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In the wake of the worldwide increase in type-2 diabetes, a major focus of research is
understanding the signaling pathways impacting this disease. Insulin signaling regulates
glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal
muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the
individual moves from the fed to the fasted state. The positive and negative modulators acting
on different steps of the signaling pathway, as well as the diversity of protein isoform inter-
action, ensure a proper and coordinated biological response to insulin in different tissues.
Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead
to insulin resistance through a variety of mechanisms. Understanding these pathways is
essential for development of new drugs to treat diabetes, metabolic syndrome, and their
complications.

Insulin and IGF-1 control a wide variety of
biological processes by acting on two closely

related tyrosine kinase receptors. Receptor acti-
vation initiates a cascade of phosphorylation
events that leads to the activation of enzymes
that control many aspects of metabolism and
growth. Insulin/IGF-1 signaling contains many
different points of regulation or critical nodes,
controlled both positively and negatively, to en-
sure proper signal duration and intensity (see
the schematic in Fig. 1). Perturbations in these
signaling pathways can lead to insulin resis-
tance. Here we review the insulin-signaling net-
work, its critical nodes, and how these are per-
turbed in insulin-resistant states.

INSULIN AND IGF-1 RECEPTORS
Insulin and IGF-1 mediate their biological ef-
fects via the insulin and IGF-1 receptors (IR and
IGF-1R). These highly homologous tyrosine ki-
nase receptors are members of a family that also
includes the orphan insulin receptor-related re-
ceptor (IRR), which has been suggested to play a
role in testis determination (Nef et al. 2003) and
act as an extracellular alkali sensor (Deyev et al.
2011). Although insulin and IGF-1 preferential-
ly bind to their own receptors, both ligands can
also bind to the alternate receptor with reduced
affinity (Belfiore et al. 2009).

The IR, IGF-1R, and IRR are tetrameric pro-
teins that consist of two extracellular a subunits
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and two transmembrane b subunits that
are joined by disulfide bonds. Both subunits
are generated from a single large precursor by
proteolytic cleavage. The IR messenger RNA
(mRNA) undergoes alternative splicing of exon
11 to yield two isoforms that differ by exclusion
(isoform A) or inclusion (isoform B) of a 12-
amino-acid sequence in the carboxy-terminal
part of the a subunit (Mosthaf et al. 1990).
IR-A is predominantly expressed in fetal tissues
and in the brain, has higher affinity for both
insulin and IGF-2, has a higher rate of internal-
ization than the type-B isoform, and tends to
be up-regulated in cancer (Frasca et al. 1999),
whereas IR-B expression is highest in the liver.
Heterotetramers composed of an a/b dimer of
IR and an a/b dimer of IGF-1R can form hy-
brid receptor complexes that bind preferentially

IGF-1 and IGF-2 over insulin (Benyoucef et al.
2007). Their formation appears to occur ran-
domly in cells expressing both receptors and
depends on the relative expression level of
each type of receptor (Bailyes et al. 1997; Pan-
dini et al. 1999). Insulin and IGF-1 differential
effects in vivo reflect mostly the hormone con-
centration and relative expression level of recep-
tors in different tissues rather than the capacity
of IR and IGF-1R to convey different signaling
(Boucher et al. 2010; Siddle 2012).

INSULIN RECEPTOR SUBSTRATES

At the time of ligand binding to the a sub-
units, IR and IGF-1R undergo a conformational
change-inducing activation of the kinase activ-
ity in the b subunits. This results in transphos-
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Figure 1. Insulin- and IGF-1-signaling pathways. Activation of insulin and IGF-1 receptors by their ligands
initiates a cascade of phosphorylation events. A conformational change and autophosphorylation of the recep-
tors occur at the time of ligand binding, leading to the recruitment and phosphorylation of receptor substrates
such as IRS and Shc proteins. Shc activates the Ras-MAPK pathway, whereas IRS proteins mostly activate the
PI3K-Akt pathway by recruiting and activating PI3K, leading to the generation of second messenger PIP3.
Membrane-bound PIP3 recruits and activates PDK-1, which phosphorylates and activates Akt and atypical
PKCs. Akt mediates most of insulin’s metabolic effects, regulating glucose transport, lipid synthesis, gluconeo-
genesis, and glycogen synthesis. Akt also plays a role in the control of cell cycle and survival. The Shc-Grb2-Sos-
Ras-Raf-MAPK pathway controls cellular proliferation and gene transcription.
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phorylation among b subunits, further activat-
ing the kinase and allowing the recruitment of
receptor substrates. The best characterized sub-
strates are members of the insulin receptor sub-
strate (IRS) family of proteins, simply referred to
as IRS-1 through IRS-6, which act as scaffolds
to organize and mediate signaling complexes
(Sun et al. 1991, 1995; Lavan et al. 1997a,b;
Cai et al. 2003; White 2006; Shaw 2011). IRS
proteins are recruited to the membrane and
the activated receptors through both pleckstrin
homology (PH) and phosphotyrosine bind-
ing (PTB) domains in their amino terminus
(Voliovitch et al. 1995). They are subsequently
phosphorylated by the activated receptors on
multiple tyrosine residues that form binding
sites for intracellular molecules that contain
Src-homology 2 (SH2) domains (Sun et al. 1993).

Although these substrates have similar ty-
rosine phosphorylation motifs, they clearly
have different functions in vivo. IRS-1 knock-
out (KO) mice show growth retardation and
impaired insulin action, especially in muscle
(Araki et al. 1994), but have normal glucose
tolerance. IRS-2 KO mice display growth reduc-
tion in only selective tissues, such as certain
neurons and islet cells, but also have defective
insulin signaling in the liver, which when com-
bined with the loss of b cells results in the de-
velopment of diabetes (Withers et al. 1998). At
the cellular level, IRS-1 KO preadipocytes show
defects in differentiation, whereas IRS-2 KO
preadipocytes differentiate normally, but have
impaired insulin-stimulated glucose transport
(Miki et al. 2001; Tseng et al. 2005). In skeletal
muscle cells, IRS-1, but not IRS-2, is required
for myoblast differentiation and glucose metab-
olism, whereas IRS-2 is important for lipid me-
tabolism and ERK activation (Huang et al. 2005;
Bouzakri et al. 2006).

IRS-3 and IRS-4 show a more restricted tis-
sue distribution pattern. In rodents, IRS-3 is
most abundant in adipocytes, liver, and lung
(Sciacchitano and Taylor 1997), whereas in hu-
mans, the IRS-3 gene is a pseudogene, so no
protein is produced at all (Bjornholm et al.
2002). In mice, disruption of the gene for IRS-
3 alone does not result in abnormalities, but
leads to a severe defect in adipogenesis when

combined with deletion of IRS-1 (Laustsen
et al. 2002). IRS-4 mRNA is present in skeletal
muscle, liver, heart, brain, and kidney (Fantin
et al. 1999), and IRS-4 KO mice show only very
minimal growth retardation and glucose intol-
erance (Fantin et al. 2000). IRS-5 (also called
DOK4) and IRS-6 (DOK5) have limited tissue
expression (Cai et al. 2003) and are relatively
poor IR substrates (Versteyhe et al. 2010).

In addition to the IRS proteins, the insulin
and IGF-1 receptors can phosphorylate several
other substrates (Siddle 2012). Shc proteins are
tyrosine phosphorylated by IR and IGF-1R, and
participate in the activation of the Ras/ERK
pathway. Grb2-associated binder (GAB) pro-
teins are also substrates for a variety of receptors,
including IR and IGF-1R. GAB proteins resem-
ble IRS proteins, but lack a protein tyrosine
phosphatase (PTP) domain, and could play a
role in insulin/IGF-1 signaling in cells express-
ing low IRS protein levels. APS (SHB2) and Cbl
are IR/IGF-1R substrates that recruit other pro-
teins, such as the Cbl-associated protein (CAP),
to the insulin-signaling complex. The latter
participates in the control of insulin-stimulated
glucose uptake (Baumann et al. 2000). SH2B1
directly binds to insulin receptors and IRS pro-
teins and enhances insulin sensitivity by pro-
moting insulin receptor catalytic activity and
by inhibiting tyrosine dephosphorylation of
IRS proteins.

PHOSPHATIDYLINOSITOL (3,4,5)-
TRIPHOSPHATE AND PHOSPHOINOSITIDE
3-KINASE

The critical pathway linking IRS proteins to the
metabolic actions of insulin is the PI3-kinase
(PI3K) and Akt pathway. The class Ia PI3-kinas-
es are heterodimers consisting of a regulatory
and catalytic subunit, each of which occurs in
several isoforms (Vadas et al. 2011). Recruit-
ment and activation of the PI3K depends on
the binding of the two SH2 domains in the
regulatory subunits to tyrosine-phosphorylated
IRS proteins (Myers et al. 1992; Shaw 2011).
This results in activation of the catalytic sub-
unit, which rapidly phosphorylates phosphati-
dylinositol 4,5-bisphosphate (PIP2) to generate
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the lipid second messenger phosphatidylinosi-
tol (3,4,5)-triphosphate (PIP3). The latter re-
cruits Akt to the plasma membrane, where it
is activated by phosphorylation and induces
downstream signaling.

The different isoforms of the regulatory sub-
unit of PI3K are encoded by three distinct genes.
Pik3r1 encodes 65%–75% of all regulatory sub-
units, mostly in the form of p85a, but also the
splice variants p55a and p50a. Pik3r2 encodes
p85b and accounts for �20% of the regulatory
subunits. Pik3r3 encodes p55g, which is similar
in structure to p55a, but expressed at low levels
in most tissues.

The three different catalytic subunits—
p110a, b, and d—are derived from three differ-
ent genes. Binding of a regulatory to a catalytic
subunit increases the catalytic subunit stability
and maintains it in an inhibited state. This is
relieved by binding of the regulatory subunit to
specific phosphotyrosine motifs in IRS pro-
teins, resulting in its activation (Yu et al. 1998;
Burke et al. 2011; Zhang et al. 2011). Liver-spe-
cific ablation of p110a, and to a lesser extent
p110b, in mice results in glucose intolerance
and insulin resistance (Jia et al. 2008; Sopasakis
et al. 2010). Surprisingly, knockouts of the reg-
ulatory subunits of PI3K, including a heterozy-
gous deletion of p85a, p85b KO, or p50a/p55a
double KO, all display increased insulin sensi-
tivity (Terauchi et al. 1999; Ueki et al. 2002).
Different mechanisms by which reducing con-
centration of regulatory subunits can increase
insulin action have been identified. Regulatory
subunits typically are in excess concentration to
catalytic subunits and thus compete with the
enzymatically competent p85/p110 hetero-
dimer for binding to IRS proteins. The p85a
monomer has also been linked to regulation of
the phosphatase and tensin homolog (PTEN)
(Taniguchi et al. 2010). More recently, p85a
has been shown to bind to the transcription
factor XBP-1 and to modify the unfolded pro-
tein response, which contributes to insulin re-
sistance (Park et al. 2010; Winnay et al. 2010).

In addition to PI3K, IRS proteins recruit
other proteins potentially contributing to insu-
lin and IGF-1 action. Proteomics analysis of
the phosphotyrosine interactome of IRS-1 and

IRS-2 indicates that most interacting proteins
bind to both substrates, such as adaptor pro-
teins Grb2 or Crk, or tyrosine phosphatase
SHP2. However, other interaction partners
seem to bind exclusively to IRS-1 (Csk) or
IRS-2 (Shc, DOCK-6, and DOCK-7) (Hanke
and Mann 2009).

ACTIVATION OF DOWNSTREAM KINASES

Most of the physiological effects of PI3K-gen-
erated PIP3 are mediated by a subset of AGC
protein kinase family members, which include
isoforms of Akt/protein kinase B (PKB), p70
ribosomal S6 kinase (S6K), serum- and gluco-
corticoid-induced protein kinase (SGK), as well
as several isoforms of protein kinase C (PKC),
particularly the atypical PKCs. AGC kinase fam-
ily members share similar structure and mech-
anisms of activation via phosphorylation of
two serine and threonine residues (Pearce et al.
2010). PDK-1 (3-phosphoinositide-dependent
protein kinase 1) is the major upstream kinase
responsible for the phosphorylation and acti-
vation of the AGC kinase members regulated
by PI3K (Bayascas 2010). PDK-1 contains a
PH domain that binds to membrane-bound
PIP3, triggering PDK-1 activation. PDK-1 phos-
phorylates and activates AGC protein kinases
at serine/threonine residues, such as Thr-308
for Akt (Alessi et al. 1997). However, Akt
phosphorylation at Ser-473 is required for full
activation, and this is accomplished by the
mammalian target of rapamycin complex 2
(mTORC2) (Sarbassov et al. 2005; Oh and Ja-
cinto 2011). DNA-dependent protein kinase
(DNA PK) has also been described to phosphor-
ylate and activate Akt in response to DNA dam-
age (Bozulic et al. 2008), and is involved in in-
sulin regulation of metabolic genes such as fatty
acid synthase (Wong et al. 2009).

The Akt/PKB family of proteins consists
of three different isoforms of serine/threonine
protein kinases encoded by different genes
(Schultze et al. 2011). All isoforms possess a
PH domain, allowing interaction with PIP3

and recruitment to the plasma membrane.
Akt2 is most abundant in insulin-sensitive tis-
sues and seems to play a predominant role in
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mediating insulin action on metabolism. Thus,
Akt2 KO mice are insulin resistant and devel-
op diabetes (Cho et al. 2001), whereas Akt1 and
Akt3 KO mice do not.

ACTIONS OF INSULIN DOWNSTREAM
FROM AKT

Activation of Akt by PDK-1 and mTORC2 allows
the phosphorylation and activation of many
downstream targets. Akt phosphorylates tuber-
ous sclerosis complex protein 2 (TSC-2), induc-
ingthedegradationofthe tumorsuppressorcom-
plex that consists of TSC-2 and TSC-1, which
activates the mTORC1 complex. Akt-induced
activation of mTORC1 can also be achieved by
phosphorylation of proline-rich Akt substrate
40 KDa (PRAS40), an inhibitor of mTORC1,
thereby relieving the inhibition. The mTORC1
complex then phosphorylates and inhibits 4E-
binding protein 1 (4E-BP1), activates ribosomal
protein S6 kinases S6K1 and S6K2 and SREBP1,
and leads to the regulation of a network of genes
controlling metabolism, protein synthesis, and
cell growth (Duvel et al. 2010).

Transcription factors of the Forkhead box O
(Foxo) family control the expression of lipo-
genic and gluconeogenic genes. Akt phosphor-
ylates Foxos at several sites which provides
docking sites for binding proteins of the 14-3-
3 family. This interaction leads to the exclusion
of Foxo from the nucleus, thus blocking its
transcriptional activity (Tzivion et al. 2011).
Interestingly, although mice lacking Akt1 and
Akt2 show severe hepatic insulin resistance
and high levels of hepatic glucose production,
these defects are normalized when Foxo1 is
concomitantly ablated in the liver. This indi-
cates that an additional pathway exists in the
control of hepatic glucose metabolism beyond
the Akt/Foxo1 axis, which allows for insulin-
mediated regulation of hepatic glucose produc-
tion (Lu et al. 2012).

There are multiple other substrates of Akt
involved in insulin action. The GTPase-activat-
ing protein Akt substrate of 160 kDa (AS160),
also called TBC1D4, and its homolog TBC1D1,
are phosphorylated by Akt and are involved
in insulin- and contraction-mediated glucose

uptake (Sano et al. 2003; Sakamoto and Hol-
man 2008; Taylor et al. 2008; An et al. 2010). Akt
also phosphorylates and inactivates glycogen
synthase kinase 3, resulting in glycogen synthase
activation and glycogen accumulation in liver
(Kim et al. 2004b). Akt-dependent phosphory-
lation of PGC-1a impairs the ability of PGC-1a
to promote gluconeogenesis and fatty acid oxi-
dation (Li et al. 2007). Phosphorylation of
phosphodiesterase 3B (PDE3B) by Akt results
in its activation and in a decrease in cyclic AMP
levels (Kitamura et al. 1999), which plays im-
portant roles in the effect of insulin to inhibit
lipolysis in adipocytes and insulin secretion in
b cells (Degerman et al. 2011).

OTHER ACTIONS OF INSULIN
DOWNSTREAM FROM PI3K

Akt plays a central role in mediating many other
insulin actions by regulating the expression and
activity of a wide range of proteins, including
enzymes, transcription factors, cell cycle regu-
lating proteins, or apoptosis and survival pro-
teins (Manning and Cantley 2007). Murine
double minute 2 (Mdm2) is phosphorylated
by Akt, which inhibits p53-mediated apoptosis
and contributes to tumorigenesis (Cheng et al.
2010). Akt phosphorylates cell cycle inhibitors
p21Cip1/WAF1 and p27Kip1, resulting in cy-
toplasmic localization, cell growth, and inhibi-
tion of apoptosis (Zhou et al. 2001; Motti et al.
2004). Akt also phosphorylates and inhibits
Bax, Bad, and caspase-9, which promotes cell
survival (Datta et al. 1997; Cardone et al. 1998;
Yamaguchi and Wang 2001; Gardai et al. 2004).
Akt can phosphorylate and activate IkB kinase
(IKK), leading to NF-kB activation (Bai et al.
2009). Akt phosphorylates and activates endo-
thelial nitric oxide synthase (eNOS), which
catalyzes the production of the vasodilator and
anti-inflammatory molecule nitric oxide (NO),
providing a potential link between insulin resis-
tance and cardiovascular disease (Dimmeler
et al. 1999; Fulton et al. 1999; Yu et al. 2011a).
Although less well studied in insulin action,
the serum- and glucocorticoid-induced protein
family of kinases (SGK) are highly homologous
to Akt, are also activated by dual phosphoryla-
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tion by PDK-1 and mTORC2 in a PI3K depen-
dent manner, and have many downstream sub-
strates in common with Akt (Bruhn et al. 2010).

PROTEIN KINASES C

PKC isoforms are both mediators and modifiers
of insulin’s metabolic action. Of the three major
classes of PKC, the atypical PKCs (aPKCs), PKC-
z and PKC-l/i, are activated via phosphoryla-
tion by PDK-1. aPKCs play an important role in
insulin-stimulated glucose transport and regu-
lation of lipid synthesis, and their expression
and/or activation is decreased in muscle from
obese and diabetic humans (Farese and Sajan
2010). Both PKC-l and PKC-z have been shown
to function interchangeably in mediating insu-
lin-stimulated glucose transport (Sajan et al.
2006). Muscle-specific deletion of PKC-l in
mice leads to impairment in insulin-induced
glucose uptake and insulin resistance (Farese
et al. 2007). Mice with liver-specific deletion of
PKC-l display decreased insulin-induced ex-
pression of SREBP1c and triglyceride content
in the liver, resulting in increased insulin sensi-
tivity in these mice (Matsumoto et al. 2003).

THE GRB2-SOS-RAS-MAPK PATHWAY

A second essential branch of the insulin/IGF-1-
signaling pathway is the Grb2-SOS-Ras-MAPK
pathway, which is activated independently of
PI3K/Akt. Activated receptors and IRS proteins
both possess docking sites for adaptor mole-
cules that contain SH2 domains such as Grb2
and Shc. The carboxy-terminal SH3 domain of
Grb2 binds to proteins such as Gab-1, whereas
the amino-terminal SH3 domain binds to pro-
line-rich regions of proteins such as son-of-
sevenless (SOS). SOS is a guanine nucleotide
exchange factor (GEF) for Ras, catalyzing the
switch of membrane-bound Ras from an inac-
tive, GDP-bound form (Ras-GDP) to an active,
GTP-bound form (Ras-GTP). Ras-GTP then
interacts with and stimulates downstream effec-
tors, such as the Ser/Thr kinase Raf, which
stimulates its downstream target MEK1 and
2 that phosphorylate and activate the MAP
kinases ERK1 and 2. Stimulated ERK1/2 play

a direct role in cell proliferation or differentia-
tion, regulating gene expression or extra-nucle-
ar events, such as cytoskeletal reorganization,
through phosphorylation and activation of tar-
gets in the cytosol and nucleus.

NEGATIVE REGULATORS OF INSULIN
SIGNALING

Insulin and IGF-1 signaling are tightly con-
trolled because uncontrolled activity of the
downstream pathways could lead to severe per-
turbations in metabolism and tumorigenesis.
Intensity and duration of the signal play an im-
portant role in determining the specificity of
the response to their pleiotropic effects. There-
fore, the ability to turn off the insulin signal in
a rapid manner at different levels is critical (Fig.
2). On the other hand, some of these inhibitory
mechanisms can be altered in pathophysiologi-
cal conditions and participate in the develop-
ment of insulin resistance.

Phosphoprotein Phosphatases as Negative
Regulators of Insulin Action

Both cytoplasmic protein tyrosine phosphatas-
es, such as PTP1B, and transmembrane phos-
phatases, such as LAR, have been shown to
dephosphorylate the tyrosine residues on acti-
vated IR and IGF-1R, as well as IRS proteins,
thereby reducing their activity (Goldstein et al.
1998). Although the role of LAR in the control
of insulin signaling in vivo remains controver-
sial, PTP1B is an essential component of insulin
action. PTP1B KO mice show enhanced insulin
sensitivity, increased IR phosphorylation in
muscle and liver, and are also resistant to high-
fat-diet-induced obesity and associated insulin
resistance (Elchebly et al. 1999; Klaman et al.
2000).

The serine/threonine phosphatase protein
phosphatase 1 (PP1) has been implicated in
the regulation of several rate-limiting enzymes
in both glucose and lipid metabolism, including
glycogen synthase, hormone-sensitive lipase,
or acetyl CoA carboxylase (Brady and Saltiel
2001). Protein phosphatase 2A (PP2A), which
accounts for �80% of serine/threonine phos-
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phatase activity in cells, also regulates the activ-
ities of many protein kinases involved in insulin
action, including Akt, PKC, S6K, ERK, cyclin-
dependent kinases, and IKK (Millward et al.
1999). Several studies indicate that PP2A is hy-
peractivated in diabetic states (Kowluru and
Matti 2012).

Other serine/threonine phosphatases have
been implicated in insulin action. Protein phos-
phatases 2B (PP2B), also known as calcineurin,
has been shown to dephosphorylate Akt (Ni
et al. 2007). Two novel members of the PP2C
family involved in regulation of insulin action
are the PH domain leucine-rich repeat protein
phosphatases PHLPP-1 and -2, which dephos-
phorylate both Akt and PKCs (Brognard and
Newton 2008). Overexpression of PHLPP1 in
cells impairs Akt and glycogen synthase kinase
3 activity, resulting in decreased glycogen syn-
thesis and glucose transport (Andreozzi et al.
2011). Elevated levels of PHLPP1 have been
found in adipose tissue and skeletal muscle of
obese and/or diabetic patients and correlate

with decreased Akt2 phosphorylation (Cozzone
et al. 2008; Andreozzi et al. 2011).

Lipid Phosphatases as Negative Regulators
of Insulin Action

Lipid phosphatases can regulate insulin sig-
naling by modulating PIP3 levels. PTEN de-
phosphorylates PIP3, thus antagonizing PI3K
signaling in cells (Cantley and Neel 1999; Car-
racedo and Pandolfi 2008). Muscle, adipose tis-
sue, or liver-specific deletion of PTEN in mice
increases insulin sensitivity (Stiles et al. 2004;
Kurlawalla-Martinez et al. 2005; Wijesekara
et al. 2005), and mice with whole-body PTEN
haploinsufficiency show improved glucose tol-
erance and increased insulin sensitivity (Wong
et al. 2007). Interestingly, the p85a regulatory
subunit of PI3K has recently been shown to
bind directly to and enhance PTEN activity, cre-
ating a unique interface between the generation
and degradation of PIP3 (Taniguchi et al. 2006b;
Chagpar et al. 2010).
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Figure 2. Negative modulators of insulin and IGF-1 signaling. Intensity and duration of insulin and IGF-1
signaling play an important role in determining the specificity and the nature of the response to these hormones.
Signaling is attenuated by action of several phosphatases, which dephosphorylate the receptors, IRS proteins,
PKCs, and ERK or PIP3. In addition, stress kinases such as JNK, IKK, and ERK, as well as PKCs or S6K, inhibit
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teins. Trb3 inhibits Akt, and adaptor proteins such as SOCS and Grb bind to the receptors and IRS proteins and
inhibit signaling by competition.
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SH2 domain-containing inositol 5-phos-
phatases (SHIP) 1 and 2 also dephosphorylate
PIP3. SHIP1 expression is restricted to hemato-
poietic cells, whereas SHIP2 is ubiquitously ex-
pressed and plays a role in insulin signaling
(Suwa et al. 2010). SHIP2 deficiency in mice
results in hypoglycemia, enhanced insulin-in-
duced Akt activation, and resistance to high-
fat-diet-induced obesity, indicating that SHIP2
is a key regulator of glucose and energy homeo-
stasis in vivo (Clement et al. 2001; Sleeman et al.
2005). Conversely, SHIP2-overexpressing mice
show reduced insulin-induced Akt activation
in the liver, fat, and skeletal muscle (Kagawa
et al. 2008).

Other Negative Modulators (Grb, SOCS,
Trb3, IP7)

Grb10 and Grb14 are cytoplasmic adaptor pro-
teins that decrease IR and to a lesser extent IGF-
1R activity, and prevent access of substrates to
the activated receptors (Holt and Siddle 2005).
Deletion of the Grb10 gene in mice leads to
increased growth, enhanced insulin signaling,
and increased glucose tolerance (Smith et al.
2007; Wang et al. 2007). Grb10 overexpression,
on the other hand, results in impaired growth,
glucose intolerance, and insulin resistance
(Shiura et al. 2005). Grb14 expression is in-
creased in adipose tissue of insulin-resistant an-
imal models and type-2 diabetic patients (Car-
iou et al. 2004), and Grb14 KO mice display
increased glucose tolerance and insulin sensitiv-
ity, consistent with an inhibitory role of Grb14
on insulin signaling (Cooney et al. 2004). Grb10
and Grb14 share similar mechanisms as insulin
signaling is not further increased in mice with
deletion of both proteins (Holt et al. 2009).

Proteins of the suppressor of cytokine sig-
naling (SOCS) family are adaptor proteins
that act as negative regulators of cytokine and
growth factor signaling. In addition, SOCS pro-
teins, in particular SOCS1 and SOCS3, nega-
tively regulate insulin signaling and thus link
cytokine signaling to insulin resistance. Their
expression is increased in obesity, and they in-
duce insulin resistance via either inhibition of
the tyrosine kinase activity of the IR, competi-

tion for binding of the IRS proteins to the re-
ceptor, or targeting the IRS proteins to degra-
dation (Emanuelli et al. 2000, 2001; Rui et al.
2002; Ueki et al. 2004a,b; Sachithanandan et al.
2010).

Tribbles homolog 3 (Trb3) is a member of
the family of pseudokinases that is thought to
function as adaptor proteins. Trb3 expression is
induced in liver in fasting and diabetes, and
disrupts insulin signaling by binding to Akt
and blocking its activation. Trb3 knockdown
in mice improves glucose tolerance (Du et al.
2003; Koo et al. 2004). In cultured cells, insulin-
stimulated S6K activation is decreased when
Trb3 is overexpressed, and increased when Trb3
levels are reduced (Matsushima et al. 2006).
Trb3 action in adipose tissue seems to be inde-
pendent of Akt. Thus, whereas insulin promotes
lipogenesis, Trb3 stimulates lipolysis by trigger-
ing the ubiquitination and degradation of ace-
tyl-CoA carboxylase. Transgenic mice overex-
pressing Trb3 in adipose tissue are protected
from diet-induced obesity because of enhanced
fatty acid oxidation and display increased insu-
lin sensitivity (Qi et al. 2006).

A novel negative regulator of insulin signal-
ing is the inositol phosphate IP7. It was recently
shown that insulin and IGF-1 increase IP7 lev-
els, which in turn inhibits Akt translocation to
the plasma membrane and subsequent activa-
tion, creating a potential feedback mechanism
that attenuates insulin signaling (Chakraborty
et al. 2010). Deletion of the enzyme that cata-
lyzes IP7 formation in mice causes increased
insulin responsiveness. Further studies will be
needed to elucidate the contribution of this
pathway in normal or pathological conditions.

Regulation by Inhibitory Serine
and Threonine Phosphorylation

Tyrosine phosphorylation is essential for IR/
IGF-1R and IRS activation. On the other hand,
serine and threonine phosphorylation of the re-
ceptors or IRS proteins is primarily involved in
turning the insulin signal down (Fig. 3). In-
creased inhibitory Ser/Thr phosphorylation
of IR and especially IRS-1 and -2 occurs in re-
sponse to cytokines, fatty acids, hyperglycemia,
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mitochondrial dysfunction, and ER stress, and
insulin itself via activation of multiple kinases,
predominantly by c-Jun amino-terminal kinase
(JNK), IKK, conventional and novel PKCs, but
also mTORC1/S6K and MAPK (De Fea and
Roth 1997a; Aguirre et al. 2000; Gao et al.
2002; Gual et al. 2003; Li et al. 2004; Zhang
et al. 2008a; Boura-Halfon and Zick 2009). In-
creased IR serine phosphorylation associated
with decreased tyrosine kinase activity has
been observed in insulin-resistant states, both
in rodents and in humans (Karasik et al. 1990;
Dunaif et al. 1995; Zhou et al. 1999; Shao et al.
2000). An increase in cAMP concentration also
induces inhibitory serine phosphorylation of
IR in a PKA-dependent manner (Stadtmauer
and Rosen 1986; Roth and Beaudoin 1987).

Although inhibitory IRS-1 serine phospho-
rylation occurs at many different sites (Boura-
Halfon and Zick 2009), the best studied of these
modifications occurs at Ser-307 (Aguirre et al.
2002). IRS-1 Ser-307 phosphorylation is in-
creased in obese and diabetic mice (Hirosumi

et al. 2002; Um et al. 2004). Although this is
widely believed to contribute to insulin resis-
tance by inhibiting insulin receptor kinase ac-
tivity, recent studies have made this association
less clear. Thus, insulin itself can stimulate
phosphorylation of IRS-1 on Ser-307 in hu-
mans (Yi et al. 2007), and mice with a knock-
in of IRS-1 Ser307Ala mutant developed more
severe insulin resistance than control mice when
fed a high-fat diet, indicating that Ser-307 is
required to maintain normal insulin signaling
(Copps et al. 2010). Thus, increased IRS-1 Ser-
307 phosphorylation observed in insulin-resis-
tance states may be associated with, but not
cause, insulin resistance.

Lipids, through their metabolic product di-
acylglycerols, can activate classical (a, b, g) and
novel PKC members (d, u, 1) and impair insulin
signaling by inducing multiple serine phos-
phorylation of IRS proteins and IR specifically
at Thr-1336, Thr-1348, and Ser-1305/1306
(Bollag et al. 1986; Karasik et al. 1990; Lewis
et al. 1990; Chin et al. 1993; De Fea and Roth
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Figure 3. Activation of Ser/Thr kinases causes inhibitory phosphorylation on insulin-signaling molecules.
Lipotoxicity, inflammation, hyperglycemia, and subsequently oxidative stress, as well as mitochondrial dys-
function and ER stress, all converge on activation of Ser/Thr kinases, inducing inhibitory Ser/Thr phosphor-
ylation of IR, IRS proteins, and Akt on multiple residues, causing insulin resistance.
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1997b; Turban and Hajduch 2011). Thus, dele-
tion of any member of the novel PKC family
prevents the development of insulin resistance
in skeletal muscle and liver by decreasing IRS-1
Ser-307 phosphorylation (Kim et al. 2004a;
Samuel et al. 2007; Mack et al. 2008; Bezy
et al. 2011). Atypical PKC-z also inhibits insulin
signaling by inducing serine phosphorylation
of IRS-1 (Ravichandran et al. 2001) and Thr-
34 phosphorylation of Akt, thereby inhibiting
its recruitment to the plasma membrane (Pow-
ell et al. 2003, 2004).

Another component of the negative feed-
back loops in insulin signaling is mTORC1. Ac-
tivation of mTOR and S6K is not only down-
stream from insulin signaling, but also inhibits
it by increasing serine phosphorylation and re-
ducing IRS tyrosine phosphorylation. This is
illustrated by the phenotype of S6K null mice,
which are lean and display enhanced insulin
sensitivity (Um et al. 2004). In addition, IRS-1
is hyperphosphorylated and degraded in TSC-2
KO fibroblasts, which show constitutive S6K
activation (Harrington et al. 2004; Shah et al.
2004). mTORC1 also mediates phosphoryla-
tion and stabilization of Grb10, leading to feed-
back inhibition of insulin signaling (Hsu et al.
2011; Yu et al. 2011b).

MECHANISMS OF INSULIN RESISTANCE

A central feature of type-2 diabetes is insulin
resistance, a condition in which cells cannot
respond properly to insulin. This occurs pri-
marily at the level of so-called insulin-sensitive
tissues, such as liver, muscle, and fat, and can
be caused by multiple mechanisms (Fig. 3 and
Table 1).

Genetic Causes of Insulin Resistance

Insulin Receptor

Mutations in the insulin receptor gene have
been identified in several rare forms of severe
insulin resistance, including leprechaunism,
Rabson-Mendenhall syndrome, or the type-A
syndrome of insulin resistance. These patients
often require a hundredfold or more insulin

than a typical diabetic patient (Kahn et al.
1976; Cochran et al. 2005). Most of these pa-
tients have nonsense or missense mutations in
the extracellular ligand-binding domain or in-
tracellular tyrosine kinase domain of the re-
ceptor, which leads to severely reduced insulin
binding, altered kinetics of insulin binding, or
reduced tyrosine kinase activity, but some also
have presumed promoter defects leading to re-
duced receptor mRNA expression (Taylor et al.
1991; Haruta et al. 1995). Insulin receptor mu-
tations have not been observed in patients with
routine type-2 diabetes (T2D).

Insulin Receptor Substrate Proteins

The G972R polymorphism of IRS-1 is observed
with higher frequency in patients with T2D
and leads to decreased insulin signaling, mostly
decreasing PI3K activity (Almind et al. 1996;
Hribal et al. 2008). Although this finding has
not been confirmed in all large-scale popu-
lation analyses (Florez et al. 2004; van Dam
et al. 2004), recent studies have continued to
show an association between a single-nucleo-
tide polymorphism (SNP) in IRS-1 and T2D
(Burguete-Garcia et al. 2010; Martinez-Gomez
et al. 2011). AT608R missense mutation in IRS-
1 resulting in decreased insulin signaling has
been reported in a patient with T2D, but ap-
pears to be very rare (Esposito et al. 2003). Nu-
merous polymorphisms have been identified in
the human IRS-2 gene, but a clear association
between these polymorphisms and T2D has not
been found (Bernal et al. 1998).

Phosphoinositide 3-Kinase

AnM326I polymorphismin the p85a regulatory
subunit of the PI3Kwas identified in Pima Indi-
an women and is associated with decreased prev-
alence for T2D (Baier et al. 1998). However, this
M326I mutation only has modest effects on in-
sulin signaling in vitro by decreasing p85a bind-
ing to IRS-1 and increasing p85a degradation
(Almind et al. 2002). Another polymorphism
in p85a (SNP42) is associated with fasting
hyperglycemia, but its molecular mechanism
so far remains elusive (Barroso et al. 2003).
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Phosphatase and Tensin Homolog

In diabetes, mutations of PTEN have not been
reported yet. However, three Japanese type-2
diabetic subjects have been identified with poly-
morphisms in the PTEN gene, one of which was
associated with T2D. This SNP caused a higher
expression rate of PTEN and reduced insulin-

induced Akt activation in cells (Ishihara et al.

2003). Very recently, it has been found that in-

dividuals with PTEN haploinsufficiency are

both obese and insulin sensitive, with a de-

creased risk of T2D but increased risk of cancer

(Pal et al. 2012). The impact of this in the gen-

eral population is unknown.

Table 1. Molecular mechanisms of insulin resistance

Cause Mechanism Effect References

Lipotoxicity
Inflammation
Hyperglycemia
Mitochondrial

dysfunction
ER stress

Activation of Ser/
Thr kinases

Inhibitory phosphorylation
of insulin-signaling
molecules

Bollag et al. 1986; Karasik et al. 1990;
Lewis et al. 1990; Chin et al. 1993;
Powell et al. 2003; Boura-Halfon
and Zick, 2009

Genetic mutations Point mutations in
IR and insulin-
signaling
molecules

Increased protein turnover
Reduced expression and

ligand affinity
Decreased signaling

capacities

Kahn et al. 1976; Taylor et al. 1991;
Haruta et al. 1995; Almind et al.
1996; George et al. 2004; Prudente
et al. 2005; Hribal et al. 2008; Dash
et al. 2009; Prudente et al. 2009

SNP causing
increased gene
expression

Increased PTEN action
leading to reduced PIP3

levels

Ishihara et al. 2003

Lipotoxicity Hyperactivation of
protein
phosphatase
PP2A

Reduced phosphorylation
of IR and insulin-
signaling molecules

Kowluru and Matti 2012

Inflammation Cytokine-induced
SOCS3 activation

Inhibition or IR tyrosine
kinase activity

Competition for IRS
binding to IR

Increased IRS degradation

Emanuelli et al. 2000, 2001; Rui et al.
2002; Ueki et al. 2004a,b; Steppan
et al. 2005

Cytokine-induced
reduction in gene
expression

Decreased expression of
insulin-signaling
molecules

Rotter et al. 2003; Jager et al. 2007

Hyperglycemia Glycation of insulin-
signaling
molecules

Reduced affinity for IR
Decreased DNA-binding

capacities of transcription
factors

Federici et al. 1999; Riboulet-Chavey
et al. 2006; Housley et al. 2008

Hyperactivation of
protein
phosphatase
PP2A

Reduced phosphorylation
of IR and insulin-
signaling molecules

Kowluru and Matti 2012

Hyperinsulinemia Hyperactivation of
PHLPP1 and
Grb14

Decreased AKT Ser 473
phosphorylation

Competition for IRS
binding to IR

Cariou et al. 2004; Cozzone et al.
2008; Andreozzi et al. 2011

Multiple molecular mechanisms of insulin resistance have been described, in addition to inhibitory Ser/Thr phosphor-

ylation on insulin-signaling molecules (Fig. 3). Genetic mutations, dephosphorylation events, posttranslational modifica-

tions, and formation of inhibitory complexes have all been shown to cause insulin resistance.
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AKT and Related Targets

A rare missense mutation (R274H) in Akt2
leading to loss of kinase activity has been iden-
tified in a patient with diabetes (George et al.
2004). Two other missense mutations (R208 K
and R467W) have also been identified in dia-
betic patients, but surprisingly, these mutant
forms display unaltered insulin-stimulated ki-
nase activities in vitro (Tan et al. 2007). In
type-2 diabetic patients, a gain-of-function mu-
tation (Q84R) in Trb3 has been associated with
insulin resistance and decreased insulin-stimu-
lated Akt phosphorylation (Prudente et al. 2005,
2009). A mutation in AS160 at position 363,
resulting in a premature stop codon, was iden-
tified in a patient with severe postprandial hy-
perinsulinemia, and acts in a dominant-nega-
tive manner to reduce glucose transport (Dash
et al. 2009).

Lipotoxicity

One feature of metabolic syndrome is ectopic
accumulation of lipids, especially fatty acids
(FA), which is believed to cause insulin resis-
tance via multiple mechanisms. Tissue-specific
increase in lipid content in nonadipose tissues
provides direct evidence of lipotoxicity. In-
creased hydrolysis of circulating triglycerides
owing to muscle-specific overexpression of li-
poprotein lipase leads to skeletal muscle insulin
resistance (Ferreira et al. 2001), whereas in-
creased lipid transport in heart or liver leads
to lipotoxic cardiomyopathy and nonalcoholic
fatty liver disease, respectively (Chiu et al. 2005;
Koonen et al. 2007). Besides the effect of in-
creased lipid flux on insulin sensitivity, multiple
lipid intermediates have been shown to pro-
mote insulin resistance.

Elevated circulating free fatty acids (FFA) are
observed in obesity and induce activation of
JNK, IKK, and PKC and IRS-1 Ser-307 phos-
phorylation (Schenk et al. 2008). The fatty acid
palmitate plays a particular role in promoting
insulin resistance as it induces endoplasmic re-
ticulum (ER) stress, cytokine production, and
activates JNK (Ozcan et al. 2004; Shi et al.
2006). In addition, palmitate activates NF-kB

signaling while inhibition of this pathway re-
verses lipid-induced insulin resistance (Kim
et al. 2001a; Sinha et al. 2004). Interestingly,
the detrimental effect of palmitate on skeletal
muscle insulin resistance can be reversed by
coinfusionwith oleate, therebychanging its con-
version from phospholipids and diacylglycerol
(DAG) to triglycerides (Peng et al. 2011). This
indicates that FFA induces insulin resistance
through multiple mechanisms, and combina-
tions of FA can influences insulin signaling and
highlight the crucial interplay of lipids with re-
spect to dietary interventions.

The lipid metabolite DAG has also been
shown to induce insulin resistance. Increased
muscle DAG (intramyocellular lipid) leads to
muscle insulin resistance by activating PKC-u
and inducing IRS-1 Ser-307 phosphorylation
(Yu et al. 2002). Conversely, reducing DAG lev-
els in skeletal muscle and liver protects mice
against high-fat-diet-induced insulin resistance
(Liu et al. 2007; Ahmadian et al. 2009; Samuel
et al. 2010).

Increased plasma concentration of the
sphingolipid ceramide is observed in obese
and diabetic patients and is associated with se-
vere insulin resistance (Haus et al. 2009). Cer-
amide has been shown to induce insulin resis-
tance via PKC and JNK activation (Westwick
et al. 1995; Schenk et al. 2008) and, thus, inhi-
bition of ceramide synthesis ameliorates insulin
resistance (Holland et al. 2007). Ceramides also
inhibit Akt activation by increasing the interac-
tion of PP2A with Akt, and phosphorylation of
Akt at Thr-34 by PKC z, resulting in reduced
binding of PIP3 to Akt (Teruel et al. 2001; Powell
et al. 2003; Blouin et al. 2010).

In addition to effects on kinases, alteration
of membrane–lipid composition affects insu-
lin signaling. An increase in the saturated-to-
unsaturated FA ratio is observed in type-2 dia-
betic patients and is thought to reduce mem-
brane fluidity and insulin sensitivity (Field et al.
1990; Bakan et al. 2006). Moreover, an increase
in the phosphatidylcholine (PC) to phosphati-
dylethanolamine (PE) ratio in endoplasmic re-
ticulum leads to the activation of ER stress and
is associated with insulin resistance (Fu et al.
2011).
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Inflammation

Obesity is characterized by the development of
a chronic low-grade inflammatory state, which
is considered a key component in promoting
obesity-associated insulin resistance (Osborn
and Olefsky 2012). Adipose tissue expansion
occurs in response to caloric overload, and is
associated with an increase in immune cell in-
filtration and a subsequent proinflammatory
response (Sun et al. 2011). Two cell types are
especially important in this scenario: adipo-
cytes and macrophages, both of them capable
of secreting proinflammatory cytokines and
inducing insulin resistance. Increased secretion
of the chemokine MCP-1 by adipocytes drives
macrophage accumulation into adipose tis-
sues and induces insulin resistance (Kamei
et al. 2006). Deletion of MCP-1 or its receptor
CCR2 improves insulin sensitivity and amelio-
rates inflammation in mice (Kanda et al. 2006;
Weisberg et al. 2006). Increased secretion of
cytokines, such as TNF-a, IL1b, or IL-6, by
both immune cells and adipocytes is observed
with obesity and induces insulin resistance via
multiple mechanisms, including activation of
Ser/Thr kinases (Ozes et al. 2001; Yuan et al.
2001; Hirosumi et al. 2002; Zhang et al. 2008a;
Fan et al. 2010), decreasing IRS-1, GLUT4, and
PPARg expression (Rotter et al. 2003; Jager et al.
2007), or activation of SOCS3 in adipocytes
(Steppan et al. 2005).

Another driving factor in obesity-associ-
ated inflammation is caused by activation of
Toll-like receptor (TLR), especially activation
of TLR-2 and -4. TLRs belong to the innate
immune system and are generally activated by
pathogen-associated molecular patterns such as
LPS, and induce inflammation via activation of
the NF-kB pathway (Akira and Takeda 2004).
TLRs are ubiquitously expressed and TLR-4 is
elevated in skeletal muscle (Reyna et al. 2008)
and adipose tissue (Shi et al. 2006) with obesity.
Interestingly, saturated FA can also activate this
pathway (Lee et al. 2001; Shi et al. 2006), indi-
cating a potential role for these receptors in
obesity-driven inflammation. Thus, mice with
reduced TLR-2- or TLR-4-signaling proteins
(Shi et al. 2006; Kleinridders et al. 2009; Himes

and Smith 2010) are protected from obesity and
obesity-associated insulin resistance.

Negative Regulation by Hyperglycemia

Glucose itself, at supraphysiological concentra-
tions, is able to alter insulin sensitivity in muscle
and fat, as well as decrease insulin secretion from
b cells (Leahy et al. 1986; Hager et al. 1991).
Hyperglycemia induced by decreased glucose
transport in skeletal muscle impairs adipose
and hepatic insulin action (Zisman et al. 2000;
Kim et al. 2001b) and induces insulin resistance
through several pathways, which are all believed
to be linked to oxidative stress (Evans et al.
2005). Advanced glycosylation end products
(AGE) inhibit insulin signaling by increasing
Ser-307 phosphorylation of IRS-1 and forming
methylglyoxal-IRS-1 adducts (Riboulet-Chavey
et al. 2006).

Hyperglycemia increases the flux through
the polyol pathway, which causes JNK activa-
tion and increases the hexosamine-biosynthetic
pathway. This has been shown to promote in-
sulin resistance in adipose tissue, skeletal mus-
cle, liver, and pancreas in part by O-GlcNAcy-
lation of IRS proteins (Marshall et al. 1991; Patti
et al. 1999; McClain 2002; McClain et al. 2002).
Furthermore, hyperglycemia also leads to O-
GlcNAcylation of IR, which impairs receptor
dimerization (Federici et al. 1999), and of
Foxo1 leading to increased gluconeogenic gene
expression (Housley et al. 2008).

Hyperglycemia also activates the PKC path-
way by inducing de novo synthesis of DAG (Xia
et al. 1994) and causes insulin resistance by
forming a multimolecular complex, including
receptor of AGE/IRS-1/Src, thereby activating
PKC-a and increasing IRS-1 Ser-307 phosphor-
ylation (Miele et al. 2003; Cassese et al. 2008).

Mitochondrial Dysfunction and ROS
Formation

Although low levels of reactive oxygen species
(ROS) can enhance insulin action (Krieger-
Brauer et al. 1992; Mahadev et al. 2001), high
concentration of ROS causes oxidative stress
when unresolved. ROS formation occurs as a
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by-product of the electron transport chain and
is a major consequence of mitochondrial dys-
function (Chang and Chuang 2010). Increased
ROS levels have been observed in obese and
diabetic states and can be caused by an increased
metabolite flux into mitochondria, alterations
in mitochondrial proteins, and reduced expres-
sion of antioxidant enzymes (West 2000; Rosen
et al. 2001; Evans et al. 2005; Fridlyand and
Philipson 2006). Increased oxidative stress leads
to the activation of stress kinases that induce
insulin resistance by serine phosphorylation of
IRS proteins (Rudich et al. 1998; Evans et al.
2005; Dokken et al. 2008). Besides the aspect
of ROS-mediated insulin resistance, altered mi-
tochondrial dynamics in the form of increased
mitochondrial fission leads to insulin resistance
and can be rescued by inhibiting fission, which
decreases the activity of p38 MAP kinase and
increases IRS-1 and Akt activation (Jheng
et al. 2012). Impairment of mitochondrial FA
oxidation in liver can also lead to elevated DAG
content, resulting in PKC-1 activation and de-
creased IRS-2 phosphorylation and PI3-kinase
activity (Koh et al. 2005; Zhang et al. 2007).

ER Stress

The ER stress response, also known as unfolded
protein response (UPR), is an adaptive process
to ensure proper protein folding, maturation,
and quality control in the ER. The three cru-
cial pathways of the UPR (PERK, IRE1a, and
ATF6) are all activated with obesity and act to-
gether to reduce the burden of unfolded pro-
teins (Hotamisligil 2010). Obese mice display
enhanced PERK and IRE1a activity in adi-
pose tissue and liver, causing JNK and IKK
activation and insulin resistance by phosphory-
lation of IRS-1 on Ser-307 (Ozcan et al. 2004,
2009; Hu et al. 2006; Zhang et al. 2008b). The
transcription factor XBP-1 is activated by splic-
ing during ER stress and increases gene expres-
sion of molecular chaperones to restore ER
homeostasis. Overexpression of spliced XBP-1
reduces ER stress response, decreases activation
of JNK, and increases insulin signaling by de-
creasing IRS-1 serine phosphorylation (Ozcan
et al. 2004).

CONCLUDING REMARKS

Insulin and IGF-1 acting via specific tyrosine
kinase receptors propagate signals via two
main branches: the PI3K-PDK-1-Akt and the
Grb2-SOS-Ras-MAPK pathways that control
proliferation, differentiation, and survival at
the cellular level, and growth and metabolism
in organisms. These signaling pathways contain
several points of regulation, signal divergence,
and cross talk with other signaling cascades that
define critical nodes (Taniguchi et al. 2006a).
The complexity of this signaling system is essen-
tial to mediate the variety of insulin and IGF-1
biological responses. Many steps are negatively
regulated by action of phosphatases or inhibi-
tory proteins. One of the great challenges re-
maining is deciphering the complexity of insu-
lin-resistance pathogenesis. Causes of insulin
resistance are numerous and the mechanisms
are multifactorial. In rare cases, the cause is ge-
netic, but in most others, insulin resistance is
triggered by cellular perturbations, such as lip-
otoxicity, inflammation, glucotoxicity, mito-
chondrial dysfunction, and ER stress, which
lead to deregulation of genes and inhibitory
protein modifications, resulting in impaired in-
sulin and IGF-1 action. Identifying new mole-
cules that impact insulin signaling and new
levels of control, as well as better understand-
ing the causes and mechanisms leading to insu-
lin resistance, will be essential for a more effec-
tive treatment of type-2 diabetes and associated
diseases.
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