics or small

compounds derived from myokines is a promising field in

the treatment of metabolic diseases.
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Fig. 3 The endocrine effect of myokines on brain, bone, adipose tissue, and liver. The exercise-induced myokines are capable of mediating the

beneficial effect of exercise from muscle to other organs. Among various organs, the crosstalk with the adipose tissue exerts multiple actions

including adipocyte browning and inhibition of adipocyte differentiation. Myostatin and LIF have opposite actions on bone. In the liver, irisin

and BAIBA modulates glucose and lipid metabolism. Of note, muscle-derived irisin is known to induce BDNF expression in the brain which

subsequently results in adipocyte browning
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