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“endocannabinoids”), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system in-
volved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target
for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of
their congeners also interact with a much wider range of receptors, including members of the Transient Receptor

ﬁiﬁg:ﬁ;de Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, follow-

2-Arachidonoyl-glycerol ing the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same

Palmitoylethanolamide metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we

N-acyl-ethanolamines discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involve-
Inflammation ment in some of the most common neurological disorders.

Neurodegeneration © 2016 Elsevier Ltd. All rights reserved.
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1. The endocannabinoid system: from its early definition to the
latest discoveries

The discovery of A°-tetrahydrocannabinol (A®-THC), the main psy-
choactive compound of Cannabis sativa [1], led to ground-breaking in-
sights into a new class of molecules present in this plant, as well as
their potential use as a therapy. From this discovery, more than eighty
plant cannabinoids have been identified, each with a unique chemical
structure and a different pharmacological profile, although only few,
and particularly A°-THC, interact with the endocannabinoid system
(ECS).

1.1. The endocannabinoids

The first evidence suggesting that A%-THC could bind to specific re-
ceptors in mammals was provided twenty years after its discovery,
when Allyn Howlett's group showed that in murine neuroblastoma
cells (N18TG2) exposure to this compound or some of its synthetic ana-
logues inhibited the activity of adenylate cyclase in an enantioselective
manner [2]. One year later, the cell membrane G-protein-coupled recep-
tor (GPCR) responsive to A>-THC was cloned and named cannabinoid re-
ceptor of type 1 (CB1) [3]. Few years later, a second GPCR for A°>-THC was
cloned from human promyelocytic leukaemia cells, and named cannabi-
noid receptor of type 2 (CB2) [4]. The discovery of these two receptors
immediately put forward the hypothesis of the existence of their endog-
enous ligands, or, as defined later, “endocannabinoids” [5]. Thus, in 1992,
the first endogenous agonist of both cannabinoid receptors was isolated
from the pig brain, identified as N-arachidonoyl-ethanolamine (AEA)
and named anandamide from the Sanskrit word ananda for “bliss” [6].
Three years later, a second ligand of both cannabinoid receptors was iso-
lated from the canine gut and turned out to be a common intermediate in
phospholipid and triglyceride metabolism, i.e. 2-arachidonoyl-glycerol
(2-AG) [7,8].

To date, an extended definition of ECS encompasses a large group of
molecules including: a) the two major arachidonate-based endo-
cannabinoids, AEA and 2-AG, and also other putative endogenous CB1
and CB2 ligands such as, for example, 2-arachidonoyl-glyceryl ether or
noladin ether (2-AGE), O-arachidonoyl-ethanolamine (virodhamine),
N-arachidonoyl-dopamine (NADA), and oleamide (OA); b) the two ca-
nonical G protein-coupled cannabinoid receptors, CB1 and CB2, and also
other proposed targets for the endocannabinoids, such as, for example,
the orphan GPCR 55 (GPR55) and the transient receptor potential
vanilloid type-1 (TRPV1); ¢) a large number of enzymes involved in
AEA and 2-AG biosynthesis [N-acyl-phosphatidylethanolamine-specific
phospholipase D (NAPE-PLD), a/p-hydrolase domain type-4 (Abdh4),
glycerophosphodiesterase-1 (GDE1), protein tyrosine phosphatase
N22 (PTPN22), for AEA; and diacylglycerol lipase-a or -3 (DAGLx
and DAGLP for 2-AG] or degradation [fatty acid amide hydrolase-1
(FAAH) for AEA; and monoacylglycerol lipase (MAGL), oi/3-Hydrolase
Domain Containing Protein 6 and 12 (ABDH6 and 12), and FAAH-1 for
2-AG] [9,10].

Two AEA-related compounds, i.e. N-oleoylethanolamine (OEA) and
N-palmitoylethanolamine (PEA), are part of this “extended” ECS. Al-
though these two latter molecules lack strong affinity for either CB1 or
CB2 receptors, they are biosynthetized by the same class of enzymes
mentioned above for AEA. In addition to FAAH, however, they are hydro-
lysed by FAAH-2, which is not expressed in rodents [11] and shows pref-
erence for OEA, and N-acylethanolamine hydrolysing acid amidase
(NAAA), which shows preference for PEA [12-13]. In addition, OEA
was also suggested to activate the orphan GPCR 119 (GPR119) [14],
while PEA behaves as a GPR55 agonist in some assays [15,16]. Finally,
other endocannabinoid-related lipid mediators have only recently been
discovered, such as: 1) the amides between some fatty acids and certain
amino acids (namely glycine and serine), also known as lipoamino acids
[17-19]; 2) metabolites derived from the cyclooxygenase-2 (COX-2)-
mediated oxidation of AEA and 2-AG, denoted as prostaglandin
ethanolamides (or prostamides) and prostaglandin glyceryl esters [20,
21]; and 3) the N-acyl-dopamines and the N-acyl serotonins [17,22-23].

In summary, research on endocannabinoids and cannabinoid re-
ceptors led to the identification of new classes of lipid mediators, to-
gether with the enzymes regulating their tissue levels and receptors
potentially mediating their action. We would like to refer to this
new system of small molecules, the proteins necessary for their
biosynthesis, function and inactivation, and the genes encoding
these proteins, as the “endocannabinoidome” [24]. Here, we pro-
vide an overview of the more recent discoveries on the role of
endocannabinoids and related lipids during physiological functions,
as well as their involvement in some of the most common neurolog-
ical disorders.

1.2. The cannabinoid receptors: CB1 and CB2

The CB1 and CB2 cannabinoid receptors belong to the large family of
GPCRs, with seven transmembrane domains connected by three extra-
cellular and three intracellular loops, an extracellular N-terminal tail,
and an intracellular C-terminal tail. CB1 and CB2 receptors are activated
by three major chemical classes of ligands: 1) cannabinoids (A°-THC
and to a lower extent cannabinol) and their synthetic analogues; 2) ei-
cosanoids, such as AEA and 2-AG, and 3) aminoalkylindoles. However,
many other classes of synthetic compounds have been designed that
are capable to bind these two receptors and act as either agonists, in-
verse agonists, antagonists or allosteric modulators (the latter having
been found so far only for CB1) [25].

CB1 is expressed in all brain structures, and in decreasing amounts
from the olfactory bulb, cerebellum, hippocampus, basal ganglia, cortex
and amygdala, to the hypothalamus, thalamus and brainstem [26].
Overall, CB1 is known to be the most abundant GPCR in the mammalian
brain and for this reason it used to be referred to as the “brain cannabi-
noid receptor” [27]. In most brain areas, CB1 is expressed in pre-
synaptic terminals of both glutamatergic and gamma aminobutyric
acid (GABA)-ergic neurons [28]. in homodimeric or heterodimeric
structures. However, CB1 can also be expressed post-synaptically, and
many studies have proved that it can form heterodimers in association
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with other GPCRs including the adenosine A2, dopamine D2 or orexin
type-1 receptors [29-31]. To what extent these structures occur
in vivo and confer to the receptor a different pharmacology and struc-
ture activity relationship towards ligands is not yet clear. Finally, CB1
is also found in non-neuronal cells of the brain, particularly in astro-
cytes, where its activation promotes the release of neurotransmitters
[32,33]. Surprisingly, once activated in these cells, CB1 receptors seem
to induce intracellular Ca? " elevations, which trigger the release of glu-
tamate and the subsequent activation of presynaptic metabotropic glu-
tamate receptors [34].

The intracellular region of CB1 is most frequently coupled to Gi/o
proteins [27]. Therefore, the stimulation of CB1 by endogenous or exog-
enous ligands inhibits adenylate cyclase activity with subsequent reduc-
tion of intracellular levels of cyclic adenosine monophosphate (cAMP),
or promotes mitogen-activated protein kinase (MAPK) activity [2,27].
Some studies have shown that CB1 in certain cell types can regulate
adenylyl cyclase (AC) also via Gs or Gq [27], or be coupled, via Gi/o
or Gq/11, to other types of intracellular signals, such as the protein
kinase B (Akt/PKB), phosphoinositide 3-kinase (PI3K) and phospholipase
C/inositol 1,4,5-trisphosphate/protein kinase C (PLCB/IP3/PKC) pathways
[34,35].

Pre-synaptic axons
@ w
S 0 |L /4

The AC/cAMP cascade is a key intracellular mechanism controlling
the activity of a variety of cell functions including cell survival, differen-
tiation, and proliferation. Moreover, cAMP regulates the activity of
many class of ion channels, including voltage-gated K™ and Ca®* chan-
nels [36-39], and, in neurons, CB1 activation of Gi/o can also directly in-
hibit voltage-activated Ca®> " channels. Therefore, it is clear that the CB1
receptor acts as a key element controlling cell fate and function in gen-
eral, and in particular neuronal electrical activity and neurotransmitter
release [28]. In particular, it has been shown that, following neuronal
depolarization, the synthesis of endocannabinoids at postsynaptic sites
is rapidly triggered; once synthetized, AEA and, particularly, 2-AG travel
backwards to stimulate CB1 receptors on presynaptic terminals to be
then inactivated by hydrolytic enzymes (Fig. 1). Therefore, the “on de-
mand” production of endocannabinoids acting as retrograde signals
[40], together with CB1-mediated activation of K* and inhibition of
Ca?* channels, by controlling both excitatory and inhibitory neuro-
transmitter release, finely tunes the duration of synaptic activity and,
subsequently, several forms of short- and long-term synaptic plasticity
(Fig. 1) [41,42].

In addition to the brain, CB1 is also expressed in the peripheral ner-
vous system and in almost all mammal tissues and organs including the
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Fig. 1. An example of the “retrograde” mechanism of action of 2-AG at neuronal synapses. Following neuronal depolarization (1), the Ca?"-dependent release of glutamate from
presynaptic vesicles (2-3) activates NMDA receptors at the post-synaptic level (4) thereby causing excitatory postsynaptic currents (EPSCs). This change of membrane excitability
rapidly triggers the synthesis of AEA and, particularly, 2-AG (5). The 2-AG travels backwards (6) to stimulate CB1 receptors on presynaptic terminals, which in turn activate K
channels and inversely inhibit Ca?* channels, thus inhibiting excitatory neurotransmitter release (7).
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gastrointestinal tract, heart, liver, adipose tissue, lungs, adrenal glands,
smooth and skeletal muscle, male and female reproductive systems,
bone and skin [43-47]. The crucial role of this receptor in the mainte-
nance of homeostasis during several mammalian functions has been
demonstrated by the use of both pharmacological and genetic tools
(such as “global” and conditional CB1~/~ mice). In fact, many studies
have reported that the loss of CB1 receptor function may be associated
with disorders affecting both central and peripheral organs [47,48].

The function of the CB2 receptor is often related to that of CB1 recep-
tor, even though its protein sequence shows only 44% homology to that
of its cognate receptor [4]. Similar to CB1, CB2 is a GPCR and is coupled
to Gi/Go a proteins. Thus, its stimulation inhibits AC activity and acti-
vates MAPK [49]. In contrast to CB1, CB2 levels in the brain are
very low, and emerging studies have shown that its expression is re-
stricted to specific neuronal cells and becomes abundant in activated
microglia and astrocytes [50,32]. Overexpression of CB2 in neurons
and subsequent activation by agonists causes inhibition of voltage acti-
vated Ca?* channels [50], and CB2~/~ mice do exhibit a phenotype in
terms of their response to anxiogenic stimuli and consumption of sub-
stances of abuse [51-53]. Xi and colleagues using CB2 ™/~ mice have re-
cently suggested that stimulation of CB2 receptors in the brain, by
regulating the levels of dopamine, plays a key role in cocaine rewarding
and locomotor-stimulating effects [54]. However, the role of CB2 in the
brain is still controversial, and whether or not such receptor participates
in affective behavior remains to be conclusively established.

In contrast, it appears clear that CB2 receptors are abundantly
expressed in cells belonging to the immune system such as monocytes,
macrophages, and B- and T-cells [55,56]. In these cells, CB2 receptor ac-
tivation, among others, reduces the release of pro-inflammatory cyto-
kines or lymphoangiogenic factors [55-57]. Moreover, CB2 receptors
are also present in other peripheral organs and cell types playing a
role in the immune response, including the spleen, tonsils, thymus
gland, mast cells and keratinocytes [58-61,46], as well as in the gastro-
intestinal system [62,63]. Finally, in many studies utilizing drugs selec-
tive for CB2 or CB2~/~ mice it appeared clear that CB2 receptors have
the ability to control the activation and migration of immune cells,
and represent key regulators of inflammatory and nociceptive re-
sponses [64,65].

1.3. Other putative endocannabinoid receptors: TRPV1 and GPR55

The transient receptor potential vanilloid type-1 (TRPV1) channel,
also known as the capsaicin receptor or vanilloid receptor 1, was the
first member of the TRPV channel subfamily to be discovered and
cloned [66]. By homology with other TRP members, the structure of
TRPV1 possesses six transmembrane domains with an additional
intramembrane loop connecting the fifth and sixth transmembrane do-
mains and forming the pore channel region [66]. This subclass of ion
channels is characterized by weak voltage sensitivity and a nonselective
permeability to monovalent and divalent cations including Mg?*, Ca® ™,
and Na™. TRPV1 channels are activated by a plethora of both exogenous
and endogenous chemical agents, such as capsaicin and its analogues,
some phytocannabinoids, AEA, PEA, N-oleyl-dopamine, NADA, and
some lipoxygenase derivatives, including leukotriene B4 and 12-
hydroperoxy-eicosatetraenoic acid [66-75]. Physical or mechanical
stimuli, such as high temperatures (>43 °C), low pH and osmotic chang-
es, also activate TRPV1 [76,77].

TRPV1 function is closely dependent on the binding of key regulato-
ry proteins that induce changes in its phosphorylation state. In particu-
lar, the phosphorylation induced by adenosine triphosphate (ATP),
protein kinase A (PKA), PKC, phosphoinositide-binding protein (PIRT)
and phosphatidylinositol 4,5-bisphosphate (PIP2), was shown to be re-
quired for TRPV1 activation/sensitization and cation gating. TRPV1 acti-
vation contributes to pain transmission, neurogenic inflammation and,
as suggested by more recent studies, also synaptic plasticity, neuronal
overexcitability and neurotoxicity [76-79,69]. On the other hand, the

rise of intracellular Ca®* following TRPV1 stimulation activates:
i) proteins, such as calmodulin, that stabilize the channel in a closed
conformational state, or ii) Ca>*-dependent phosphatases, such as cal-
cineurin, which dephosphorylate TRPV1 and again inactivate it
[80-82,78]. This fast process of inactivation of TRPV1 is known as “de-
sensitization”, and is thought to underlie the paradoxical analgesic,
anti-inflammatory and anti-convulsant effects of TRPV1 agonists [83,
84,69].

TRPV1 channels are largely expressed in dorsal root ganglia, and
sensory nerve fibers of the A and C-type, but also in non-neuronal
cells and tissues such as keratinocytes and skeletal muscle [85,77,61,
47]. In sensory neurons, TRPV1 channels work as molecular integrators
for multiple types of sensory inputs that contribute to generate and
transmit pain. In central neurons, lower amounts of TRPV1 channels
are expressed both pre- and post-synaptically, where they act to regu-
late synaptic strength [85-87] and participate in pain, anxiety, depres-
sion, emesis, and nicotine and alcohol self-administration, usually by
inducing effects opposite to those exerted by CB1 receptors in the
same context [88-90]. Moreover, again in conjunction with
endocannabinoid signalling, TRPV1 might also participate in retinal
ganglion cell (RGC) axonal transport and excitability, cytokine release
from microglial cells and regulation of retinal vasculature cells [91].

GPR55 also belongs to the large family of GPCRs and is currently con-
sidered a potential cannabinoid receptor. The endogenous ligand of this
receptor is lysophosphatidylinositol (LPI) [92-94], but GPR55 seems to
be activated by A°-THC as well as by some synthetic inverse agonists
of CB1 receptors, and antagonized by the other major, non-
psychotropic phytocannabinoid, cannabidiol (CBD). Contrasting data
exist regarding the possibility that low concentrations of AEA, 2-AG,
virodhamine, noladin ether and PEA also activate GPR55 [94,95], and
such controversies might be due either to biased signalling of these mol-
ecules at this receptor, depending on the cell type and conditions used
for the assay, or to the recently discovered formation of heteromers be-
tween GPR55 and CB1 [96,97]. Indeed, GPR55 is linked to a range of
downstream signalling events including Ca?* release, nuclear factor of
activated T cells (NFAT)-, cAMP response element-binding protein
(CREB)- and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-B)-induced transcription, and extracellular signal-regulated
kinases (ERK)-1/2 phosphorylation [95]. In the mouse brain, GPR55 is
expressed in the striatum, hippocampus, forebrain, cortex, and cerebel-
lum [98], while at the peripheral level, it is found abundantly in the gas-
trointestinal tract [99]. Itis present also in both osteoblast and osteoclast
cells, where it regulates bone mass plasticity [100], as well as in meta-
bolically active cells such as adipocytes [101]. However, the exact func-
tion of GPR55 is not fully clear yet, and the difficulties in reaching a firm
conclusion on this issue are also due to the fact that GPR55~/~ mice do
not show a clear phenotype [102]. Recent findings suggested that acti-
vation of GPR55 might play an opposite role to CB1 by boosting neuro-
transmitter release [58], and a similar one in obesity by increasing the
expression of lipogenic genes in visceral adipose tissue [101]. Further-
more, while pharmacological stimulation of CB1 and CB2 receptors by
endocannabinoids or synthetic cannabinoid-based compounds appears
to inhibit the aggressiveness of several types of cancer such as skin and
breast carcinoma or glioma and lymphoma [103-105], the stimulation
of GPR55 by LPI exerts opposite effects by promoting cancer cell prolif-
eration [106,107].

1.4. Biosynthetic and catabolic pathways of the two major endocannabinoids,
AEA and 2-AG

As also mentioned above, the ECS encompasses a growing number of
lipid mediators. However, among these mediators, AEA and 2-AG are
the only ones whose metabolism and pharmacology have been thor-
oughly investigated. For this reason, these two compounds are still con-
sidered as two “major endocannabinoids”.
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1.4.1. Biosynthesis of endocannabinoids

The biosynthesis of AEA, similar to that of other long chain N-
acylethanolamines (NAEs), can occur via at least three distinct biosyn-
thetic routes: a) directly, through the hydrolysis of N-arachidonoyl-
phosphatidyl-ethanolamines (NArPE) by the action of NAPE-PLD;
b) in three steps, via the sequential deacylation of NArPE by ABHD4
and the hydrolysis of glycerophosphoethanolamine by GDE1; and c)
in two steps, via PLC-mediated hydrolysis of NArPEs to yield
phosphoanandamide, which is in turn dephosphorylated to AEA by a
phosphatase, such as PTPN22 [108] (Fig. 2). Recent studies suggested
that the choice of one pathway instead of another might depend also
on precursor’s availability and/or the cell or tissue type [109]. Interest-
ingly, at least in the brain, the different pathways seem to be able to
compensate for the lack of one of them, since neither NAPE-PLD nor
GDE1 null mice exhibit lower AEA levels, whereas the brain of double
NAPE-PLD/GDE1 null mice only show reduced levels of the
endocannabinoid and other NAEs in cell free experiments or following
the treatment of the animals with an inhibitor of N-acylethanolamine
enzymatic hydrolysis [110].

The other endocannabinoid, 2-AG is synthesized from the hydrolysis
of 2-arachidonoyl-containing diacylglycerols (DAG) by either of two en-
zymes known as sn-1-specific DAGL « or 3 [111]. Mice lacking either
DAGL-a or - revealed that DAGL-a plays a primary role for 2-AG
synthesis in the brain; conversely, DAGL-p is often active at the periph-
eral level, although its expression in the brain has been reported
[111-113]. The DAG precursors for 2-AG biosynthesis are in turn the
product of the hydrolysis of membrane phospholipids, and particularly

sn-1-arachidonate containing
phospolipid

Phosphatidylethanolamine (PE)

W

N-arachidinoyl-
phosphatidyletk lamine (PE)

ABDH4

v

PTPN22 NAPE-PLD GDE-1

of sn-2-arachidonoyl-PIP2 species by PLCP [114,115]. However, DAG
precursors for 2-AG have also been suggested to originate also from
phosphatidic acid hydrolysis [116] (Fig. 2).

1.4.2. AEA and 2-AG enzymatic hydrolysis

AEA and 2-AG are hydrolysed mainly by two serine hydrolases: FAAH
and MAGL, respectively (Fig. 2). The crucial role of these enzymes in the
catabolism of AEA and 2-AG was confirmed in several studies by the use
of selective FAAH or MAGL inhibitors and/or mice lacking FAAH
(FAAH™/~ mice) or MAGL (MAGL™/~ mice) [117-120]. In particular,
FAAH (or FAAH-1) is an integral membrane serine hydrolase protein
largely expressed throughout the mammalian body, with the highest
density in the brain and liver, whereas FAAH-2 is not expressed in rodents
[121]. Although AEA represents its preferential substrate, FAAH is also ac-
tive at hydrolysing other long-chain N-acylethanolamine (NAEs) such as
PEA and OEA [122], and fatty acid amides (FAAs), including N-
acyltaurines [123] and N-acyl-glycines [17]. Nevertheless, there is both
in vitro and in vivo evidence that FAAH is also active towards 2-AG
[124-126], and therefore its contribution to 2-AG inactivation in the
brain under certain conditions or in particular brain areas and cells cannot
be ruled out. However, MAGL is responsible for ~85% of 2-AG-hydrolyzing
activity in mouse brain homogenates [127]. As a consequence, in mice
lacking this enzyme, the endogenous levels of 2-AG are significantly in-
creased in all the tissues and organs taken under analysis [119].

Over the last decades many specific FAAH or MAGL inhibitors have
been developed such as URB597 [128], OL-135 [129], PF-3845 [130]
and PF-04457845 [131] for FAAH; and URB602 [132], CAY10499 [133],
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OMDM169 [134],]ZL184 [135] and KML29 [136] for MAGL. To date, the
beneficial effects of these inhibitors have been investigated in a variety
of diseases including pain, inflammation, analgesia, cancer and sleeping
disorders [137-139,128,129]. Moreover, the administration to mice of
dual inhibitors of FAAH and MAGL, by producing more than 10-fold in-
creases in the brain levels of both anandamide and 2-AG, leads to CB1-
dependent behavioral responses in the “tetrad” of A°-THC-like effects
(analgesia, hypomotility, hypothermia and catalepsy) [140]. This spec-
trum of cannabimimetic activities was not observed upon inhibition of
FAAH only. For example, JZL195 is a selective and efficacious dual
FAAH/MAGL inhibitor and mimics the pharmacological activities of a
“direct” CB1 receptor agonist in vivo [135], although it also shows
signs of CB1 desensitization when given chronically, similar to the ef-
fects of congenital deletion of MAGL. Indeed, a recent study showed
that MAGL null mice exhibit high levels of co-localization between
CB1 and B-arrestin-1, a protein involved, among others, in GPCR inter-
nalization, in several brain areas, but not in the cerebellum. This results
in impaired CB1-mediated signalling via MAPK, altered GABA and gluta-
mate release and anxiety-like, depression-like and obsessive/
compulsive-like behaviors [141]. Hence, caution is needed when
analysing the phenotype of MAGL™/~ mice as this may resemble that
of CB1~/~ mice rather than that expected from enhanced CB1 signal-
ling. Conversely, it was also reported that the genetic deletion of FAAH
or repeated URB597 treatment could exacerbate the inflammatory re-
sponse in several models of inflammation [142-144].

Two other enzymes named ABHD6 and ABDH12 can catalyse the hy-
drolysis of 2-AG [145] (Fig. 2). Additionally, 2-AG can be also phosphor-
ylated to lysophophosphatidic acid by MAG kinase [146] or acylated to
DAG by MAG acyltransferase using acyl-CoA as acyl donor [147]. Finally,
both anandamide and 2-AG can be oxygenated to: 1) the corresponding
prostaglandin-ethanolamides (or prostamides) and glycerol esters by
the sequential action of COX-2 and prostaglandin synthases,
2) hydroperoxy derivatives by 5-, 11- and 12-lipoxygenases, and 3) var-
ious oxygenated metabolites by cytochrome P450 enzymes [148-151]
(Fig. 2).

Despite the extensive knowledge on the metabolism of AEA and
2-AG by the several intracellular enzymes described so far, it remains
unclear how these endocannabinoids move across the plasma mem-
brane. Several distinct mechanisms have been proposed for AEA cellular
uptake (recently reviewed by Nicolussi and colleague) [152], including:
1) its simple diffusion across the membrane driven by intracellular
breakdown of AEA mediated by FAAH, or by AEA sequestration by
more or less selective intracellular binding proteins, and: 2) a specific
carrier-facilitated mechanism, which may involve caveolae-mediated
endocytosis or other “transporters” and may recognize also 2-AG
[153,154]. The current prevalent hypothesis, mainly based on
pharmacological evidence, is that the transport of endocannabinoids
across the plasma membrane is somehow facilitated by one or more
“endocannabinoid membrane transporters” (EMT). However, the
molecular identity of such carrier proteins remains to be clarified and
their existence is therefore subject to ongoing controversy.

In summary, although the pathways and enzymes responsible for
the regulation of the tissue levels of the two major endocannabinoids
have been identified, there is still a gap in our understanding of what
factors and conditions determine whether AEA or 2-AG are produced
and degraded by one metabolic pathway instead of another or
transported across cell membranes in a facilitated manner. This knowl-
edge will enable us to manage the intricate relationships between these
metabolic pathways and their pharmacological exploitation for the
treatment of human disorders associated with malfunctioning
endocannabinoid signalling.

2. Anandamide congeners: palmitoylethanolamide

Of the several long chain fatty acid amides and esters that have been
revisited following the discovery of AEA and 2-AG, the NAEs, and in

particular OEA and PEA, are certainly the most studied ones. In this sec-
tion, we review their metabolism and pharmacological mode of action,
as they exemplify to a large extent what is emerging also for other
endocannabinoid-like mediators.

2.1. PEA

PEA, like endocannabinoids, is an endogenous bioactive lipid,
and, more specifically, the ethanolamide of palmitic acid, which is pro-
duced “on demand” from membrane phospholipids and considered
since the 1950s to play an important role in various processes, from
anti-inflammatory and analgesic activities to neuroprotective actions
[155-159]. PEA was initially described as a compound of natural origin
because it was isolated from purified lipid fractions of soybeans, egg
yolk and peanut meal following the discovery of the anti-allergic and
anti-inflammatory activity observed by supplementing the diet of
food-deprived children with these products [160-162]. Later, PEA was
defined as an endogenous mediator because it was found in most
cells, tissues and body fluids of both animal and human subjects. In par-
ticular, in the periphery, PEA is produced in the liver and muscle [163],
heart [164], skin [61,165-167], spinal cord [168,169], gastrointestinal
tract [170-172], eye [173,174], subcutaneous adipose tissue [175], and
blood [176-178]. PEA is also abundant in the central nervous system,
in the brain [179-181,169] and in several brain cell types such as neu-
rons [182], astrocytes [183] and microglia [184].

The discovery of the ECS and of the endocannabinoids, AEA and 2-
arachidonoylglycerol (2-AG) [6,7], led us to classify PEA as an
endocannabinoid-like molecule, since this compound, apart from be-
longing to the same class as AEA, i.e. the NAEs, shares biosynthetic and
metabolic pathways, but only in part the same mechanisms of action,
with the endocannabinoid.

2.1.1. Biosynthetic and metabolic pathways of PEA

PEA is biosynthesized from its direct phospholipid precursors, the N-
palmitoyl-phosphatidyl-ethanolamines (NAPE), through the catalytic
action of NAPE-PLD [185], and inactivated by two different hydrolytic
enzymes: 1) FAAH [186] and, more specifically 2) NAAA [187], which
metabolize PEA to palmitic acid and ethanolamine (Fig. 3). While
FAAH belongs to the serine hydrolase family, and amidase subfamily,
of enzymes, is active at alkaline pH and exhibits the highest reactivity
with AEA [186,188], NAAA belongs to the cysteine hydrolase family, is
active at acidic pH (and localizes to lysosomes) and hydrolyzes prefer-
entially PEA [187]. NAAA is activated by self-catalyzed proteolysis in-
volving a catalytic triad constituted of Cys126-Arg142-Asp145, with
Cys126 acting as the catalytic nucleophile [189,190].

PEA is produced in mammalian cells and its tissue concentrations are
often altered during several pathological conditions, in particular during
pain and inflammatory conditions (as will be discussed below) [156,56,
159]. Therefore, the existence of a specific inactivating enzyme for this
lipid mediator, i.e. NAAA, highly expressed in macrophages and the
lungs, as well as in various rat tissues including the brain [191,192],
allowed the development of selective inhibitors able to inhibit this
protein and selectively increase the endogenous levels of PEA, with
subsequent anti-inflammatory and analgesic actions (Fig. 3). Several
compounds have been reported to be selective NAAA inhibitors, the first
having been discovered from the screening of different esters, retroesters
and retroamides of palmitic acid, i.e. cyclohexylhexadecanoate, with an
ICsp value of 19 uM [193], and cyclopentylhexadecanoate, with an ICsg
value of 10 uM [194,13]. The latter compound showed an inhibition of a
competitive nature and the ability to increase endogenous PEA levels in
intact cells [194,13]. Later a series of cyclohexylhexadecanoate and 1-
pentadecanyl-carbonyl pyrrolidine derivatives were synthetized, of
which N-pentadecylcyclohexanecarboxamide and 1-(2-biphenyl-4-
yl)ethyl-carbonyl pyrrolidine showed strongest inhibitory activity, with
ICso values of 4.5 M and 2.1 uM, respectively, and a mechanism of action
of a non-competitive and competitive nature, respectively [195,196].
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Moreover, 1-(2-biphenyl-4-yl)ethyl-carbonyl pyrrolidine reduced, in a
dose-dependent manner, the mRNA expression levels of iNOS and IL-6
in an in vitro model of inflammation induced by lipopolysaccharide
(LPS) in mouse macrophages, and this effect was also accompanied by
an increase of the intracellular levels of PEA [196]. On the other hand,
N-[(3S)-2-0x0-3-oxetanyl]-3-phenylpropanamide ([(S)-OOPP]) was dis-
covered as a more potent NAAA inhibitor since it exhibited nanomolar
IC5q values, 420 nM, blocked NAAA through a non-competitive mecha-
nism, increased PEA levels in activated leukocytes, attenuated inflamma-
tion and tissue damage, and improved recovery of motor function in mice
subjected to spinal cord trauma [197,198].

Later, in order to obtain even more potent inhibitors starting from
the structure of (S)-OOPP, a series of P-lactones were prepared.
Although (S)-N-(2-ox0-3-oxetanyl)biphenyl-4-carboxamide at first
seemed to be more potent than (S)-OOPP with an ICso value of
115 nM [198], it showed lower chemical stability. Subsequently, a deriv-
ative of this compounds, (2S,3R)-2-methyl-4-oxo-3-oxetanylcarbamic
acid 5-phenylpentylester (ARNO77), turned out to be the most potent
NAAA inhibitor ever developed [199]. This compound, which showed
enhanced chemical stability, was able to inhibit NAAA with an ICsq
value of 50 nM [200] and with a non-competitive mechanism [201].
Moreover, topical administration of ARNO77 attenuated, in a dose-
dependent manner, heat hyperalgesia and mechanical allodynia elicited
in mice by either carrageenan injection or sciatic nerve ligation, and re-
versed the decreased levels of PEA in sciatic nerve ligation, as well as the
allodynia caused by ultraviolet B radiation in rats [201]. Instead, modifi-
cations of the 5-phenylpentyl side chain of ARNO77 led us to identify a
threonine-derived-lactone analogue of ARNO77, (4-phenylphenyl)-
methyl-N-[(2S,3R)-2-methyl-4-oxo0-oxetan-3-yl|carbamate as the first
single-digit nanomolar inhibitor of intracellular NAAA activity, with an

ICsp value of 7 nM [200]. Recently, a new class of less potent NAAA in-
hibitors, the 3-aminoazetidin-2-one derivatives has been reported, of
which N-[(S)-2-oxoazetidin-3-ylJnonanamide showed good inhibitory
potency with an ICsq value of 340 nM [202].

Finally, EPT4900 (4,5-diacetyloxy-9,10-dioxo-anthracene-2-carbox-
ylic acid or diacerein), already known for its anti-inflammatory effects
and clinical effects against osteoarthritis [203,204], was recently report-
ed to be a new potential inhibitor of NAAA [205]. This discovery allowed
us to hypothesize that NAAA inhibition might be the mechanism
through which diacerein exerts its effects, since the mechanism of ac-
tion for this drug had never been reported before, and to propose that
NAAA inhibition might work against inflammatory pain also in humans
[205]. The compound inhibited NAAA both in cell-free preparations and
intact cells with an ICsg value of 7.2 pM, and pre-incubation before the
addition of substrate improved its inhibitory activity by 10-fold
(ICsp = 0.7 uM) [205]. Moreover, in a model of acute inflammatory
pain induced by an intraplantar injection of carrageenan in rats,
EPT4900/diacerein was able to exert anti-inflammatory and anti-
hyperalgesic actions, and these effects were accompanied by increased
tissue levels of PEA [205]. It has emerged recently that the oxazoline in-
termediate of PEA, EPT4102 (2-pentadecanoyl-oxazoline) is also able
to inhibit NAAA by 58% at the maximal concentration tested (50 pM)
(S. Petrosino & V. Di Marzo, unpublished results).

2.1.2. Mechanisms of action of PEA

In order to explain the anti-inflammatory and analgesic actions of
PEA, three mechanisms of action have been put forward and are
known as: 1) the “Autacoid Local Inflammation Antagonism” (ALIA) hy-
pothesis; 2) the direct receptor-mediated mechanism; and 3) the “en-
tourage effect”. The existence of the former mechanism does not
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exclude either of the latter two, and in fact, a synergistic interaction may
occur between the “receptor-mediated mechanism” or the “entourage
effect” and the ALIA hypothesis.

It was originally demonstrated that systemic administration of PEA
reduces mast cell degranulation induced by local injection of substance
P in the ear pinna of developing rats [155]. This evidence indicated a
local antagonism exerted by PEA on inflammation, and this effect was
denoted as ALIA [155]. Successively, the “receptor mechanism” was pro-
posed based on the capability of PEA to directly stimulate different re-
ceptor targets. In fact, at first PEA was described as an agonist of the
cannabinoid CB2 receptor, since it was able to inhibit [*H]WIN 55,212-
2 binding to the CB2 receptor [206], and the administration of the CB2
antagonist, SR144528 reversed the analgesia produced by PEA [207]
(Fig. 3). However, SR144528 did not impede the inhibition of inflamma-
tion by the PEA [208], and this finding, together with the lack of effect of
the compound in binding assays carried out with recombinant human
or mouse CB2 receptors, led to test and eventually demonstrate the hy-
pothesis that the peroxisome proliferator-activated receptor-o (PPAR-
) could be the receptor mediating the anti-inflammatory effects of
PEA (as will be discussed below) [209] (Figs. 3 and 4). Later, GPR55
was also suggested as a potential target for PEA [99,16] (Fig. 4). Finally,
an indirect receptor mechanism of action for PEA was hypothesized and
named “entourage effect” [210,70,211], based on the capability of PEA
to increase either the levels or the actions, or both, of AEA (Fig. 4). In
fact, PEA can potentiate some actions of AEA at CB1 and CB2 receptors
or at TRPV1 channels, either via inhibition of the expression of FAAH
[210], or through a seemingly positive allosteric modulation of TRPV1

channels [70,209] (Fig. 4). In this regard, numerous papers suggest for
PEA an AEA-mediated mechanism of action following TRPV1-, CB1- or
CB2-activation, in as much as it has been demonstrated that the protec-
tive effects exerted by PEA can be attenuated or prevented by specific
antagonists of these receptors, i.e. 5-iodioresiniferatoxin (I-RTX) or
capsazepine (CPZ) for TRPV1, AM251 or SR141716 for CB1 and
SR144528 or AM630 for CB2. For example, the analgesic effects follow-
ing i.p. administration of PEA in a murine model of neuropathic
pain [212], as well as after injection of PEA into the ventrolateral
periaqueductal grey of male rats [213], were blocked by both I-RTX
and AM251. Moreover, the hypotensive response after intrathecal injec-
tion of PEA and AEA was prevented by both CPZ and SR141716 [214].On
the other hand, in a mouse model of post-inflammatory accelerated
transit, I-RTX was able to increase the inhibitory effect of PEA on gastro-
intestinal motility, while SR141716 blocked this action [215], and like-
wise the anti-inflammatory effect of PEA in a murine model of colitis
was increased by CPZ and blocked by AM630 [16]. These data may sug-
gest that the capability of PEA to activate indirectly TRPV1 in some cases
leads to the activation and desensitization of this channel, thus contrib-
uting to PEA anti-inflammatory actions, whereas in other cases it results
only in activation, thus counteracting the inhibitory effect of the lipid
mediator on inflammation, mediated by other targets (e.g. direct activa-
tion of PPAR-«x or indirect activation of CB1 and CB2 receptors). Howev-
er, it was demonstrated that TRPV1 blockers do antagonize the anti-
inflammatory effects induced by PEA in in vitro and in vivo models of
contact allergic dermatitis (CAD) [61]. In fact, [-RTX was able to reverse
the inhibitory effects of PEA on the expression and release of chemokine
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monocyte chemoattractant protein 2 (MCP-2) in polyinosinic
polycytidylic-acid (poly-(I:C))-treated human keratinocytes (HaCaT)
cells in vitro. Additionally, in dinitrofluorobenzene (DNFB)-sensitized
mice the anti-inflammatory effects of PEA were counteracted by CPZ
[61]. Finally, it was shown that these TRPV1-mediated effects of PEA
could be attributed to the elevated levels of endogenous AEA and OEA
observed both in poly-(I:C)-HaCaT cells and in the DNBS in vivo
model of CAD [61,216].

It was originally believed that PEA could induce an “entourage ef-
fect” only on AEA endogenous levels/actions, since it seemed that
TRPV1 channels could only be activated and desensitized by AEA [210,
211,70]. However, more recently, 2-AG was also shown to activate
TRPV1 channels [217], and it was demonstrated that PEA is able to
exert an “entourage effect” also on this endocannabinoid, by increasing
its endogenous levels both in HaCaT cells in vitro and in Beagle dogs and
human volunteers in vivo [218]. Importantly, it was also shown that,
although PEA only slightly enhanced 2-AG activation of TRPV1, it signif-
icantly increased 2-AG-induced TRPV1 desensitization [218]. Since 2-
AG is significantly more efficacious than AEA at activating CB2 receptors
[37,57], the finding that PEA can enhance the levels of the former
endocannabinoid might help explain initial data showing that CB2 an-
tagonists could block some effects of PEA even though this compound
cannot interact directly with CB2 receptors. Finally, providing yet anoth-
er possible mechanism to its “entourage” effects and the sensitivity of its
actions to CB2 antagonists, recent data indicate that PEA, at least in mi-
croglia, also upregulates CB2 receptor expression (Guida F, Maione S
and Di Marzo V, personal communication).

3.Endocannabinoids and endocannabinoid congeners in major neu-
rological disorders

In most of the physiological and pathological perturbations of the cell
steady-state in which its function has been studied to date, the ECS has

been shown to play a pro-homeostatic role, facilitated by the fact that
endocannabinoids are local mediators that can be biosynthesized and re-
leased on demand and thus activate their targets only when and where
needed. As a consequence, tissue endocannabinoid levels are very often
altered, and the activity of their targets modified, in nearly all chronic dis-
orders, as an adaptive response aimed at restoring homeostasis or as a
maladaptive mechanism eventually contributing to disease symptoms
or progress. Thus, pharmacological manipulation of endocannabinoid
levels and/or CB1, CB2 and TRPV1 activity, in one direction or the
other (i.e. with potentiation or counteraction of endocannabinoid
tone), often produces beneficial effects in animal models of
diseases [145] (Tables 1 and 2). It would be impossible to describe
here all pathological conditions in which the ECS, and now
endocannabinoid-like mediators as well, have been implicated,
and therefore we elected to focus only on some chronic and degenera-
tive neurological disorders.

3.1. The role of endocannabinoids in neurodegenerative and convulsive
diseases

3.1.1. Alzheimer's disease

Alzheimer's disease (AD) is the most common form of dementia,
affecting over 35 million people worldwide [219]. The neuro-
pathological hallmarks of AD include the formation of plaques caused
by the abnormal accumulation of amyloid -protein (AR ), neurofibril-
lary tangles, neuropil threads, and dystrophic neurites containing
hyperphosphorylated tau protein [220-223]. These alterations cause
the progressive atrophy and degeneration of neurons in both cortical
and subcortical regions, including the hippocampus, amygdala, tempo-
ral, parietal and frontal cortex [220].

Post-mortem analysis of brains from AD patients revealed that this
disorder is associated with a significant reduction in CB1 receptor ex-
pression, whereas the expression of CB2 and FAAH in both microglia

Table 1
Experimental and potential therapeutic use of cannabinoid receptor agonists and antagonists/inverse agonists in neurological disorders.
Disease Target Type of drug Effect Type of study Reference
Epilepsy CB1 Antagonist SR141716 (Rimonabant) Pro-convulsant Pilocarpine-induced seizure in rats [304]
Pro-convulsant KA -induced seizure in mice [306,387,388]
AM251 Pro-convulsant Penicillin-induced seizures in rats [389]
Agonist ACEA Anti-convulsant PTZ-induced seizures in mice [390]
Penicillin-induced seizures in rats [389,391]
ACPA Anti-convulsant PTZ-induced seizures in rats [304,392]
CB1/CB2 Agonist WIN 55,212 2 Anti-convulsant Pilocarpine-induced seizure in mice [306]
Anti-convulsant Low Mg+ [300]
Anti-convulsant PTZ-induced seizures in rats [393,394]
TRPV1 Agonist Capsaicin Pro-convulsant PTZ-induced seizures in rats [313]
Pro-convulsant KA-induced seizures in rats [395]
OLDA Pro-convulsant Pilocarpine-induced seizure in rats [314]
Antagonist Capsazepine Anti-convulsant 4AP-induced seizure in rats [396]
Huntington's disease CB1 Antagonist SR141716 (Rimonabant) Neurotoxic Malonate-induced toxicity in rats [266]
CB2 Agonist HU308 Neuroprotection Malonate-induced toxicity in rats [267]
Antagonist SR144528 Neuroprotection Malonate-induced toxicity in rats [267]
CB1/CB2 Agonist HU210 Neurotoxic R6/1 mice [397]
Parkinson's disease CB1 Antagonist SR141716 (Rimonabant) Neuroprotection 6-OHDA lesioned rats [398,252]
No effect MPTP-lesioned monkey [249]
No effect 24 patients [234]
Neuroprotection MPTP-lesioned marmosets [242]
CB1/CB2 Agonist WIN 55,212 2 Neuroprotection 6-OHDA or MPTP-lesioned rats [399,400]
Alzheimer's disease CB2 Agonist JWH-133 Neuroprotection Amyloid-PR-induced toxicity in rats [224]
CB1/CB2 Agonist WIN 55,212 2 Neuroprotection Amyloid-p-induced toxicity in rats [224-401]
MDA7 Neuroprotection Amyloid-B-induced toxicity in rats [93]
HU210 Neuroprotection Amyloid-B-induced toxicity in rats [224]
Multiple sclerosis CB1 Antagonist SR141716 (Rimonabant) Neurodegeneration CREAE in mice [168]
CB2 Agonist JWH-133 Neuroprotection CREAE in mice [168]
Gpla Neuroprotection EAE in mice [288]
CB1/CB2 Agonist WIN 55,212-2 Neuroprotection EAE in mice; CREAR in mice [402,168]

ACPA, arachidonylcyclopropylamide; KA, kainic acid; ACEA, arachidonyl-2-chloroethylamide; OLDA, N-oleoyl-dopamine; PTZ, pentylenetetrazol; 4AP, 4-aminopyridine; 6-OHDA, 6-
hydroxydopamine; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine; CREAE, chronic experimental autoimmune encephalomyelitis; EAE, experimental autoimmune

encephalomyelitis.
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Table 2
Experimental and potential therapeutic use of endocannabinoid-related enzyme inhibitors in neurological disorders.
Disease Target Inhibitor Effect Type of study Reference
Epilepsy MAGL URB602 Pro- and anti-convulsant PTZ-induced seizures in mice [395]
AM404 Pro- and anti-convulsant PTZ-induced seizures in mice [395]
FAAH AM5206 Anti-convulsant KA-induced seizures in rats [307]
URB597 Anti-convulsant PTZ-induced seizures in mice [395,394]
AM374 Anti-convulsant KA-induced seizures in rats [403,308]
MAGL and FAAH AM6701 Anti-convulsant KA-induced seizures in rats [307]
Huntington's DAGL 0-3841 Neuroprotection Malonate-lesioned rats [268]
MAGL JZ1.184 Neurotoxicity Malonate-lesioned rats [268]
OMDM169 Neurotoxicity Malonate-lesioned rats [268]
Parkinson's FAAH URB597 No effect 6-OHDA induced lesions [404]
Multiple sclerosis MAGL JZ1184 Neuroprotection and reduced inflammation EAE in mice [405,283]
FAAH CAY100400 Anti-spasticity EAE in mice [283]
CAY100402 Anti-spasticity EAE in mice [283]
URB597 Anti-spasticity EAE in mice [283]

PTZ, pentylenetetrazol; KA, kainic acid; 6-OHDA, 6-hydroxydopamine; EAE, experimental autoimmune encephalomyelitis.

and astrocytes was increased [223]. Indeed, several studies carried out
in experimental AD models have suggested that endocannabinoids
may not only exert a neuroprotective role due to their anti-
inflammatory and anti-apoptotic mechanisms, but also participate in
some of the symptoms via their neuromodulatory actions [224-230].
CB2 receptor stimulation counteracts microglia activation induced by
AP, a beneficial effect found in both in vitro and in vivo models [225,
226]. CB1 receptor stimulation was reported to protect neurons by acti-
vating brain-derived neurotrophic factor (BDNF) [220], and to rescue
toxicity in hippocampal CA1 pyramidal and GABAergic neurons by re-
storing normal neuronal excitability [229-232]. However, CB1 receptors
can also participate in the symptoms in as much as their blockade was
shown to reduce memory retention deficits [233] and CB1 activation
by 2-AG was found to contribute to synapse silencing via prolonged
depolarization-induced suppression of inhibition in the hippocampus
[234] in mice treated with AP. Thus, it has been proposed that enhance-
ment of endocannabinoid tone with inhibitors of endocannabinoid me-
tabolism can produce neuroprotection and reduce memory deficits only
if carried out soon after the neurotoxic insult [227].

In agreement with a protective role of endocannabinoids in
human AD patients, an AR-dependent deficit in AEA mobilization
was shown to be associated with cognitive dysfunction [235],
whereas increased plasma 2-AG levels were found to correlate with
white matter hyper intensity volume, as well as with memory and
attention performances, thus potentially representing an adaptive
mechanism modulating the impairment of cognitive performance
during the disorder [236].

3.1.2. Parkinson's disease (PD)

The pathology of Parkinson's disease (PD) results from an abnormal
accumulation of alpha-synuclein protein in the dopaminergic neurons
of substantia nigra which leads to progressive and irreversible cell tox-
icity of nigrostriatal afferents. The subsequent deficit of dopamine in the
striatum is responsible for both primary and secondary symptoms such
as muscle rigidity, tremors, slowing of physical movements (bradykine-
sia), cognitive dysfunction and subtle language problems [237].

Many studies have demonstrated that the ECS works as a key mod-
ulator of dopaminergic neurotransmission [238,239], and that, vice
versa, dopamine depletion can cause significant alterations in the ECS
[240-242]. Interestingly, in rat or non-human primate models of PD
an over-activity of endocannabinoid signalling was found in the basal
ganglia, for example after the administration of reserpine [243], 6-
hydroxydopamine [244-246] or N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [247]. Likewise, in non-human primates
treated with MPTP, elevation of 2-AG and anandamide levels in the stri-
atum, and of 2-AG in the substantia nigra, was reported [242]. These
changes are consistent with the previously suggested role for
endocannabinoids in mechanisms attempting to compensate for loss

of dopamine in untreated experimental parkinsonism. In the human
brain, post-mortem analysis revealed that the transcript levels of CB; re-
ceptors was decreased in the caudate nucleus, anterior dorsal putamen
and external segment of the globus pallidus, but remained unchanged
in other brain areas [248]. These changes could be due to chronically en-
hanced endocannabinoid levels in the basal ganglia described in the an-
imal models, which might therefore contribute to motor dysfunction in
PD. For these reasons, the ECS has raised interest as a potential pharma-
cological target to treat neurological disorders caused by alteration in
dopamine neurotransmission. However, in both in vivo models and
human studies of PD, selective pharmacological blockage of CB1 recep-
tors with rimonabant yielded controversial results [243,249-251]. More
recent results suggested that the dose of CB1 antagonist, the type and
severity of dopaminergic injury, and the stages of the disease all togeth-
er may represent critical factors for determining the efficacy of the drug
treatment [252,253].

In addition to CB1, in vivo studies have shown that the pharmacolog-
ical activation of CB2 receptors dampens microglial activation, thus re-
ducing the neuroinflammation and degeneration occurring in PD
[254]. In particular, CB2 receptors are elevated in microglial cells recruit-
ed to, and activated at, lesioned sites in the substantia nigra of PD pa-
tients compared to control subjects. Using experimental models, CB2
expression was found particularly pronounced in the inflammation-
driven models of PD (MPTP- or LPS lesioned mice) than in the neurotox-
ic model (6-hydroxydopamine lesioned rats [254,255]. In the same
study, it was reported that the genetic inactivation of CB2 receptors
aggravates LPS-induced inflammation. The neuroprotective role of
2-AG was experimentally demonstrated in mice lesioned with
MPTP, where the treatment with JZL184, a selective MAGL inhibitor,
reduces neurodegeneration [256]. Instead, in vitro, Aymerich and
colleagues showed that JZL184 increases cell survival in neuron-like
cells SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium iodide
(MPP +), in a manner blocked by AM630, a CB2 receptor antagonist,
and mimicked by JWH133, a CB2 receptor agonist [257]. Collectively,
these data indicate the involvement of CB2 receptors in the protection
against inflammation-induced neurogeneration. Accordingly, CB2~/~
mice show more vulnerability to LPS than 6-hydroxydopamine [255],
although, in a previous study CB2 overexpression was found to protect
the brain of mice lesioned with 6-hydroxydopamine [258]. Interestingly,
the phytocannabinoid A°-tetrahydrocannabivarin, which differs from
A®-THC because it bears a n-propyl instead of an n-pentyl side chain,
showed promising activity at delaying disease progression in PD
and ameliorating parkinsonian symptoms, possibly due to its well
documented antioxidant properties and ability to activate CB2 and
antagonize CB1 receptors [255]. In summary, although there has been
great progress in our understanding of ECS and phytocannabinoid role
in neurodegenerative disorders, there has been so far little effort to
translate this knowledge into clinical trials.
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3.1.3. Huntington's disease (HD)

Huntington's disease (HD) is characterized by progressive abnormal
involuntary writhing movements known as chorea. The cause of HD is
an autosomal dominant mutation in either of an individual's two copies
of the gene encoding for the corresponding protein called huntingtin. In
particular, an abnormal expansion of a CAG (cytosine-adenine-gua-
nine) triplet repeat stretch within the Huntingtin gene results in various
non-functional forms of huntingtin protein. These mutant versions of
the protein prevent the normal cellular processes of protein turnover,
producing abnormal aggregates within the neurons of HD brain regions
[237].

In the brain tissue of patients with HD, post mortem analysis re-
vealed a loss of cannabinoid CB1 receptor and dopamine receptor D2
expression in the globus pallidus and substantia nigra [259]. This finding
has been supported by subsequent studies revealing a prominent loss of
both CB1/GABA/enkephalin and CB1/GABA/substance P positive neu-
rons within the globus pallidus [260], whereas, in microglia, CB2 recep-
tor expression is up-regulated [261].

Interestingly, the activity of FAAH is reduced in HD patients with re-
spect to non-HD patients [262].

In 12 week old R6/1 mice, a common genetic animal model of HD, 2-
AG levels are significantly increased in the cortex, whereas AEA levels are
decreased in the hippocampus, when compared to littermate controls.
However, in this case, CB1 expression in the brain did not undergo signif-
icant changes, except for a slight decrease in the substantia nigra [263]. In
the brain of R6/2 mice, an alternative animal model of HD, Bisogno and
colleagues found that endocannabinoid levels change in a disease
phase- and region-specific way, suggesting that the impairment of the
ECS represents a hallmark of HD [264]. More recently, it has been reported
that, in the brain of R6/2 mice, the loss of CB1 receptor expression and its
dependent activation of the downstream effector BDNF is associated with
the damage observed in dorsolateral striatum neurons [265].

In murine models of HD pharmacologically induced by malonate,
which causes striatal neuron degeneration, the selective CB1 blocker
SR141716 enhanced the magnitude of striatal degeneration [266]. A
greater sensitivity to malonate, was also found in CB2~/~ mice [267]. In-
terestingly, however, the pharmacological inhibition of 2-AG biosynthe-
sis in rats lesioned with malonate reduced, instead of exacerbating,
neuronal loss, possibly through the counteraction of the formation of
pro-neuroinflammatory PGE2-glycerol ester formed from the COX-2-
mediated oxygenation of 2-AG [268].

The current therapy used to treat HD uses antibiotic and/or antioxi-
dant agents (i.e. minocycline, coenzyme Q10, unsaturated fatty acids,
inhibitors of histone deacetylases) or tetrabenazine, which is the first
drug approved by FDA in 2008 to treat choreic symptoms [269]. These
drugs relieve the symptoms of HD, but are not able to prevent the
cause of the disease. Therefore, it is important to find new treatments
that prevent the initiation of HD [247,248]. One possible way to acceler-
ate the finding of new drugs is to use compounds that have already been
tested in humans, such as the plant cannabinoids. Recent studies have
showed that A°-THC, alone or in combination with CBD, the other
major plant cannabinoid with little activity at CB1 and CB2 receptors,
provides significant beneficial effects in distinct genetic or drug-
induced animal models of HD [270-274]. A>-THC also showed a neuro-
protective effect in R6/2 mice [275]. Moreover, Valdeolivas and col-
leagues found that the combination of A°>~THC with CBD, prevented
acute brain damage in malonate treated animals in a manner at least
in part dependent on CB1 and CB2 receptor activation [275].

To date, only a few human clinical trials have been performed with
pure cannabinoids in HD. In particular, in two uncontrolled single-
patient and in one double-blind placebo-controlled study, nabilone, a
structural analogue of A°-THC, yielded conflicting results. Some patients
treated with nabilone in fact claimed an amelioration of motor and cog-
nitive functions [276,277], while other patients experienced a worsen-
ing of symptoms [278]. In conclusion, although the potential benefits
of CB1 or CB2 activation has not been proved yet in patients affected

by HD, the robustness of the beneficial effects exerted by A°-THC
alone or in combination with CBD in HD animal models justifies further
clinical studies.

3.1.4. Multiple sclerosis

Multiple sclerosis (MS) is a progressive neurological disorder char-
acterized by the demyelination of axons in the brain and spinal cord
with the subsequent impairment of nerve signal transmission between
the central nervous system and peripheral tissues or organs. Wide
ranges of neurological symptoms characterize MS such as spasticity,
neuropathic and nociceptive pain, dysaesthesia, cognitive dysfunction,
insomnia, anxiety and depression [279,280]. The cause of MS remains
unclear, but is most likely due to a combination of genetic, immunolog-
ical, environmental, infectious and possibly other factors including vas-
cular dysfunction [280-282]. To date, there is no cure for MS and the
treatments currently available only afford partial relief.

Early studies in the MS model of chronic-remitting experimental al-
lergic encephalomyelitis in Biozzi mice showed that the use of selective
or nonselective CB1/CB2 receptor agonists (i.e. R(+)-WIN 55,212, A%-
THC, methanandamide and JWH-133 or others) significantly reduce
the spasticity and tremors associated with the disease, whereas the
CB1 antagonist SR141716 instead exacerbated these symptoms [168].
Indeed, in this same model, AEA and 2-AG levels in both the brain and
spinal cord were increased selectively during the spasticity phase of
the disorder [168], and inhibitors of FAAH or MAGL reduce spasticity
[283], indicating that the tone of the ECS is increased during MS spastic-
ity to counteract this neurochemical unbalance.

Interestingly, however, in another mouse model of experimental au-
toimmune encephalomyelitis (EAE), the enhanced interferon (IFN)-vy
activity associated with EAE lesions acts to inhibit DAGLa expression
in microglia, thereby limiting 2-AG-mediated neuroprotection [284],
and providing a further reason why the prevention of endocannabinoid
inactivation might be a new strategy not only to reduce spasticity but
also to retard the progression of the disease. Indeed, Wen and col-
leagues recently showed that inhibition of ABHD6 enhances 2-AG levels
with subsequent activation of CB2 receptors in immune cells, and re-
duction of EAE-induced neuroinflammation [285]. In fact, a previous
study using CB1 and CB2 knockout mice had already suggested that
CB1 and CB2 play distinct roles in the control of EAE progression.
While CB1 receptors in neurons, but not T cells, are required for EAE
suppression, CB2 in encephalitogenic T cells is critical for controlling in-
flammation associated with this MS model [286]. CB2-deficient T cells in
the CNS during EAE exhibited reduced levels of apoptosis, a higher rate
of proliferation and increased production of inflammatory cytokines,
resulting in severe clinical disease. The ECS inhibits leukocyte rolling
and adhesion, which participate in leukocyte infiltration when the
blood-brain barrier is disrupted [287-289], and reduces microglia acti-
vation, nitrotyrosine formation, oligodendrocyte toxicity, myelin loss
and axonal damage [290]. These effects appear to be mediated by the
CB1 receptor as they were abrogated by specific CB1 receptor antago-
nists or in CB1~/~ mice [290,291,286]. However, in CB2 ™/~ mice with
EAE, T cells exhibit reduced levels of apoptosis, a higher rate of prolifer-
ation and increased production of inflammatory cytokines, resulting in
increased infiltration in the brain [286].

In summary, these findings could provide the basis to treat with ECS-
based drugs also the progress of MS and not only its symptoms, as it is
currently done with Sativex [279]. This is an oromucosal spray containing
equivalent amounts of A°>-THC and CBD in the form of botanical extracts,
approved to date for the treatment of spasticity and pain associated to MS
[291]. At the present, Sativex is approved as a treatment for MS spasticity
in 27 countries, but it would be important to test the usefulness of Sativex
also in MS disease progression [292]. This assessment is necessary given
the immunomodulatory, anti-inflammatory and cytoprotective actions
exhibited by phyocannabinoids tested in distinct preclinical models of
MS [293-299,283,286].
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3.1.5. Epilepsy

Epilepsies represent a group of neuronal dysrhythmias caused by
defects in membrane excitability, leading to aberrant synchronization
of neural networks. This alteration in electrical activity is characterized
by a long-term risk of recurrent seizures [69]. Interestingly, accumulat-
ing evidence suggests that alterations in ECS activity are closely associ-
ated to a wide range of in vitro and in vivo models of epilepsy
[300-306]. Evidence from mice lacking CB1 in excitatory neurons, but
not in inhibitory interneurons, led Marsicano and colleagues to postu-
late for the first time that increased levels of endocannabinoids during
seizures represent, through pre-synaptic CB1 receptor stimulation and
reduction of glutamate signalling, an important endogenous mecha-
nism to counteract epileptiform discharges [306,303].

The pro-homeostatic and neuroprotective role attributed to the ECS
during epilepsy have also been underpinned by other studies showing
that administration of exogenous CB1 agonists or selective MAGL or
FAAH inhibitors protect neurons from recurrent seizures [307,308]. In
agreement with these findings, pharmacological blockade of CB1 recep-
tor or its genetic ablation in CB1~/~ mice cause instead a marked en-
hancement of the severity of seizures in several (although not all)
models of epilepsy [309]. However, other studies revealed that the sys-
temic administration of exogenous cannabinoids or drugs able to inter-
fere with their metabolism is not a viable therapeutic strategy in all
experimental models of seizing activity, since it can give rise also to
pro-convulsive effects [310]. A possible explanation for this discrepancy
is due to the fact that CB1 receptor expression is not restricted to
glutamatergic, and also occurs in GABAergic, pre-synaptic terminals,
the inhibition of which might increase neuronal excitability [310].
Indeed, in the hippocampus of epileptic patients, Ludanyi and col-
leagues showed that 2-AG levels were reduced and associated with
the loss of CB; expression in glutamatergic axon terminals; whereas,
the expression of CB1 in GABAergic neurons was not changed. Thus,
down-regulated levels of 2-AG and CB1 receptors seemingly correlates
with increased excitability and neuronal damage [311].

Recent studies have shown that changes in the expression and activ-
ity of another target of endocannabinoids, the TRPV1 channel, facilitate
epileptogenesis in patients affected by mesial temporal lobe epilepsy
[312]. Furthermore, TRPV1 channels activated by AEA increase excitato-
ry circuit activity in synaptically reorganized dentate gyrus [313], and
are also involved in electrical and pentylenetetrazol (PTZ)-induced
kindling development. In addition, PTZ-induced clonic seizures
were reported to be reduced in TRPV1 knockout mice [314]. In support
of a role of TRPV1 in seizures, we recently showed that these channels
are strongly phosphorylated (and hence sensitized) in Mg?*-free rat
hippocampal slices, an in vitro model of neuronal hyperexcitability.
Prolonged or repeated stimulation with the prototypical TRPV1 agonist,
capsaicin, induces the rapid dephosphorylation of TRPV1, an event ac-
companied by reduced neuronal activity [69].

In summary, in some brain structures, including the hippocampus, CB1
and TRPV1 receptors coexist and their activation by endocannabinoids

might produce opposite effect on neuronal excitability. This provides a
rationale for the development of new pharmacological therapies to
counteract seizures, epilepsies or related syndromes from: 1) compounds
that activate CB1 only on glutamatergic terminals, as it can be the
case for FAAH or MAGL inhibitors if such terminals exhibit ongoing
endocannabinoid turnover during seizures; and 2) TRPV1 antagonists or
rapidly desensitizing agonists. Indeed, the “dual” FAAH/TRPV1 blocker,
N-arachidonoyl serotonin (see below), is very efficacious at reducing
seizures and enhancing survival in picrotoxin-treated mice [315].
The phytocannabinoid CBD also seems to exhibit both these
properties as well other potentially neuroprotective and anti-
neuroinflammatory actions, thus possibly explaining in part its success-
ful use against untreatable paediatric epilepsies, such as Dravet's
syndrome, in ongoing clinical trials (Pharmaceuticals, G.W. (2015)
GW Pharmaceuticals Announces New Physician Reports of Epidiolex®
Treatment Effect in Children and Young Adults with Treatment-
Resistant Epilepsy, GW Pharmaceuticals).

3.2. The role of other N-acylethanolamines in neurodegenerative and con-
vulsive diseases

32.1. PEA

As mentioned above, PEA is also produced in the central nervous sys-
tem, in particular in the brain and in several cell types during neurode-
generative diseases [316]. PEA has been proposed as a homeostatic
agent aimed at counteracting the inflammatory response, and several
studies report the anti-inflammatory and neuroprotective effects of
this mediator (Table 3). The first evidence dates back to 1996 when it
was demonstrated that PEA protects cultured mouse cerebellar granule
neurons against glutamate toxicity [317]. Later, in chronic relapsing ex-
perimental autoimmune encephalomyelitis (CREAE) in mice, a model of
multiple sclerosis, it was found that PEA levels were increased in areas
associated with nerve damage, and when PEA was exogenously admin-
istered the spasticity was transiently ameliorated (as opposed to the ef-
fect of AEA which was more long lasting) [168]. Additionally, PEA levels
were increased in a model of multiple sclerosis induced by Theiler's
virus inoculation, where the exogenous administration of the com-
pound resulted in a reduction of motor disability accompanied by an
anti-inflammatory effect [318]. More recently, Rahimi and colleagues
demonstrated that in a mouse EAE model induced by injecting myelin
oligodendrocyte glycoprotein (MOG) in C57BL/6 mice, PEA reduced
the severity of the neurobehavioral scores of EAE, and this effect was ac-
companied by diminished inflammation, demyelination, axonal dam-
age and inflammatory cytokine expression [319]. PEA levels were also
found to be increased in the tissue surrounding the primary ischemic le-
sion, in a patient with hemispheric stroke [320], and in the mouse cere-
bral cortex after focal cerebral ischemia [321]. Importantly, in the blood
of patients who had experienced stroke, the levels of PEA on admission
were directly correlated with NIHSS scores of neurological impairment
[322]. Accordingly, exogenously administered PEA was able to reduce

Table 3
Experimental and potential therapeutic use of endocannabinoid-like mediators in neurological disorders.
Compound Disease Effect Type of study Reference
PEA Multiple sclerosis Neuroprotection CREAE in mice [168]
Neuroprotection and anti-inflammation Theiler's virus-induced EAE in mice [318]
Neuroprotection and anti-inflammation EAE in mice [319]
Alzheimer's Neuroprotection Amyloid-p 25-35-induced neurotoxicity in mice [329]
Neuroprotection and anti-inflammation Amyloid-p 1-42-induced neurotoxicity in rats [330]
Parkinson's Neuroprotection MPTP-induced PD in mice [333]
Epilepsy Anti-convulsant PTZ-induced seizures in mice [334]
Anti-convulsant PTZ-induced seizures in rats [337]
Anti-epileptic WAG/Rij rats [336]
OEA Parkinson's Neuroprotection 6-OHDA-induced neurotoxicity in rats [348]
OLDA Epilepsy Pro-convulsant PTZ-induced seizures in rats [314]

CREAE, chronic experimental autoimmune encephalomyelitis; EAE, experimental autoimmune encephalomyelitis; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine; PD, Parkinson's

disease; PTZ, pentylenetetrazol; 6-OHDA, 6-hydroxydopamine.
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the risk of damage or to improve function in ischemia-reperfusion brain
injury [323]. Recently, it was also demonstrated that PEA decreased
oxygen-glucose deprivation (OGD)-induced increase in permeability
during reperfusion, suggesting an important role of this compound
against blood-brain barrier damage during ischemic stroke [324].

These results may suggest that, even though the endogenous levels
of PEA, both in animal and human subjects, are up-regulated during
some neurological diseases, its production may not always be sufficient
to exert neuroprotection and anti-inflammatory actions. Thus, the exog-
enous administration of PEA might be an effective therapeutic alterna-
tive to counteract the neurological diseases [325]. In fact, several
clinical studies have shown analgesic effects of PEA accompanied by a
reduction in disability, and/or improvement of neurological functions
and quality of life using a dietary supplement of PEA with the trade
names Normast®, Pelvilen® and Glialia® [326,327]. On the other
hand, selective inhibitors of PEA degradation (as discussed above),
might also be useful to increase the endogenous levels of PEA under
conditions when a pathological reduction of such levels is observed. In-
deed, it was demonstrated that PEA (as well as endocannabinoid) levels
are decreased in the striatum of symptomatic R6/2 mice, a transgenic
model of Huntington's disease [264], although no data exist to date as
to possible beneficial effects of exogenous PEA in this model.

In addition to these studies, the role of PEA has also been investigat-
ed in Alzheimer's disease. The first evidence was obtained in vitro, on
neuroglial cultures and organotypic hippocampal slices, and showed
that PEA was able to decrease the number of infiltrating astrocytes dur-
ing 3-amyloid challenge, and to improve neuronal survival through ac-
tivation of PPAR-o [328]. Later, in an animal model of Alzheimer's
disease consisting of injecting intracerebroventricularly AR 25-35, PEA
treatment reduced the behavioral impairments, as well as the increase
of lipid peroxidation, iNOS expression, and the induction of pro-
apoptotic pathways induced by this peptide [329]. The effects of PEA
were similar to those observed with a PPAR-« agonist, GW7647, and
could not be observed in PPAR-a null mice injected with AR25-35
[329]. PEA was also able to reverse gliosis, amyloidogenesis and tau pro-
tein hyperphosphorylation induced by injection of A 1-42 in adult
male rats [330]. Also in this case, the effects of PEA seemed to be
PPAR-a-mediated because reversed by GW6471, an antagonist of
these nuclear receptors [330].

Potentially important neuroprotective and anti-inflammatory ac-
tions have recently been described for a new formulation of PEA, in
both in vitro and ex-vivo models of Alzheimer's disease, again induced
by the injection of amyloid AB1-42 [331]. The combination of PEA
with the antioxidant flavonoid, luteolin (Lut), denoted as PEALut, sub-
jected to an ultra-micronization process, was able to reduce iNOS, glial
fibrillary acidic protein expression and neuron apoptosis, while normal
nNOS and BDNF levels were restored [331]. Recently, PEALut was
demonstrated to be also efficacious, at a lower dose compared
with PEA alone, at counteracting the neurodegeneration and neuro-
inflammation induced by traumatic brain injury (TBI) [332,323].

The neuroprotective role of PEA has also been demonstrated in
Parkinson's disease [333]. Chronic treatment with PEA after MPTP injec-
tion, an animal model of Parkinson's disease, protected both against
MPTP-induced loss of tyrosine hydroxylase-positive neurons and the al-
terations of microtubule-associated proteins in the substantia nigra
[333]. Moreover, PEA reduced MPTP-induced microglial activation and
reversed MPTP-associated motor deficits. These protective effects of
PEA seemed to be PPARx-mediated, since MPTP systemic toxicity was
exacerbated in PPAR-a null mice [333].

Finally, PEA was reported to exert anticonvulsant and antiepileptic
activities in convulsive diseases. After i.p. administration, PEA was effec-
tive against PTZ and 3-mercaptopropionic acid-induced convulsions in
mice [334,335], and showed anti-absence properties in a genetic animal
model of absence epilepsy, the WAG/Rij rat [336]. In particular, it was
demonstrated that PEA was able to decrease epileptic spike-wave dis-
charges (SWDs) in the WAG/Rij rat model, and when the compound

was co-administered with CB1 or PPAR-« antagonists, SR141716 and
GW6471 respectively, its effects were blocked [336]. These data suggest
antiepileptic actions of PEA both through direct PPAR-a-mediated
and “entourage” effects, e.g. via CB1 receptor activation by
endocannabinoids [336]. Accordingly, a recent study showed that when
seizures are induced by PTZ in rats, the anti-convulsive effects of PEA
are antagonized not only by CB1 and but also by CB2 antagonists [337].
In summary, the potential therapeutic exploitation of PEA, and its
derivatives or formulations, does not seem to be limited to the treat-
ment of pain and inflammation, as originally believed, but extends
also to several other neurological and neuroinflammatory conditions.

3.2.2. Other N-acylethanolamines

OEA and N-linoleoyl-ethanolamine (LEA), which, together with PEA,
belong the family of NAEs, are also synthetized and inactivated by the
action of NAPE-PLD and FAAH, respectively [338,12]. However in sever-
al species, including humans but not rodents, OEA can also be substrate
for FAAH-2 [121]. Although in smaller amounts with respect to PEA,
they are produced in most of the mammalian tissues, and it has also
been reported that in the small intestine LEA may be present in higher
concentrations than OEA [339,340]. OEA and LEA can activate both
PPAR-a and the orphan GPCR, GPR119 [340-343], as well as TRPV1
channels [344]. The main function reported for OEA and LEA is the inhi-
bition of food intake [345,340], although antiinflammatory and neuro-
protective actions have also been described [346,347]. In particular,
OEA induced neuroprotection in both in vitro and in vivo models of 6-
hydroxydopamine (6-OHDA)-induced degeneration of substantia
nigra dopamine neurons (a model of Parkinson's disease) [348]
(Table 3), as well as after acute cerebral ischemic injury in mice, where-
as LEA induced neuroprotection in a middle cerebral artery occlusion
model of stroke [349,350].

4. Other endocannabinoid-related lipid mediators

As mentioned above, since the discovery of endocannabinoids and
the “rediscovery” of NAEs, other endocannabinoid-like molecules are
emerging as important modulators in the central nervous system.
These molecules have usually very little affinity for CB1 and CB2 recep-
tors but are able to activate other receptors or channels that can be or
not targets of endocannabinoids and/or phytocannabinoids. Important-
ly, some of these mediators are biosynthesized and inactivated by the
action of the same enzymes involved in the metabolism of the
endocannabinoids, whereas others result from the oxidative metabo-
lism of AEA or 2-AG.

4.1. Endogenous long chain fatty acid amides

N-acyl-dopamines congeners of NADA, and some members of the
family of N-acyl-amino acids (also known as lipoaminoacids), have
been discovered in mammalian tissues as endogenous TRPV channel ac-
tivators. In particular: 1) N-oleoyl-dopamine (OLDA) [351] and N-
arachidonoyl-taurine [123] activate TRPV1 channels; or 2) N-acyl-pro-
lines and N-acyl-tyrosines mixtures activate TRPV2 channels [352];
and 3) N-arachidonol-taurine [123] and N-acyl-tryptophan and N-
acyl-tyrosine mixtures activate TRPV4 channels [352]. OLDA, the most
investigated of these lipids, has been found in the mammalian brain
[351], and only recently in the plasma of patients with traumatic stress
exposure and post-traumatic stress disorder (PTSD) [353]. OLDA, like
capsaicin, produces hyperalgesia via TRPV1 [351]. In fact, it induces cal-
cium influx in TRPV1-transfected human embryonic kidney (HEK)-293
cells, and reduces the latency of paw withdrawal from a radiant heat
source after subcutaneous injection into the rat hind paw [351]. These
effects are blocked by co-administration of a TRPV1 antagonist [351].
The effects of OLDA have also been studied on long-term potentiation
(LTP) in the lateral nucleus of the amygdala (LA) in mice, and it has
been observed that LA-LTP is reduced in OLDA-treated slices derived
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from mice, but not in slices treated with the TRPV1 antagonist,
AMG9810, or prepared from TRPV1 knockout mice [354]. On the other
hand, a short period of acute stress, i.e., exposure to a forced swim
test, significantly impairs LA-LTP, and OLDA enhances LA-LTP in control
but not TRPV1 knockout mice, suggesting a protective effect of OLDA
through a desensitization of TRPV1 receptors [354]. Finally, OLDA was
very recently reported to accelerate the incidence of seizures in
pentylenetetrazole and amygdala-induced kindling in male rats, and
this pro-convulsant effect was reduced by TRPV1 antagonism by
AMG-9810 [317] (Table 3). On the other hand, although N-
arachidonoyl serotonin (AA-5-HT) was first synthesized as a non-
competitive FAAH inhibitor [355,356], this compound was then also dis-
covered as a TRPV1 antagonist [357,358]. AA-5-HT has only recently
been found, together with other congeners (such as N-oleoyl-serotonin,
N-palmitoyl-serotonin and N-stearoyl-serotonin), to occur in mammali-
an tissues, particularly in the jejunum and ileum of pigs and mice [22,
359], and in bovine and human brain samples [23,360]. These studies
have also confirmed the capability of AA-5-HT to inhibit FAAH, and
shown its ability to stimulate the release of GLP-1 from intestinal tissue
via the orphan GPCR, GPR119 [22,23,359,360]. Importantly, an
arylalkylamine N-acyltransferase from Drosophila melanogaster that cat-
alyzes the formation of long-chain N-acylserotonins has been recently
reported [361].

Among the lipoaminoacids thus far identified as endogenous com-
pounds, N-arachidonoyl glycine (NAGly) is the most studied one.
NAGly has been suggested to be produced either via direct oxidation
of AEA by the action of alcohol dehydrogenase (ADH), or via the conju-
gation of arachidonic acid and glycine in a FAAH-dependent reaction
[362], or catalysed by glycine N-acyltransferase [363]. It is hydrolysed
again by FAAH [17]. NAGly is a potent activator of the orphan GPCR,
GPR18 [364], and shows anti-inflammatory properties because its abil-
ity to reduce migration of inflammatory leukocytes in an animal model
of peritonitis has recently been demonstrated. This effect might be
GPR18-mediated [365]. N-arachidonoyl- and N-oleoyl-serine have also
been identified in bovine brain and in mouse bone, respectively [18,
19]. N-arachidonoyl-L-serine shows neuroprotective effects after trau-
matic brain injury, and these effects seem to be reversed by CB2 and
TRPV1 antagonists [366,367]. N-oleoyl-serine was shown to rescue
bone loss by increasing bone formation and restraining bone resorption
in a mouse ovariectomy model for osteoporosis [19].

4.2. Monoacylglycerols

Monoacylglycerols (2-MAGs), such as 2-oleoyl-glycerol (2-0G), 2-
palmitoyl-glycerol and 2-linoleoyl-glycerol, are other endogenous 2-
AG-like molecules, and were initially considered to act merely as
“entourage compounds” for 2-AG [368]. Unlike 2-AG, 2-MAGs can be
produced also from triacylglycerols (TAG) by the action of lipases dur-
ing lipolysis [369], but like 2-AG, they are inactivated by the action of
MAGL[125,370]. In particular, the role of 2-OG has recently been inves-
tigated and confined at the peripheral level, where the compound
seems to be produced in the intestine and involved in anorectic effects
by activating GPR119, thereby producing the release of incretin hor-
mone GLP-1, with subsequent insulin secretion [344,371].

4.3. Cyclooxygenase-2-derived metabolites of AEA and 2-AG

Prostaglandin glyceryl esters (PG-GEs) and prostaglandin etha-
nolamides (PG-EAs or prostamides), such as PGE,-GE, PGD,-GE and
PGF,-GE, or PGE,-EA, PGD,-EA and PGF,.-EA, are formed via the oxy-
genation of 2-AG and AEA, respectively, by cyclooxygenase (COX)-2,
followed by the action of prostaglandin E, D or F synthases, respectively
[21,148,372-376,20]. Among these metabolites, PGE,-GE and PGF,,-EA
are among the most studied and seem to be important modulators of
neurotransmission. In particular, it has been shown that PGE,-GE in-
duces a concentration dependent increase in the frequency of miniature

inhibitory postsynaptic currents (mIPSCs) in GABAergic primary cul-
tured hippocampal neurons, while PGF,.-EA did not increase the fre-
quency of mIPSCs [377]. This effect is attenuated by an IP3 receptor or
MAPK inhibitor [377], in agreement with previous data indicating that
PGE,-GE is able to induce Ca®>* mobilization, increase the levels of [P3
and activate PKC in a mouse macrophage cell line [378]. PGE,-GE also
increases miniature excitatory postsynaptic currents (mEPSCs) in gluta-
matergic neurons, and this effect is again mediated by ERK, p38 MAPK
and IP3 but also by NF-B [379]. Moreover, PGE,-GE also induced neu-
rotoxicity, which was attenuated by blocked NMDA receptors [379]. Fi-
nally, PGE,-GE and PGF,.-EA elevated long-term potentiation in the
hippocampus, and this effect was once again MAPK- and IP3-mediated
[380]. Taken together, these results indicate that the oxidative metabo-
lism of the endocannabinoids initiated by the action of COX-2 modu-
lates synaptic plasticity in a manner opposite to that exerted by AEA
and 2-AG via CB1 receptors, and that both PG-GEs and PG-EAs might
contribute, among others, to inflammation-induced neurodegeneration.

In addition to these effects observed at the central level, it was also
reported that PGE,-GE and PGF,.-EA are pro-inflammatory and pro-
nociceptive mediators at the peripheral level. In fact, although the
local production of PGE,-GE was unchanged in an animal model of in-
flammation induced by carrageenan, intraplantar administration of
this compound induced mechanical allodynia and thermal hyperalgesia,
and these effects were only partially blocked by a cocktail of antagonists
for prostanoid receptors [373]. On the contrary, the levels of PGF,,-EA
were strongly increased in the spinal cord of mice with kaolin/\-
carrageenan-induced knee inflammation [375], and, like with PGE,-G,
the direct spinal application of PGF,,-EA after the induction of knee in-
flammation increased the firing of nociceptive neurons and reduced the
threshold of paw withdrawal latency of mice [375]. Treatment with a
PGF,-EA, but not with an FP, receptor antagonist, attenuated the effects
of the mediator [375]. These results indicate that COX-2-mediated oxy-
genation of AEA and 2-AG might induce the activation of nociceptive
neurons and subsequent pain transmission.

By contrast, a recent report has identified PGD,-GE as an anti-
inflammatory mediator. In fact, the increased levels of PGD,-GE follow-
ing the inhibition of ABHD6 in macrophages, or direct application of
PGD--GE in lipopolysaccharide-induced inflammation in mice, pro-
duced a reduction of pro-inflammatory cytokines, and these effects
were not mediated by cannabinoid, PPAR-vy or PPAR-« receptors [381].

PGF,.-EA also exerts opposing actions as compared to its precursor,
AEA, in the framework of adipocyte differentiation from pre-adipocytes
[382]. In fact, it was reported that AEA stimulates adipogenesis through
the CB1 receptors or, at higher concentrations, PPAR-y receptors [383,
384]. On the contrary, Silvestri and colleagues demonstrated that expo-
sure of mouse 3T3-L1 or human preadipocytes to PGF2a-EA during
early differentiation inhibits adipogenesis, and this effect is
counteracted by selective antagonism of PGF2a-EA receptors [382].
Thus, these results suggest that prostamide signalling in preadipocytes
could be a novel anandamide-derived antiadipogenic mechanism [382].

5. Conclusions

As if the biosynthesis, mechanism of action and inactivation of
endocannabinoid signalling, with all its redundancy and promiscuity,
was not complicated enough, studies on the endocannabinoids have
opened a true Pandora's pot of potentially almost numberless
endocannabinoid-related mediators, and of corresponding molecular
targets. This “endocannabinoidome” can only be studied in a thorough
and comprehensive manner by using “omic” approaches, and we are
still far from fully appreciating its true importance in the control of
homeostasis and its functional relationships with endocannabinoid
signalling. It remains to be established, for example, if also the
“endocannabinoidome” can be modulated by the several conventional
and alternative clinical interventions, dietary interventions, epigenetic
changes or the gut microbiota, which are already known to modulate
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the ECS [383-386]. It may well be that the lessons learnt when investi-
gating endocannabinoid regulation and function do not always apply to
the plethora of endocannabinoid-related mediators. Thus, when looking
at the extended ECS, one cannot help thinking that one is only looking at
the tip of an iceberg.
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