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Reductions in cerebral metabolism sufficient to impair cognition in normal individuals also occur in
Alzheimer's disease (AD). FDG PET studies have shown that decreased glucose metabolism in AD precedes
clinical diagnosis and the degree of clinical disability in AD correlates closely to the magnitude of the reduc-
tion in brain metabolism. This suggests that the clinical deterioration and metabolic impairment in AD are re-
lated closely. Diminished metabolism can lead to the hyperphosphorylation of tau and increased production
of amyloid beta peptide, hallmarks of AD. These observations suggest also that early mitochondrially thera-
peutic interventions may be an important target in delaying AD progression in elderly individuals and in
treating AD patients.

© 2012 Published by Elsevier B.V.
Alzheimer's disease (AD) is the most common age-related pro-
gressive neurodegenerative disorder with an estimated prevalence
of 24 million people worldwide [1]. AD is characterized by a complex
etiology due to multiple genetic and environmental risk factors.

Several penetrant autosomal dominantmutations have been identi-
fied (http://www.molgen.ua.ac.be AD/FTDmutation database) in three
genes (amyloid precursor protein, APP; presenilin 1, PSEN1; presenilin
2, PSEN2) connected with early-onset familial AD (EOFAD), while the
presence of the apolipoprotein E allele ε4 (ApoE4) is the only confirmed
genetic risk factor for late onset sporadic AD (LOAD) cases [2].

Despitemany years of research and great progress in the knowledge
of themolecular pathogenesis of AD, a full understanding of the etiology
of the sporadic form is still out of reach [3]. The pathological features of
AD include extracellular amyloid beta peptide (Aβ) accumulation, in-
tracellular neurofibrillary tangles of hyper-phosphorylated tau, which
are also accompanied by oxidative stress or mitochondrial dysfunction
and synaptic damage [4]. Mitochondria generate cellular energy (ATP)
and are also implicated in several cellular processes essential for cell
life and death, including the regulation of second messenger levels,
such as the calcium ion (Ca 2+) and reactive oxygen species (ROS) [5].

Neuronal activity is extremely energy dependent and neurons are
particularly sensitive to changes in mitochondrial function [6]. Fur-
thermore, the maintenance of calcium homeostasis is critical for neu-
ronal synaptic function [7]. Dysfunction of mitochondrial energy
metabolism leads to reduced ATP production, impaired calcium buff-
ering and the generation of ROS. Positron emission tomography (PET)
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studies have shown reduced cerebral metabolism in temporo-parietal
cortices in the onset of both familial and sporadic forms of AD corre-
lated to decreased glucose metabolism [8,9]. The cerebral metabolic
abnormalities precede the onset of symptoms and the degree of clin-
ical disability correlates closely to the magnitude of the reduction in
brain metabolism [10].

Since 1983, studies in animal models have demonstrated abnor-
malities of mitochondrial enzymes in Huntington and Alzheimer
brain, suggesting that the alterations leading to AD may be related
to mitochondrial oxidative metabolism [11,12]. Several decades of re-
search have firmly established that ROS production is inherent to mi-
tochondrial oxidative metabolism, and mitochondria are believed to
be the major intracellular source of ROS [13]. Recent studies suggest
that ROS are involved in physiological signaling cascades and regulate
important cellular and organ functions [14,15]; however, excessive
increase may lead to oxidative stress and be a primary or aggravating
factor in aging and neurodegenerative diseases.

For the past 20 years, the amyloid cascade hypothesis has domi-
nated scientific research but increasing evidence also indicates a pos-
sible mitochondrial cascade hypothesis [16]. The mitochondrial
activities associated with metabolic dyshomeostasis and reduced
ATP synthesis, involved in AD, are also closely related to aging.

By using in vivo and in vitro approaches, many studies demon-
strated that Aβ may interact with the mitochondria, showing co-
localization of Aβ with complex II of the respiratory chain, and it
may be responsible for mitochondrial dysfunction [17–25].

Mitochondrial dysfunction primarily involves the Aβ mitochon-
drial transporter (ABAD), mitochondrial DNA (MtDNA) and ROS pro-
duction, in particular pyruvate dehydrogenase, alpha-ketoglutarate
dehydrogenase (KHD) and cytochrome c oxidase (C-IV) [26].
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Aβ is able to pass through the cell membrane and mitochondrial
membranes using the amyloid channel and Aβ transporter systems,
in particular, [25] the translocase of the outer membrane (TOM40)
and the translocase of inner membrane (TIM22) [27,28]. The Aβ cyto-
toxic mechanism affects the membranes leading to invaginations,
budding, vesicle formation and permeabilization in mitochondria.
Moreover, Aβ binds to the basement membrane and induces an up-
regulation of the biosynthesis of membrane components, such as
laminin or collagen IV, that promote Aβ pathological deposits. Aβ in-
teraction with several proteins of the membrane permeability transi-
tion pore (MPTP), involved in many mitochondrial functions,
modifies the permeability of the mitochondrial membrane [28].

In cortical neurons, Aβ is also involved in the release of calcium
from the endoplasmic reticulum (ER), leading to an increase in cyto-
solic calcium levels. The calcium is taken up by mitochondria and mi-
tochondrial functions are impaired. This massive influx may
contribute to opening the MPTP, bringing about the collapse of the
mitochondrial membrane potential and the generation of pro-
apoptotic signals and ROS [29]. Furthermore, the massive increase
in intracellular calcium can initiate both necrotic and apoptotic cell
death [28].

Moreover, Aβ may inhibit mitochondrial respiration affecting sev-
eral proteins involved in these processes [25]. Two studies have
reported that the α-chain of ATP synthase is altered in degenerating
neurons in AD and that the interaction between Aβ and ATP synthase
results in ATP depletion [30,31]. Furthermore, a subsequent study
reported that Aβ decreases cytochrome c oxidase activity, but the
mechanism is still unclear [32]. In contrast, the activity of ROS pro-
duction sites, in particular cytochrome c reductase (complex III), re-
sults increased [33], highlighting that inhibition of mitochondrial
respiration and ATP depletion may be associated with the deleterious
effects of ROS [34].

ROS can damage macromolecules directly, causing protein and
lipid peroxidation. The oxidation of specific cellular proteins, such as
enzymes, calmodulin, the Aβ peptide and tau-protein, represents a
critical determinant of brain function [35]. Moreover, ROSmay induce
spontaneous DNA oxidation among the normal bases [36].

Many studies have demonstrated that Aβ is able to induce apopto-
sis with both in vitro and in vivo approaches. The exact mechanism is
still unclear, although several hypotheses have been proposed;
[37,38] one possible pathway is the involvement of Aβ in the mito-
chondrial release of the apoptosis-inducing factor (AIF), responsible
for initiating caspase-independent apoptosis by causing DNA frag-
mentation and chromatine condensation [22]. Recently, a study
reported that the apoptosis pathway may involve activation of
caspase-3, the c-Jun transcription factor or p53 [28].

In summary, Aβ may have many effects on mitochondria through
different mechanisms including modification of membranes, reduced
respiratory function, the generation of ROS, increased vulnerability to
other toxic substances and induction of apoptosis disorders involving
calcium. Moreover, Aβ may induce mutations in MtDNA and RNA.

To date, the role of mitochondria in the development of AD is still
very controversial, but there is no doubt that mitochondrial dysfunc-
tion, abnormal mitochondria dynamics and degradation by mitophagy
occurring during the disease process, contribute to its onset and pro-
gression. A study in cultured fibroblasts from sporadic and familial AD
patients has shown an alteration in mitochondrial activities by a reduc-
tion in CO2 production. The study has particularly demonstrated the oc-
currence of change inmitochondrialmetabolism in the fibroblasts of AD
patients carrying the PS1 mutation [39].

Studies in fibroblasts from patients carrying the PS1 M146L muta-
tion show the reduction in alpha-ketoglutarate dehydrogenase
complex (KGDHC) activity in response to exposure to mild stress [40].
Moreover, MTT (3–4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium
bromide), which represents a generalmarker of cellular dehydrogenase
activity, appears decreased in the presence of mutated fibroblast Aβ
deposits [40]. This suggests that KGDHC activities may have a clinically
relevant role in the pathophysiology of AD [40].

Several mitochondrial genetic mutations lead to early degenera-
tion of specific human tissues, mitochondrial mutations may cause
degeneration at a later point in life. The first mutation reported in
MtDNA was 4336 G, which occurs more frequently in individuals
with AD [41]. Human MtDNA is a circular molecule of 16,569 base
pairs encoding 13 polypeptide components in the respiratory chain,
two ribosomal RNA genes and 22 transfer RNA genes, necessary to
support intramitochondrial protein synthesis. This type of DNA is ma-
ternally transmitted and does not undergo recombination. Mitochon-
drial DNA presents a high mutation rate due to the lack of histone
proteins, inefficient DNA repair and close proximity to ROS produced
during oxidative phosphorylation [28]. Based on the instability and
irreparability of the mitochondrial genome, due to the absence of his-
tones and enzymatic repair systems, it is possible that during aging
the accumulation of oxidative stress induces MtDNA damage and sub-
sequent mitochondrial dysfunction. A study has demonstrated the
presence of increased oxidation in both mitochondrial and nuclear
DNA bases in the frontal, parietal and especially in the temporal
lobes of AD cases, and MtDNA oxidation was approximately 10-fold
higher than nuclear DNA oxidation [42].

There is evidence suggesting that tissues from both AD patients
and individuals with mild cognitive impairment have elevated levels
of oxidative DNA damage. Aβ peptides are directly involved in free
radical/ROS formation, cellular dysfunction and subsequent neuronal
death. Further mitochondria are thought to be the central target for
oxidative stress-induced damage [13]. Several studies on the influ-
ence of MtDNA mutations have shown different and contrasting re-
sults which may be due to ethnicity variability in the MtDNA
[43–45]. In Caucasian populations there are 9 mitochondrial
haplogroups. Polymorphisms in MtDNA may cause changes in en-
zyme activities through changes in the mitochondrial respiratory
chain and free radical overproduction. Specific sets of polymorphisms
define groups of mitochondrial DNA evolved from the same ancestor
[46,47].

Carrieri and colleagues analyzed MtDNA haplogroups and APOE
polymorphisms in sporadic AD patients, finding that ApoE and
MtDNA polymorphisms are statistically dependent variables in AD,
while they are independent in groups of healthy subjects [48]. In
this study, the odds ratio analyses were in agreement with the hy-
pothesis of an interaction between ApoE4 and MtDNA haplogroups
in sporadic AD [48]. In another study, an analysis regarding the sub-
haplogroups of MtDNA showed that within the H haplogroup the
H5 subtype showed the highest and most significant difference be-
tween AD patients and controls [49]. Other studies also reported dif-
ferences in mitochondrial haplogroups in AD and many other studies
are in progress on DNA and cells from different groups [50].

To date, there is evidence that mitochondrial dysfunction and ox-
idative damage have an important role in several neurodegenerative
diseases in which the mitochondrial contribution may be the primary
cause (eg, Parkinson's disease), or a consequence of biochemical dys-
functions (eg, Alzheimer's disease, Huntington's disease, amyotrophic
lateral sclerosis) (Table 1).

The varied mitochondria functions may explain the cell subpopula-
tions susceptibility to cellular aging, stress and genetic modifications
leading to the heterogeneous spectrum of pathological phenotypes.
Transgenic mouse models of human neurodegenerative diseases are
showing the possible mechanisms correlating the mitochondrial deficit
and the different pathological phenotypes [51]. However, although sev-
eral theories do exist, none of themhave ever equivocally demonstrated
how the mitochondrial abnormalities contribute to the diseases patho-
genesis thus, the connection between mitochondrial deficit and the de-
velopment of neurological diseases remains partially unknown [52].

Due to the strong evidence of a possible important and early role
of mitochondria in AD and other neurodegenerative disorders,



Table 1
Key mitochondrial dysfunctions in the most studied neurodegenerative diseases.

Phenotype Mitochondrial dysfunctions

Alzheimer's disease Increased mtDNA defects in brain tissue
Decreased levels of cytochrome oxidase, pyruvate
dehydrogenase, and α-ketodehydrogenase activity
Abnormal mitochondrial gene expressions
Aβ binds ABAD and increases ROS production leading to
mitochondrial dysfunction
Aβ increases expressions of mitochondrial fission genes and
decreases expressions of fusion genes causing abnormal
mitochondrial dynamics in neurons
Abnormal mitochondrial trafficking leading to an
insufficient levels of ATP at synapses
Aβ interacts with mitochondrial proteins and causes
structural damage to mitochondria

Huntington's
disease

Reduced mitochondrial enzyme activities of complexes I, II,
III, and IV
Increased mtDNA defects in brain and peripheral tissues
Abnormal mitochondrial dynamics due to mutant Htt which
increases mitochondrial fission and decreases mitochondrial
fusion
Mutant Htt interacts with mitochondria and microtubules
and impairs the axonal transport of mitochondria to nerve
terminals
Mutant Htt reduces mithocondrial calcium uptake capacity

Parkinson's disease Germ-line and somatic mtDNA defects in substantia nigra.
PINK1 and parkin mutations reduces mitochondrial fission
leading to the loss of mitochondrial and tissue integrity
Significant accumulation of mutant α-synuclein and de-
creased complex I activity in substantia nigra and striatum
The lack of DJ-1 shows an impaired protection from oxida-
tive damage caused by mitochondrial toxins.

Amyotrophic lateral
sclerosis

Mitochondria are targets of toxicity in motor neuron
Mutant SOD1 in spinal cord and brain mitochondria causes
neuronal toxicity under metabolic and oxidative stress
conditions

Aβ=amyloid beta, ATP=adenosine triphosphate, ABAD=Aβmitochondrial transporter,
mtDNA=mitochondrial DNA, ROS=reactive oxygen species, Htt=Huntingtin; PIN-
K1=PTEN-induced kinase 1, mtDNA, SOD1=superoxide dismutase 1.
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mitochondria are now considered a possible target for therapy [53]. Sev-
eral different therapeutical approaches have been proposed to protect or
repair mitochondria: mitochondria antioxidants, MtDNA repair enzymes,
overexpression of sirtuins, overexpression of nuclear transcription factor,
overexpression of insulin-like growth factor 1 [13].

Agents targeting mitochondrial dysfunction have shown positive
effect in some neurodegenerative diseases for which there is no effec-
tive symptomatic or disease-modifying therapy available to date,
such as in progressive supranuclear palsy and AD [54].

Very recently it has been shown that deoxyglucose treatment in-
duces ketogenesis, sustains mitochondrial function and reduces patho-
logical changes in the brain of an ADmouse model [55]. This treatment
reduces the amount of Aβ and the negative effect of oxidative stress and
lipid peroxidation, both in the hippocampus and cortex, but has no ef-
fect on the other AD principal hallmarks, such as phosphorylated tau
levels. Recently, it has been shown in an AD mouse model that long-
term diazoxide (ATP channel activator) treatment reduces Aβ and tau
pathologies and improves cognitive function. Diazoxide activates K+
channels (KATP) in both plasma membrane and mitochondrial inner
membrane, which are fundamental for the activity of this molecule
in suppressing the AD-like disease process. Diazoxide, through hyper-
polarization of the plasma membrane, may reduce Aβ production and
N-methyl-D-aspartic acid (NMDA) receptor-mediated cellular Ca2+
overload. Simultaneously, activation of mitoKATP channels may pre-
serve cellular energy substrates and reduce mitochondrial free radical
production. Collectively, these actions of diazoxide likely contribute to
delaying the AD process and to improving cognitive function [56].

Finally, studies have demonstrated that the mother's AD status has
a key role in the individual's risk of developing LOAD [57–59]. A re-
cent study shows reduced platelet mitochondrial cytochrome oxidase
(COX) activity in cognitively healthy subjects with a maternal AD his-
tory compared to those subjects with a paternal history of AD. This
suggests that COX abnormalities reflect the maternal inheritance-
dependent LOAD endophenotype and possibly reflect mitochondrial
DNA involvement. Moreover, it has been demonstrated that de-
creased COX and citrate synthase activities are independent of ApoE
status, suggesting that other factors may contribute to the AD etiology
[60].

In conclusion, evidence indicates that mitochondrial abnormalities
are plausible risk factors in the spectrum of chronic oxidative stress in
AD, eventually contributing to synaptic failure and neuronal degener-
ation. Mitochondria seem to be affected early on in both sporadic and
familial AD and the changes in these organelles are inherited through
a maternal pathway. Preliminary evidence suggests that early
mitochondrially therapeutic investigations may be an important tar-
get in delaying AD progression and in treating AD patients.
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