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Abstract

The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous 

ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation 

of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the 

central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic 

efficacy of brain penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant 

was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the 

meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of 

metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally 

restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin 

resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible 

toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, 

the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. 

Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting 

the ECS in metabolic disease.
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Introduction

For centuries, marijuana (Cannabis sativa) has been known 
to stimulate food intake. However, understanding of the 
underlying biological mechanisms started only in the 
60s, with the identification of ∆9-tetrahydrocannabinol 
(THC, the main psychoactive component of marijuana) 

(1). Almost 30 years later, specific cannabinoid receptors 
(CBRs) were identified as the target of the action of THC 
(2, 3); a discovery that was followed soon afterwards 
by the characterization of endogenous ligands for 
CBRs, called endocannabinoids (4, 5), and of their 
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enzymatic machinery (reviewed in (6)). Since then, a 
great number of studies have investigated the functions 
of the endocannabinoid system (ECS) in the regulation 
of metabolic homeostasis. Strong evidence now clearly 
illustrates the pleiotropic roles of the ECS in energy balance, 
highlighting its involvement in every single aspect related 
to the search, intake and metabolic handling of calories. 
Consequently, the ECS has been identified as a target for 
the treatment of obesity and type 2 diabetes. Accordingly, 
the first in class CB1R antagonist rimonabant was briefly 
approved for the treatment of obesity by the European 
Medicines Agency (EMA), but was later withdrawn from 
the marked due to its psychiatric side effects. This event 
negatively affected both the pharmaceutical industry and 
the academic research in the field, but it has also led to 
the investigation of novel approaches to target the ECS 
while favoring the quest for a more in depth knowledge 
of its physiological roles.

Here we will provide an overview of the past and 
present work on the functions of the ECS in metabolism 
and of what the future may hold for the therapeutic 
exploitation of this system against obesity and 
metabolic disease.

Components of the ECS

The ECS is an evolutionary well-preserved system (7), 
which includes the CBRs, the endocannabinoids and the 
pathways responsible for the synthesis and degradation of 
those ligands. Two CBRs types have been identified so far: 

the cannabinoid type 1 receptor (CB1R) and the cannabinoid 
type 2 receptor (CB2R). CB1R is widely distributed in the 
brain and also in peripheral tissues, whereas CB2R is 
preferentially expressed in immune cells (8). As the role 
of CB2R in energy homeostasis is still poorly known, we 
will mainly focus on the CB1R, which is expressed in 
major brain regions (hypothalamus, limbic structures 
and hindbrain) and peripheral organs (gastrointestinal 
tract, liver, adipose tissue, muscle and pancreas) involved 
in the regulation of feeding and metabolism (9). Both 
CB1R and CB2R are G-protein coupled receptors whose 
activation modulates the adenylate cyclase and mitogen-
activated protein kinase (MAPK) pathways via Gi/o type 
protein (8). Endocannabinoids are polyunsaturated fatty 
acids (PUFAs) produced on demand from membrane 
phospholipids to act on CBR in an autocrine or paracrine 
manner. Other endogenous ligands include allosteric 
inhibitors such as pepcans (peptide endocannabinoids) 
(10) and the neurosteroid pregnenolone (11). Here we 
will briefly mention the synthesis and degradation 
mechanisms of endocannabinoids and their action on 
CBR. The reader is also invited to refer to recent reviews 
that have extensively described these topics (12, 13).

Arachidonoylethanolamide (anandamide, AEA) and 
2-arachidonoylglycerol (2-AG) are the 2 best-known 
endocannabinoids. They both derive from membrane 
phospholipid precursors and arachidonic acid (6). For 
the synthesis of AEA, phosphatidylethanolamine and 
arachidonic acid are transformed into N-arachidonoyl 
phosphatidylethanolamine (NAPE) by the enzyme 

Figure 1

Different pathways involved in the 
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N-acyltransferase (NAT) (6). Then, the phospholipase 
NAPE-PLD converts NAPE into AEA and phosphatidic 
acid (14) (Fig.  1). Instead, for 2-AG production, 
phosphatidylinositol is transformed in 1,2 diacylglycerol 
(1,2 DAG) by the phospholipase C (PLC), then in 2-AG 
by the diacylglycerol lipase (DAGL). An alternative 
pathway also exists for the synthesis of 2-AG and 
includes the transformation of phosphatidylinositol 
into 2-arachidonoyl-lysophospholipid (lyso-PI) by the 
phospholipase A1. Lyso-PI is then hydrolyzed by the lyso-
phospholipase C (lyso-PLC) into 2-AG (6) (Fig. 1).

In the central nervous system (CNS), endocannabinoids 
act as retrograde inhibitors of neurotransmitter release 
through their binding and activation of presynaptic 
CB1Rs (15). As AEA and 2-AG are lipids, they cannot be 
stored in lipid vesicles but are produced on demand. The 
stimulus triggering endocannabinoids synthesis from the 
post-synapse is likely to be an increase in intracellular 
Ca2+ due to metabotropic or ionotropic receptor 
activation (15).

During autocrine activation, endocannabinoids 
can activate CB1R by lateral diffusion in the plasma 
membrane (15). However, it is still unclear how these 
ligands move through the extracellular space to reach 
their targets in a paracrine manner. In addition, the 
levels of endocannabinoids are tightly regulated by a 
2-step degradation pathway. First, a passive re-uptake of 
released endocannabinoids occurs (6), followed by an 
intracellular enzymatic degradation. AEA is destroyed by 
the fatty acid amide hydrolase (FAAH) into ethanolamide 
and arachidonic acid (6), whereas 2-AG is inactivated by 
the monoacylglycerol lipase (MAGL) into glycerol and 
arachidonic acid (6) (Fig. 1).

Once its active form is stabilized by an endogenous or 
exogenous agonist, CB1R can trigger multiple intracellular 
pathways such as a Gi/o-protein dependent inhibition of 
the adenylate cyclase or activation of the MAPK cascade (8). 
Of note, CB1R can also couple Gq or Gs proteins in some 
cell types (8). Thus, the effects of CB1R activation can be 
quite complex, spanning from ion channels modulation 
to intracellular kinases regulation. A typical short-term 
effect of neuronal CB1R activation is the closure of N and 
P/Q types calcium channels and the opening of potassium 
channels. As a consequence, presynaptic neuronal CB1R 
activation causes hyperpolarization, preventing further 
neurotransmitter release (6, 15). CB1R activation exerts 
also long-term cellular effects by altering the expression of 
transcription factors through the modulation of various 
kinases, resulting in modification of a number of cellular 
mechanisms (i.e., protein synthesis, synaptic plasticity 

and neurite remodeling) (16). CB1R signaling can then be 
stopped by the internalization of the receptor mediated 
by β-Arrestin 2 (17). However, internalized CB1Rs can 
still activate the MAPK pathway (18). Besides, CB1Rs 
have been also found within neurons at mitochondrial 
membranes, where they regulate bioenergetic processes 
and mitochondrial respiration (19).

Apart from endogenous agonists, there are also 
endogenous molecules that can inhibit CB1Rs. For 
instance, the neurosteroid pregnenolone is produced in 
the brain to prevent any neurotoxicity due to a huge load 
of exogenous CB1R agonist (11). This allosteric inhibitor 
acts as a biased functional antagonist, preventing the 
ability of the agonist to activate the MAPK cascade (11).

The past: role of the ECS in the CNS 
regulation of food intake and the rise  
and fall of rimonabant

Cannabis as a bi-modulator of food intake in humans 
and rodents

The first documented use of cannabis dates back to 300 
A.D. in India, where it was administered as a treatment for 
appetite loss. Interestingly, ancient Indian texts also report 
the use of potent preparations with high dose of cannabis 
by ascetics to overcome their hunger. Later, in the 1960s, 
the increase of recreational use of marijuana despite a 
federal prohibition in the USA (Marijuana Tax Act, 1937) 
raised public concern about the potential detrimental 
effects on human health. At the same time, the structure 
of THC, the main psychoactive component of marijuana, 
was described (1), initiating a series of scientific studies to 
understand the mechanisms of action of cannabis and its 
related compounds.

The first scientific study in humans was conducted 
in 1933 on 34 US soldiers stationed in Panama, who had 
access to marijuana. Apart from the sensation of feeling 
‘high’ and ‘happy,’ these soldiers reported an increased 
appetite (20). Further studies confirmed that cannabis 
consumption induced hyperphagia (21), but these early 
investigations have to be reviewed with caution, as 
the doses of THC used were not standardized. In 1971, 
came the first study with controlled amount of oral THC 
consumption in young healthy subjects. A significant 
increase in food intake was observed after cannabis use 
when the subjects were already fed, with only a trend 
when they were in fasting (22). Later, in 1975, another 
study highlighted the fact that different doses of marijuana 
produce opposite outcomes on food intake: low doses 
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increased appetite whereas high doses suppressed it (23). 
Apart from effects caused by an acute administration of 
THC, investigators were also interested in assessing the 
changes in body weight and metabolism due to chronic 
marijuana consumption. The two first studies following 
human subjects daily smoking marijuana under laboratory 
conditions for 1  month described an increased body 
weight and food intake (24, 25). It was actually reported 
that the marijuana-induced hyperphagia was more 
prominent during periods of social interaction, suggesting 
that the context in which cannabis is consumed might 
affect its behavioral consequences. Another interesting 
observation was that marijuana specifically increased the 
consumption of sweets, suggesting that cannabinoids 
could not only enhance global caloric intake but also 
modulate food preference toward highly palatable foods. 
More data on the chronic consumption of cannabinoids 
came when THC (under the name of dronabinol) was 
approved by the Food and Drug Administration (FDA) in 
1985 as a treatment for chemotherapy-induced nausea. 
The positive effects on appetite and body weight were 
observed in AIDS patients chronically treated with 
dronabinol (26, 27).

In order to further understand the mechanisms 
underlying these effects, investigators also studied 
cannabis administration in laboratory animals, especially 
in rodents. Again, as previously observed with marijuana 
consumption in humans (23), low doses of THC were 
associated with hyperphagia, whereas high doses had the 
opposite effect (21). Interestingly, a central effect of THC 
as a way to modulate food intake was proposed as far back 
as 1979, when a strong hyperphagia was observed in free-
fed rats following THC injections in the ventromedial or 
latero-hypothalamic areas (LHA) (28).

Beyond cannabis: the ECS as a central modulator of 
food intake

However, the understanding of cannabinoids action 
really flourished after the discovery of CB1R in 1988 (2), 
followed soon afterward by the identification of AEA in 
1992 (4). At this time, CB1R was considered as the ‘central’ 
cannabinoid receptor, whereas CB2R was the ‘peripheral’ 
receptor, found on immune cells. An important outcome 
at that time was also the development of the potent 
synthetic CB1R inverse agonist rimonabant (SR141716A), 
a very useful pharmacological tool for the study of the 
physiological functions of the ECS (29).

The central effect of THC on feeding found in 1979 
(28) was later confirmed in 1991, when THC facilitated 

food intake in rats during electrical stimulation of the 
LHA (30). Blockade of CB1R during 14  days by daily 
intraperitoneal administration of rimonabant reduced 
body weight and food intake in non-obese, chow-fed 
rats in a dose-dependent manner (31). In addition, 
rimonabant reduced spontaneous or Neuropeptide Y 
(NPY)-elicited sucrose intake in rats (32), whereas CB1R 
agonists, such as THC or CP 55  940, enhanced sucrose 
consumption (33, 34), emphasizing the role of the ECS 
in controlling hedonic properties of ingesta. In fact, both 
CB1R and endocannabinoids are largely expressed in brain 
regions involved in the regulation of food intake and 
reward-related responses (reviewed in (9)). Consequently, 
several studies attempted to dissect the relationship 
between the ECS and the neuropeptidergic, dopaminergic 
and opioid systems known to have a role in the regulation 
of these processes.

Infusion of 2-AG in the nucleus accumbens (NAc) 
shell induced hyperphagia in free-fed rats in a CB1R-
dependent manner (35). The interaction with the opioid 
system was also demonstrated when a co-administration 
of rimonabant and naloxone (an opioid receptor 
antagonist) at doses that per se did not alter food intake 
resulted in a synergistic inhibition of food intake (36). 
Of note, subanorectic doses of naloxone and rimonabant 
were able to reduce palatable solution intake after CB1R 
stimulation with THC (37). These studies therefore 
revealed some of the biological substrates for the 
modulation of food preference and the known ability of 
cannabinoids to increase consumption of palatable food 
(see also Fig. 2). 

Investigations focusing on actions of the ECS on 
neuropeptidergic circuits demonstrated that a CB1R 
agonist (WIN552122) inhibited orexin neurons and 
activated melanin-concentrating hormone neurons 
in the LHA, by inducing retrograde inhibition of 
presynaptic glutamate and GABA release respectively 
(38) (Fig.  2). Close links were also found between the 
ECS and hormones that affect energy balance regulation, 
like glucocorticoids, ghrelin and leptin (reviewed in 
(39)). In particular, it was shown that the orexigenic 
action of glucocorticoids in the paraventricular nucleus 
(PVN) of the hypothalamus relies on the ability of these 
steroid hormones to elicit endocannabinoid synthesis 
in parvocellular and magnocellular neurons. In turn, 
endocannabinoids would act presynaptically to suppress 
glutamatergic inputs onto the PVN, resulting in neuronal 
inhibition (40) (Fig.  2). Pharmacological blockade of 
CB1R signaling with rimonabant can also prevent the 
orexigenic effect of intra-PVN injections of the hormone 



pr

Eu
ro

p
ea

n
 J

o
u

rn
al

 o
f 

En
d

o
cr

in
o

lo
g

y
176:6 R313Review V Simon and D Cota Endocannabinoids and 

metabolism

www.eje-online.org

ghrelin (41). Other studies then demonstrated that 
ghrelin increases hypothalamic endocannabinoid levels 
(42) and that systemic administration of rimonabant 
decreases while CB1R agonists increase circulating ghrelin 
levels (43, 44). Thus, ECS stimulation facilitates ghrelin 
synthesis in the gut and ghrelin then modulates food 
intake by activating the ECS within hypothalamic circuits 
(reviewed in (39)).

A very close link was also found between the ECS and 
leptin. In 2001, Di Marzo  et al. showed that genetically 
obese animals characterized by lack of leptin (i.e. ob/ob  
mice) or by defective leptin signaling had increased 
hypothalamic level of AEA and 2-AG (45) Conversely, 
acute leptin treatment in ob/ob mice or normal rats 
was able to decrease hypothalamic endocannabinoid 
levels, overall suggesting that endocannabinoids in the 
hypothalamus could act on CB1Rs to maintain food 
intake and form part of the neural circuitry regulated by 
leptin (45). Soon afterward, it was shown that chronic 
administration of rimonabant had anti-obesity effects in 
diet-induced obese mice (46) and that animals genetically 

lacking CB1R (CB1-KO) were hypophagic and lean (47). 
These studies therefore supported the idea that CB1R 
antagonists could be effective therapeutic tools against 
obesity and metabolic disorders.

Rimona...Ban

Rimonabant was therefore tested in humans as anti-obesity 
drug. The Rimonabant In Obesity (RIO) phase III clinical 
trials started in August 2001 (48) and were supported by 
concomitant studies linking increased plasma levels of 
endocannabinoids with markers of obesity and metabolic 
syndrome in humans (see further below, section on 
human studies). Chronic administration of rimonabant 
in humans was successful at reducing body weight, fat 
mass and metabolic impairments related to obesity, such 
as dyslipidemia and diabetes (49). In 2006, the compound 
was approved by the EMA as an anti-obesity therapy under 
the name of Acomplia. In the US however, the concerns 
about severe psychiatric side effects halted its approval 
by the FDA. Shortly after Acomplia was released on the 

MCH 
neurons

Orexin
neurons

Glut GABA
LHA

Magno. 
neurons

Parvo. 
neurons

GlutGlut
PVN

Hypothalamus

Lep�n ↑ Food intake Ghrelin↓ eCBs ↑ eCBs

Forebrain

NeuronsNeurons

Glut GABA

↑ Food intake ↓ Food intake

THC (low doses) THC (high doses)

Reward system

NAc
neurons

DA 
neurons

NAc (shell)

Glut

GABA

VTA

↑ Mo�va�on for food

Legend

Endo-
cannabinoids

Retrograde
inhibi�on

Axonal 
projec�ons

Figure 2

Schematic representation of the action of endocannabinoids on the CNS regulation of food intake. DA, dopamine; 
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European market, reports of increased anxiety, depression 
and even suicides raised serious concerns about its actual 
safety. Finally, in late 2008, the EMA suspended the use 
of Acomplia, based on the fact that its benefits no longer 
outweighed its risks, and also considering that patients at 
an elevated risk of developing psychiatric disorders could 
not be identified. In January 2009, the drug was finally 
withdrawn from the market. Because of this, regulatory 
authorities also terminated all ongoing clinical studies, 
including the Comprehensive Rimonabant Evaluation 
Study of Cardiovascular Endpoints and Outcomes 
(CRESCENDO) trial in which rimonabant was evaluated 
for the prevention of cardiovascular events. Four patients 
in the rimonabant group and one in the placebo group 
had committed suicide (50). As for the actual mechanism 
leading to the observed psychiatric side effects, it has been 
suggested that they might be due to the inverse agonist 
properties of rimonabant at constitutively active CB1R in 
the ventral tegmental area (VTA) and amygdala (51).

The fall of rimonabant cast a shadow on future drug 
development targeting the ECS and caused profound 
controversy about the relevance of modulating the ECS in 
obesity and metabolic disorders.

The present: role of the ECS in the 
periphery and in brain–periphery 
interactions

In 2003, two independent studies unraveled the presence 
of functional CB1Rs in white adipocytes (47, 52). This 
groundbreaking discovery paved the way for many other 
investigations exploring the presence and function of 
this receptor in peripheral non-neuronal tissues (adipose 
tissue, liver, gastrointestinal tract, pancreas and skeletal 
muscles) and helped the field to move forward after the 
fall of rimonabant.

The ECS in the adipose tissue

A complete ECS has been found in both murine and 
human adipocytes (53, 54). The first in vitro studies on 
white adipocytes showed that CB1R activation increases 
the activity of the lipoprotein lipase (LPL), promoting 
the hydrolysis of triglycerides into non-esterified fatty 
acids and their subsequent uptake (47). In addition, 
CB1R stimulation enhances fat storage within adipocytes 
through activation of lipogenetic enzymes and inhibition 
of the activity of the 5′-AMP-activated protein kinase 
(AMPK) (55). Apart from favoring lipogenesis, CB1R also 

regulates adipogenesis by increasing the expression of 
the nuclear receptor peroxisome proliferator-activated 
receptor gamma (PPARγ), which promotes adipocyte 
differentiation (54). Interestingly, AEA can act as a PPARγ 
agonist, amplifying this ECS-induced adipogenesis (56, 
57). Conversely, mitochondrial biogenesis is impaired 
by CB1R activation, which favors the white adipocyte 
phenotype, while inhibiting the brown and ‘beige’ 
phenotype (reviewed in (9, 58)). Accordingly,  the 
pharmacological inhibition of CB1R induces fatty acid 
oxidation, mitochondrial biogenesis via increased 
expression of the endothelial nitric oxide synthase (59) 
and the transdifferentiation of white adipocytes into 
beige adipocytes (60). These cells, similar to brown 
adipocytes, are characterized by enriched mitochondria 
number, higher AMPK activity and increased uncoupling-
protein 1 (UCP1) expression. Data obtained from 
genetically modified mice lacking CB1R selectively  
on adipocytes indicate that these receptors regulate white 
adipose tissue (WAT) expansion, maintenance of white 
adipocyte phenotype and the development of obesity 
and insulin resistance (61). Thus, the results observed  
in vitro might be at least in part due to a direct peripheral 
action of endocannabinoids, although the sympathetic 
nervous system (SNS) is also involved in these responses 
(see further below). Of note, endocannabinoid levels 
in the WAT are negatively regulated by insulin (55) 
and leptin (62). This effect might be lost under insulin 
or leptin resistance, thus favoring ECS overactivity 
and fat accumulation. Interestingly, treatment of diet-
induced obese mice with a peripherally restricted CB1R 
inverse agonist (JD5037) decreases leptin production 
and release by adipocytes and increases leptin clearance. 
The consequent diminished leptinemia reverses leptin 
resistance, resulting in a decrease in body weight and food 
intake (63).

The ECS in the liver

Expression of CB1R in hepatocytes can be induced by 
retinoic acid produced by the hepatic stellate cells (64), 
while the increase in the hepatic levels of AEA, typically 
observed during high-fat diet (HFD) exposure, is caused by 
a decrease in hepatic FAAH activity (65). FAAH is actually 
inhibited by monounsaturated fatty acids generated via 
the stearoyl CoA desaturase-1 (SCD-1), an enzyme whose 
expression in the liver is induced by HFD (65). In turn, 
activation of hepatic CB1R by endocannabinoids induces 
the expression of sterol regulatory element binding 
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transcription factor 1 (SREBPF1), fatty acid synthase (FAS) 
and acetyl coenzyme-A carboxylase-1 (ACC1) resulting in 
fatty acid synthesis, which can lead to hepatic steatosis 
(66). Of note, serum levels of endocannabinoids have 
been found to be associated with nonalcoholic fatty liver 
disease, independent of obesity (67). Activation of hepatic 
CB1R during HFD also causes insulin resistance through 
different molecular mechanisms, including inhibition 
of insulin signaling and clearance (68), and increased 
endoplasmic reticulum stress-dependent synthesis of long 
chain ceramides (69).

In contrast, mice with specific deletion of hepatic 
CB1R develop obesity when fed a high-fat diet or after 
excessive glucocorticoid exposure, but they are protected 
against metabolic disorders such as liver steatosis, 
dyslipidemia, hyperglycemia and insulin resistance (70, 
71). Accordingly, the beneficial effects of JD5037 on 
glucose and lipid metabolism in diet-induced obese mice 
rely on hepatic CB1R (63), implying that hepatic CB1R 
exerts a critical role in the regulation of lipid metabolism 
and insulin sensitivity.

The ECS in the gastrointestinal (GI) tract

The GI tract also contains all the elements of the ECS.  
At the beginning of the meal, when food is introduced into 
the mouth, cephalic-phase responses occur to anticipate 
and prepare proper digestion. This phenomenon can be 
studied using the sham-feeding model, in which animals 
eat and swallow ingesta, which will be re-routed out of 
their bodies, preventing digestion. Using this model, 
it has been shown that fat intake (but not proteins or 
carbohydrates) increases endocannabinoid levels in the 
rat jejunum. Interestingly, vagotomy prevents this sham-
feeding effect on gut-derived endocannabinoids. This 
effect is also lost when rimonabant is given before sham 
feeding to locally block CB1R in the small intestine (72, 
73). Hence, the presence of fat in the oral cavity induces 
a cephalic-phase response resulting in jejunal production 
of endocannabinoids, which will further increase fat 
intake. The exact mechanisms behind this positive 
loop are not yet fully understood, but the orexigenic 
hormone ghrelin might play a role. Indeed, gastric CB1R 
activation leads to ghrelin secretion, which increases 
fat-taste perception and promotes fat intake (74). 
Furthermore, the ECS in the gut may alter cholinergic 
transmission to the intestine, thereby reducing intestinal 
motility in rodents and humans (75). Together with 
this, the protective effects of CB1Rs against intestinal 

inflammation (75) make the ECS a putative enhancer of 
nutrient absorption in the GI tract. Interestingly, salivary 
endocannabinoids are measurable in human saliva 
and are found in higher proportion in obese patients 
compared to normal subjects (76). Although the function 
of salivary endocannabinoids is currently unknown, CB1R 
is present on the mouse tongue and endocannabinoids 
are able to increase neural response specifically to sweet 
taste through a CB1R-dependent mechanism (77). Thus, 
salivary endocannabinoids may modulate orosensory 
information and taste perception. This interpretation 
would agree with other data showing that the ECS can 
also modulate olfactory responses (78), pointing to a role 
for this system in the regulation of sensory information 
associated with food intake.

The ECS in the endocrine pancreas

Endocannabinoids play an important role in the 
regulation of cell proliferation and α/β cell sorting during 
pancreatic islets formation, which consequently has an 
impact on life-long programming of pancreatic glucagon 
and insulin secretion (79). CB1R stimulation also induces 
exocytosis of insulin vesicles likely via the recruitment 
of focal adhesion kinases (FAK) allowing cytoskeletal 
reorganization (80). Consistently, pharmacological 
blockade of CB1R in isolated pancreatic islets of lean mice 
inhibits glucose-mediated insulin release (81). While the 
activation of CB1R on infiltrating macrophages in the 
pancreas increases the expression of interferon regulatory 
factor-5 (IRF5), a marker of M1 inflammatory macrophage 
polarization, causing inflammatory responses and β-cell 
death in type 2 diabetes (82, 83).

The ECS in the skeletal muscle

Finally, some evidence suggests that the ECS can affect 
glucose homeostasis by also acting onto the skeletal 
muscle, where CB1R activation decreases basal and 
insulin-mediated glucose uptake, an effect blocked by 
pharmacological inhibition of CB1R (84). As for the 
molecular mechanisms involved, it has been shown 
that the activation of CB1R negatively impacts the 
responsiveness of skeletal muscle to insulin by acting 
on the PI 3-kinase/PKB and of the Raf-MEK1/2-ERK1/2 
pathways (85). Besides, the activation of the ECS in 
muscle inhibits substrate oxidation and mitochondrial 
biogenesis, as similarly found at the level of the adipose 
tissue and liver (59).
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Back to the brain

Despite intensive research focusing on peripheral ECS, 
recent investigations have also expanded our knowledge 
of the function of the ECS within the CNS.

In particular, it has been established in recent years 
that depending on the brain region and the location 
of CB1Rs, the consequences of their activation can be 
completely different. Bellocchio  et  al. demonstrated in 
2010 that the bi-modal control of food intake by the ECS 
depends on whether CB1Rs are located on glutamatergic 
or GABAergic terminals (Fig. 2). With low doses of THC, 
the suppression of glutamatergic transmission increases 
the appetite. However, when the doses are higher, 
GABAergic transmission is altered, especially at the level 
of the ventral striatum, resulting in hypophagia (86). 
This could therefore explain earlier reports in humans 
where biphasic effects of cannabis and/or THC were 
observed on food intake depending on the dose used. 
Besides, neurotransmitter release in reward-related brain 
regions linked to the mesolimbic dopaminergic pathway 
is crucial in the regulation of food intake. By acting on 
glutamatergic terminals, endocannabinoids reduce the 
activation of GABAergic NAc neurons projecting on 
the ventral tegmental area (VTA). Consequently, the 
dopamine-producing VTA neurons are relieved from their 
inhibition (87) and are allowed to release dopamine, likely 
driving the motivation for food. This same circuit can be 
‘rewired’ by short exposure to palatable food, which can 
prime feeding behavior. This effect is mediated by the 
strengthening of excitatory synaptic transmission onto 
dopamine neurons that is offset by a short-term increase 
in the endocannabinoid tone (88). Recent studies further 
suggest that not just neuronal, but astroglial CB1R might 
play a role in energy metabolism by modulating the action 
of leptin onto astrocytes (89) and that mitochondrial 
CB1R might affect the function of hypothalamic circuits 
critically involved in the regulation of feeding (90).

Then, it is not surprising that the ECS regulates the 
bidirectional communication between the brain and the 
periphery, in the context of energy intake and storage. 
This is facilitated by the fact that CB1Rs are present in the 
peripheral SNS and parasympathetic nervous system (91, 
92). The alterations of CB1R signaling in the forebrain 
can modify peripheral energy utilization via sympathetic 
outputs (93). Similarly, when 2-AG levels in the forebrain 
are decreased through the overexpression of its hydrolyzing 
enzyme MAGL, mice are protected against diet-induced 
obesity, thanks to increased β(3)-adrenergic-stimulated 
thermogenesis (94). Conversely, the deletion of the 2-AG 

degrading enzyme ABHD6 hydrolase in the ventromedial 
hypothalamus (VMH) of mice causes an increase in VMH 
2-AG content, which alters metabolic flexibility (95). 
Deletion of CB1R in the VMH has also been shown to alter 
metabolic flexibility, which is associated with changes in 
SNS-dependent alterations in lypolysis/lipogenesis in the 
WAT (96). Additionally, genetic deletion of CB1R in the 
PVN causes phenotypic changes due to increased SNS-
driven energy expenditure and BAT thermogenesis (97). 
Finally, also the rapid hypophagic effect of rimonabant 
observed within 1-h from its administration relies on 
β-adrenergic transmission (98).

The ECS and metabolic disorders in humans

The past few years have seen an important increase  
in the number of human studies attempting to understand 
the role of the ECS in the regulation of eating behavior 
and metabolism. Endocannabinoids can be detected 
in the circulation and their assessment from blood 
samples is a simple strategy used for the study of the ECS. 
Notwithstanding the limitations of this approach related 
to differences in the handling, preparation or extraction 
of the sample among different laboratories and due to the 
lack of ‘normal’ range reference levels, several studies have 
shown positive association of plasma endocannabinoids 
with markers of obesity and metabolic disorder (53, 99, 
100, 101, 102). Increased plasma endocannabinoids have 
been also found in obese subjects affected by Prader–Willi 
syndrome (103), in which treatment with rimonabant 
proved effective in reducing weight (104).

Levels of endocannabinoids in both plasma and 
cerebrospinal fluid may vary depending on the race (105). 
Circulating endocannabinoids also change across the 
24-h sleep-wake cycle and sleep deprivation alters their 
levels, which is accompanied by increased hunger scores 
(106). Sleep disturbances are actually known to be a risk 
of obesity (107). Accordingly, plasma AEA is increased 
in patients suffering from obstructive sleep apnea, a 
condition that is often associated with obesity (108).

Several studies have then attempted to establish a 
functional link between circulating endocannabinoids 
and feeding behavior. We have reported that normal 
weight and obese subjects have a pre-prandial peak in 
plasma AEA, but not 2-AG, implying that AEA may act as 
a meal initiator signal in humans (109). However, when 
motivation for food is related to its palatability and not 
to hunger, others have observed an increase in plasma 
2-AG in both healthy and obese subjects (110, 111) that is 
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missing in anorexia nervosa (112). This implies that AEA 
and 2-AG may have different roles in the regulation of 
eating behavior, with the first acting to initiate the intake 
of calories, and the second to maintain the intake beyond 
satiety. Table  1 summarizes human studies, in which 
changes in endocannabinoids and endocannabinoid-
related compounds have been investigated in the context 
of obesity and associated disorders.

Human genetic investigations further support a 
causative role of ECS overactivity in the pathogenesis 
of obesity. Metabolic syndrome and dyslipidemia have 
been associated with variants of the CNR1 gene (coding 
for CB1R in humans) (113, 114). The 385 A/A missense 
polymorphism of FAAH, the major degrading enzyme of 
AEA, has been also associated with an obese phenotype 
characterized by cardiometabolic risk (115). Carriers 
of the 385 A/A FAAH polymorphism have increased 
the circulating AEA levels (115, 116) and show greater 
reward-related brain reactivity (117). Thus, assessment of 
circulating endocannabinoids and genetic analysis may 

lead to the identification of obese subpopulations that 
should particularly benefit from treatments targeting 
the ECS.

The new findings discussed here clearly show that 
the ECS acts as a chef d’orchestre of metabolic homeostasis. 
Located both at a central and peripheral level, the ECS 
modulates the orders issued by different brain regions, it 
regulates the communication between the brain and the 
periphery and it fine-tunes the activity of every organ 
involved in lipid and glucose metabolism. Its overall 
action favors energy intake and storage. But when highly-
caloric and palatable food is always available, the anabolic 
consequences of ECS overactivation likely promote 
obesity and metabolic disorders.

The future: focus on novel therapeutic 
approaches to modulate the ECS

Since the major side effects of drugs like rimonabant were 
CNS related, one opportunity to move forward could be 

Table 1 Evaluation of endocannabinoids and related compounds in human studies.

 
 
Measurements

 
 
Normal subjects

 
 
Obesity (vs normal weight)

 
T2D (vs healthy 
subjects)

 
Sleep apnea (vs non 
sleep apnea)

Coronary 
circulatory 
dysfunction 

Plasma AEA  ↑ levels (53, 99, 116)    
 ↑ after OGTT vs obese 

subjects (101)
Ø after OGTT – 

hyperinsulinemic 
subjects (101)

Ø (101) or ↑ (55) 
circulating 
levels

↑ in overweight 
(108) and obese 
subjects (144)

↑ in obese 
subjects (145)

 ↓ after the meal vs obese 
subjects (109)

Ø after the meal – 
hyperinsulinemic 
subjects (109)

   

 Positively associated with 
adiposity (133)

    

Salivary AEA  ↑ levels (76)    
Plasma 2-AG ↑ before consumption of 

favorite food, associated 
with ↑ levels of ghrelin 
(110)

Positive correlation with 
BMI and intraabdominal 
adiposity (100)

   

  ↑ levels in insulin-resistant 
obese women vs 
insulin-sensitive (102)

   

 ↓ after consumption of 
favorite food (110)

↑ after consumption of 
favorite food (111)

Ø (101) or ↑ (55) 
circulating 
levels

↑ in overweight 
(108) and obese 
subjects (144)

↑ in obese 
subjects (145)

 ↑ after sleep restriction vs 
normal sleep (106)

↑ circulating levels (53) 
linked to ↓ olfactory 
capacity (110)

   

Plasma OEA    ↑ in normal weight 
(146) and obese 
subjects (144)

 

OEA in CSF ↑ after 24 h sleep 
deprivation vs sleep (147)

    

  Positively associated with 
EE (105)

        

↑, increase; ↓, decrease; Ø, no difference; 2-AG, 2-Arachidonoylglycerol; AEA, N-arachidonoylethanolamide; CSF, cerebrospinal fluid; EE, energy 
expenditure; OEA, Oleoylethanolamide; OGTT, oral glucose tolerance test.
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provided by CB1R antagonists that are unable to pass the 
blood-brain barrier (118). Some of these drugs, such as 
the peripherally restricted CB1R inverse agonist JD5037 
and the CB1R antagonist AM6545 have been shown to 
reduce obesity, reverse leptin resistance and improve 
hepatic steatosis, dyslipidemia and insulin resistance in 
genetically and diet-induced obese mice (63, 119, 120). 
These are quite important observations, because they 
imply that the blockade of CNS CB1Rs is not required for 
the treatment of metabolic disease. As for the organs that 
are targeted by these peripherally restricted compounds 
in order to observe the beneficial effects, liver and adipose 
tissue likely play a key role.

JD5037 was shown to decrease hyperleptinemia in 
diet-induced obese mice by inhibiting leptin expression 
and secretion from adipocytes via both prejunctional 
and postjunctional mechanisms (63). This in turn seems 
to explain the decrease in food intake observed with the 
administration of JD5037 (63). Moreover, adipocyte CB1R 
might be an interesting target for fat browning therapy, 
as suggested by both in vitro and ex-vivo data (reviewed in 
(58)). Considering that the browning process of the adipose 
tissue represents a promising venue for the development 
of new anti-obesity drugs (121), the action of peripherally 
restricted CB1R antagonists or inverse agonists on the 
browning process and consequently on thermogenesis 

should be further investigated. Alternatively, since 
some studies suggest that the psychiatric side effects of 
rimonabant were due to its inverse agonism on CB1R (51); 
brain penetrant neutral CB1R antagonists could eventually 
be used as therapeutic options. This class of compounds 
is able to decrease body weight in a manner comparable 
to rimonabant, while lacking anxiety/depression-like side 
effects (51, 122).

Combinatorial approaches could also be envisaged. 
This type of approach would benefit from the use of lower 
doses of the drugs, thus limiting possible side effects, while 
acting on different biological systems that participate 
in the regulation of energy balance, possibly leading to 
greater therapeutic success. For instance, a recent study 
by Kunos et al. has characterized the effects of a hybrid 
inhibitor of peripheral CB1R and inducible nitric oxide 
synthase (iNOS) for the treatment of liver fibrosis (123, 
124). This orally bioavailable compound accumulates in 
the liver where it releases an iNOS inhibitor, providing 
the possible advantage of an organ-targeted action. When 
administered to mice, the hybrid inhibitor was able to 
slow fibrosis progression and to attenuate established 
fibrosis (123).

Another way to modulate CB1R activity is represented 
by compounds that could be developed by studying 
recently identified endogenous allosteric inhibitors 

Present FuturePast

Central regula�on 
of food intake

-Biomarkers-
-Intracellular CB1R-

Central inhibi�on 
of CB1R

BrainBrain

Central CB1R

Rimonabant
(inverse agonist)

Hyperphagia
(low doses 
of agonist) Preference for 

palatable food

Hypophagia
(high doses 
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↑ Lipid storage ↓ Mitogenesis

Liver
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↑ Liking and 
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↓ Energy expenditure
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Peripherally-restricted 
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↑ Insulin 
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Figure 3

Major milestones through past and present studies, leading to possible future exploitation of the ECS for the treatment of 

metabolic disorders. Therapeutic targeting of CB1Rs has been highlighted. eCBs, endocannabinoids; WAT, white adipose tissue.
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of CB1R. Hemopressin, pepcans and the neurosteroid 
pregnenolone have been identified as such (10, 11, 
125). Hemopressin reduces food intake without causing 
any obvious adverse side effects, by mostly involving 
circuits of the mediobasal hypothalamus, rather than 
reward-related areas (126, 127). However, further studies 
are needed in order to confirm that these effects are 
due to the direct action of hemopressin on CB1R (128). 
Pregnenolone is a signaling specific inhibitor of CB1R (11, 
129), whereas pregnenolone binding to CB1R does not 
modify the binding of agonists, but selectively inhibits 
CB1R-mediated activation of the MAPK pathway, without 
affecting the inhibition of adenylate (adenylyl) cyclase 
(11, 129). Chronic administration of pregnenolone 
reduces body weight gain in diet-induced obese mice and 
it does not induce anxiety (129). Moreover, CB1Rs are also 
localized on mitochondrial membranes, both in the brain 
(19, 90, 130) and in peripheral tissues (131). This evidence 
might open new perspectives for the development of novel 
CB1R targeting drugs. Besides, the very recent description 
of the crystal structure of the human CB1R will certainly 
help in designing and optimizing new CB1R modulators 
with potential therapeutic use (132, 133).

A different approach then would be to modulate 
the levels of the ligands instead of directly targeting 
CB1Rs. For instance, nutritional approaches aimed at 
limiting the presence of n-6 (PUFA) in the diet or at 
increasing n-3. PUFA should decrease the availability of 
endocannabinoid precursors by reducing the levels of 
arachidonic acid-esterified phospholipids (134, 135). 
Indeed, the consumption of food enriched in n-3 PUFA 
decreases plasma endocannabinoid levels and improves 
the lipid profile in obese or hypercholesterolemic subjects 
(136, 137). Thus, higher dietary consumption of n-3 
PUFA might represent a simple, effective approach to 
reduce endocannabinoid levels to help prevent or treat 
metabolic disorders.

Conclusions

The ECS is involved in the development of preference 
for the consumption of certain foods, even in humans 
(138), it regulates taste and olfactory responses (77, 
78) and controls metabolic changes associated with 
food intake. In turn, the type of diet consumed affects 
endocannabinoid levels and ECS activity. The ECS is 
therefore critically positioned to act at every level of the 
biological machinery aimed at modulating behavior and 
metabolism in response to changes in food availability 
(see also Fig. 3).

Here we have mostly reviewed information on 
the roles of anandamide, 2-AG and CB1R in energy 
balance; however, it should be mentioned that some 
evidence suggests an involvement for CB2R in energy 
balance (139, 140, 141) and that compounds structurally 
related to endocannabinoids but unable to bind to 
CB1R, like oleoylethanolamide (OEA), actually oppose 
endocannabinoids effects on energy balance (142). 
Besides, endocannabinoids do not exclusively exert their 
biological functions through CBRs, however they can 
also bind transient receptor potential vanilloid 1 (TRPV1) 
(143) and the nuclear receptor peroxisome proliferator-
activated receptor γ (PPARγ) (56). Nevertheless, and 
thanks to the recent advances in the field, the ECS and 
particularly the CB1R are again interesting targets for 
therapy. Although it remains to be seen whether some 
of the new pharmacological approaches characterized 
in animals models will be equally efficient and safe in 
humans; this evidence provides renewed hope for the 
battle against obesity and metabolic disorders.
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