
Insulin resistance in liver, muscle and adipose tissue is a 
pivotal pathophysiological process in the development 
of type 2 diabetes mellitus (T2DM), which has been des-
ignated as one of the four priority noncommunicable 
diseases by the WHO1. Major complications of T2DM 
are retinopathy, chronic kidney disease, neuropathy, 
peripheral vascular disease, myocardial infarction and 
stroke. The central approach in the prevention and treat-
ment of insulin resistance is lifestyle modification. The 
second step is medication, with metformin being the 
cornerstone of the oral glucose-​lowering drugs. If nec-
essary, glycaemic control can be further improved with 
additional medication, including oral sulphonylureas, 
oral sodium–glucose cotransporter 2 (SGLT2) inhibi-
tors, injectable glucagon-​like peptide 1 (GLP1) receptor 
agonists or injectable insulin2. Traditionally, research has 
focused on the quantity and quality of physical activity, 
food intake and medication; however, circadian factors 
including the timing of light exposure, physical activity, 
food intake, medication and sleep–wake behaviour might 
also prove important for the prevention and treatment of 
insulin resistance.

The mammalian circadian timing system consists 
of a central brain clock in the hypothalamic suprachi-
asmatic nucleus (SCN), and peripheral clocks in other 
brain regions and tissues throughout the body, including 

muscle, adipose tissue and liver. The SCN receives a 
direct projection from the retina, via which environmen-
tal light synchronizes the approximately 24 h rhythm of 
the SCN with the exact 24 h rhythm of the environment 
(Fig. 1). The entrained timing signal from the SCN is 
forwarded via neural and hormonal signals and body 
temperature to the peripheral clocks. The molecular 
mechanism of the central and peripheral clocks is based 
on transcriptional-translational feedback loops, which 
are present in almost every cell of the human body.

In this Review, we describe the physiological links 
between circadian clocks, glucose metabolism and insu-
lin sensitivity. We also present current evidence for the 
relationship between circadian disruption and insulin 
resistance, with a focus on human studies. Finally, we 
propose several strategies to implement chronobiologi-
cal knowledge with the aim to improve human metabolic 
health. The chronobiology terms and metabolic terms 
we use are defined in Box 1 and Box 2, respectively.

Circadian control of insulin sensitivity
The circadian timing system
The mammalian circadian timing system is composed 
of a central pacemaker in the bilateral SCN of the ante-
rior hypothalamus and a multitude of peripheral clocks 
in other brain areas and peripheral tissues (Fig. 2). The 
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circadian timing system serves to prepare an organ-
ism for the alternating opportunities and challenges 
that go along with the rhythmic changes of the daily 
light–dark cycle. This concept is illustrated by the evo-
lutionary advantage of an internal clock that matches 
the period duration of the environment, as demonstrated 
in cyanobacteria3,4.

The discovery of the molecular mechanism that 
keeps these clocks functioning was awarded the 2017 
Nobel Prize in Physiology or Medicine. The central fea-
ture of this molecular mechanism is the transcriptional–
translational feedback loop (TTFL) involving the core 
clock genes: the period genes (PER1, PER2 and PER3), 
cryptochrome genes (CRY1 and CRY2), ARNTL (also 
known as BMAL1), CLOCK (or its orthologue NPAS2) 
and the genes encoding the nuclear receptors REV-ERB 
(NR1D1 and NR1D2) and ROR (RORA, RORB and 
RORC). The rhythmic signal produced by this molecu-
lar clock has a period of approximately 24 h, which is a 
circadian period.

The period of the endogenous circadian timing system 
does not match the exact 24 h rhythm of the outside world 
and, therefore, has to be reset every day. Environmental 
light is the most important Zeitgeber for resetting the cen-
tral pacemaker, reaching the SCN through a direct con-
nection from intrinsically photosensitive retinal ganglion 
cells through the retinohypothalamic tract. The remain-
ing clocks in the circadian timing system therefore 
depend predominantly on the SCN for entrainment to 
the light–dark cycle of the outside world.

The SCN sends its entrained timing signal to the 
peripheral tissue clocks through the autonomic nerv-
ous system, hormonal signals (including melatonin 
and cortisol), modulation of body temperature, and 
behavioural signals, such as physical activity and food 

intake. As most peripheral clocks do not receive direct 
light information, they are also sensitive to these other 
Zeitgebers. This scenario is especially true for peripheral 
clocks in metabolic tissues such as liver, white adipose 
tissue (WAT), brown adipose tissue (BAT), pancreas and 
muscle, which use the metabolic signals resulting from 
food intake for their entrainment5–8 (Fig. 1).

Circadian rhythm in glucose metabolism
In healthy humans, plasma glucose tolerance depends on 
the time of day of glucose ingestion, with glucose toler-
ance being higher in the morning than in the evening9,10. 
This diurnal rhythm in glucose tolerance is partly medi-
ated by the diurnal rhythm in whole-​body insulin sensi-
tivity11. Moreover, the time-​dependent glucose tolerance 
in healthy individuals is strongly mediated by the rhythm 
in pancreatic β-​cell glucose sensitivity (that is, pancre-
atic glucose-​induced insulin secretion), as demonstrated 
by studies that use hyperglycaemic clamping12 and a 
triple-​tracer mixed-​meal technique13. However, because 
participants in these studies were sleeping at night and 
were awake during the day, it remains unclear to what 
extent these morning–evening differences are the result 
of behavioural and environmental differences or are 
caused by a direct influence of the circadian system. 
A 2015 study using a circadian misalignment protocol 
demonstrated that the diurnal rhythm in glucose toler-
ance is robustly regulated by the circadian timing system, 
separate from influences of behavioural and environmen-
tal changes14. Consistent with the results from diurnal 
studies, the endogenous circadian influence on glucose 
tolerance results from a stronger β-​cell response in the 
circadian morning14.

Clock control of insulin sensitivity
In this section, we discuss the clocks in the different tissues 
and organs that are involved in the control of glucose 
metabolism and explain their role in the regulation of 
insulin sensitivity and insulin secretion.

The central clock. The central clock in the SCN not 
only synchronizes the peripheral clocks described in 
the sections below, but also affects multiple processes 
that influence the diurnal rhythm in glucose metabo-
lism, including the physiological daily rhythms in sleep–
wake behaviour, food intake, hormone secretion, insulin 
sensitivity and energy expenditure (Fig. 3).

The SCN controls the daily rhythm in sleep–wake 
behaviour15,16 via its connections with hypothalamic 
areas such as the subparaventricular zone, the ventrolat-
eral preoptic area and the dorsomedial hypothalamus17. 
The SCN presumably also has a direct role in the control 
of food intake18,19, which is enhanced via the regulation of 
the sleep–wake cycle since food intake requires a waking 
state. The circadian control of food intake might be medi-
ated via direct neuroanatomical connections between 
the SCN and the hypothalamic arcuate nucleus, which 
is involved in the regulation of food intake20, but indirect 
connections between the SCN and areas involved in the 
rewarding aspects of food could also have a role21.

In addition to the aforementioned roles, the SCN 
controls the daily rhythm of release of several hormones 

Key points
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Period
The time difference between 
two consecutive peaks or 
troughs, or any other fixed 
point in the rhythm. In the case 
of daily or circadian rhythms, 
this period is exactly or 
approximately 24 h, 
respectively. The period of the 
rhythm in constant conditions 
is called the free-​running 
period and is denoted by the 
Greek letter τ.
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affecting glucose tolerance. Firstly, the activity of the 
hypothalamic–pituitary–adrenal axis is regulated 
via connections from the SCN to the paraventricu-
lar nucleus, resulting in a diurnal rhythm of cortisol 

secretion, with a peak before the onset of the active 
period22. The glucocorticoid cortisol affects insulin 
signalling and reduces insulin secretion23. Secondly, 
the circadian rhythm of melatonin (also known as the 
hormone of darkness, as it is exclusively released dur-
ing the dark phase in diurnal and nocturnal species 
alike), which affects insulin secretion24,25, is orches-
trated by output from the SCN, via the paraventricular 
nucleus and the intermediolateral column to the pineal 
gland26. Thirdly, the diurnal rhythm in growth hormone, 
which antagonizes insulin action in liver and muscle27, 
is partly regulated by the SCN via its control of the 
sleep–wake cycle27–29.

Furthermore, SCN lesion studies in rodents demon-
strated that the SCN controls the diurnal rhythm in 
whole-​body insulin sensitivity30 and reported that 
within 8 weeks of an SCN lesion being created, rodents 
are insulin resistant31. In humans, a role for the SCN in 
the control of insulin sensitivity is suggested by mis-
alignment protocols demonstrating the endogenous 
circadian control of glucose tolerance, independent of 
behavioural rhythms14,32.

Finally, the central clock is responsible for the cir-
cadian regulation of multiple components of energy 
expenditure, such as the sleep–wake cycle15,16, diet-​
induced thermogenesis33, resting energy expenditure34 
and (at least in rodents) BAT activity35–37.

The gut clock. Glucose enters the body via the gastro
intestinal tract. Intestinal cells throughout the intestinal 
tract contain a molecular clock38,39 and this gut clock is 
synchronized by signals resulting from food intake38. 
The gut clock regulates intestinal motility40 and nutri-
ent absorption (Fig. 4). ARNTL regulates the expression 
of membrane glucose transporters and thus matches 
the timing of maximal monosaccharide uptake to the 
habitual feeding period41. Brush border disacchari-
dases, including sucrase, display a circadian rhythm in 
activity42,43, but the mechanism regulating this circadian 
activity remains to be elucidated (Fig. 4).

The muscle clock. Human skeletal muscle has an auton-
omous molecular clock44,45 (Fig. 5). Rodent data showed 
that the SCN synchronizes the skeletal muscle clock46,47, 
but signals resulting from physical exercise48,49 and 
food intake have also been shown to be involved in 
synchronization49–51.

Cultured rodent myotubes express circadian rhyth-
micity in insulin sensitivity52. CLOCK and ARNTL 
regulate muscle insulin sensitivity via changes in pro-
tein levels and membrane translocation of the insulin-​
sensitive glucose transporter GLUT4 (ref.53), as well as 
through the modulation of the insulin signalling path-
way via expression of the deacetylase SIRT1 (ref.54). 
Furthermore, a 2017 study showed that the muscle 
clock regulates muscle insulin sensitivity via histone 
deacetylation of metabolic genes by HDAC3 (ref.55) 
(Fig. 5). Consistently, human muscle tissue shows a diur-
nal rhythm in insulin sensitivity with higher insulin sen-
sitivity in the morning than in the evening56, as well as 
a diurnal rhythm in mitochondrial oxidative capacity, 
which peaks in the evening57.

Eye SCNLight

Sleep–wake 
behaviour

Feeding 
behaviour

Autonomic 
nervous system

• Cortisol
• Melatonin

Body temperature

Peripheral clocks in gut, muscle, 
liver, WAT,  BAT and pancreas

Fig. 1 | The circadian timing system. The circadian timing system is composed of 
a central clock in the suprachiasmatic nucleus (SCN) located in the hypothalamus 
of the brain and peripheral clocks in other brain areas and peripheral tissues.  
The circadian rhythms in these clocks are generated by a molecular transcriptional- 
translational feedback loop. The light signal, reaching the SCN via the retina and 
the retinohypothalamic tract, is the most important Zeitgeber for the SCN. The SCN 
synchronizes peripheral clocks through neural, endocrine, temperature and 
behavioural signals. BAT, brown adipose tissue; WAT, white adipose tissue.

Box 1 | concepts in circadian studies

chronobiology
The study of biological rhythms such as daily, tidal, weekly, monthly and seasonal rhythms.

chronotype
Humans can be characterized according to their preferred sleep times; late chronotypes 
(owls) prefer to sleep later than early chronotypes (larks).

circadian rhythm
A rhythm with a period of ~24 h that persists in constant conditions. Circadian comes 
from the Latin words circa, which means around, and dies, which means one day.

daily (diurnal) rhythm
Physiological, hormonal and behavioural rhythms that are measured under regular 
light–dark and sleep–wake cycles, and therefore should be described as daily rhythms, 
instead of circadian rhythms.

Entrainment and Zeitgeber
The non-24 h period of the endogenous circadian rhythm can be adjusted, aligned or 
synchronized to the exact 24 h period of the outside world by a process called entrainment. 
The external stimulus responsible for this entrainment is called a Zeitgeber. In mammals 
the strongest Zeitgeber for the endogenous central brain clock is environmental light, but 
food intake, locomotor activity and temperature can also serve as Zeitgebers.

nocturnal species
Species that are mainly awake and active during the dark period, such as most rodents.

diurnal species
Species that are mostly awake and active during the light period, such as humans.

chronotherapy
The specific timing of administration of drug classes based on the diurnal rhythms in 
pharmacodynamics and pharmacokinetics of therapeutic drugs.

Suprachiasmatic nucleus lesion
In rodents, a thermal or electrolytic complete lesion of the suprachiasmatic nucleus 
neurons causes a loss of all circadian rhythmicity (that is, the absence of daily rhythms 
in locomotor activity and food intake, but also in hormone release, body temperature 
and metabolic fluxes).

Misalignment protocol
An experimental protocol using a recurring non-24 h behavioural cycle (for example, 
a 28 h cycle). This protocol can be used to investigate the relative contributions of the 
endogenous circadian cycle and the behavioural cycle to a particular physiological rhythm.
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The adipose tissue clock. WAT contains an autono-
mous circadian clock as shown in both rodent58,59 and 
human60,61 in vitro models (Fig. 6). Similar to the muscle 
clock, the WAT clock is synchronized by the SCN62 and 
by signals resulting from food intake63,64.

Adipocytes from rodents have circadian rhythmic-
ity in glucose uptake52. In line with this observation, in 
human WAT ~25% of the transcriptome shows diurnal 
variation, including pathways involved in the regulation 
of glucose uptake65. Subcutaneous WAT explants from 
humans who are obese show an intrinsic diurnal rhythm 
in insulin signalling as determined by AKT phosphoryl-
ation, with peak insulin sensitivity at noon66. Rodent data 
indicated that this diurnal rhythm in adipose tissue insu-
lin sensitivity could be the result of circadian regulation 
of the retinol-​binding protein receptor STRA6 (ref.67). In 
addition, CLOCK and ARNTL regulate the expression of 
key enzymes in the regulation of lipolysis such as adipose 
triglyceride lipase (ATGL), lipoprotein lipase (LPL) and 
hormone-​sensitive lipase (HSL)68,69 (Fig. 6).

BAT from mice also shows a diurnal rhythm in glu-
cose uptake70. A 2016 human study confirmed circadian 
rhythmicity of glucose uptake in BAT, with peak activity 
just before waking up71.

The liver clock. The liver contains an autonomous clock 
that is synchronized by the SCN72,73 via a combination of 
autonomic signals and endocrine signals64 (Fig. 7). The liver 
clock also responds strongly to the timing of food intake, 
as the liver clock can be uncoupled from the SCN clock by 

inverting the daily feeding rhythm74. The liver clock reg-
ulates several pathways involved in the control of glucose 
and lipid metabolism, as indicated by microarray73,75,76, 
proteomic77,78 and metabolomic79–81 studies.

By synchronizing the diurnal rhythms in gluconeo-
genesis and glucose export to the habitual fasting period, 
the liver clock in rodents is essential to maintain eug-
lycaemia82,83. The repression of gluconeogenesis during 
the feeding period is mediated by the interaction of 
CRY (which has its diurnal peak of expression during 
the feeding period) with the glucocorticoid receptor84 
and with G protein-coupled receptor signalling85. The 
overall result of these interactions is the repression of 
the expression of rate-​limiting gluconeogenetic genes. 
In addition, insulin-​mediated suppression of gluconeo-
genesis is partly dependent upon CRY-​mediated FOXO1 
degradation86,87 (Fig. 7). In view of this information, it is 
tempting to speculate that the liver clock contributes to 
the diurnal rhythms in hepatic glycogen content88 and in 
hepatic insulin sensitivity13 that are observed in healthy 
individuals.

In addition to the regulation of gluconeogenesis, 
the liver clock regulates the diurnal rhythm in mito-
chondrial dynamics (Fig. 7). Therefore, the liver clock is 
involved in regulating mitochondrial glucose oxidation 
and fatty acid oxidation89,90, which protects the liver 
against oxidative stress during fasting91.

The pancreatic clock. The presence of an autonomous 
circadian pancreatic clock92 has been demonstrated 
not only in rodents93–95, but also in human islets and 
dispersed human islet cells (that is, the cells were cul-
tured as seperate or single cells, not as an intact islet)96,97. 
The pancreatic clock is synchronized to the light–dark 
cycle95 via signals derived from the central brain clock 
in the SCN that include autonomic neuronal signals98, 
melatonin release93, glucocorticoid release96 and changes 
in body temperature96. The amplitude of oscillations in 
the expression of clock genes in cultured rat islets is 
dependent on the glucose concentration in the culture 
medium95.

Pancreatic islets isolated from rats show a circadian 
rhythm in insulin secretion93. CLOCK and BMAL1 
activate the transcription of genes involved in insulin 
biosynthesis, insulin transport and glucose-​stimulated 
insulin secretion99 (Fig. 8). In line with this observation, 
disruption of the pancreatic clock causes defective 
insulin secretion94,100,101. Similarly, in human pancreatic 
islets one group has confirmed that the pancreatic clock 
controls insulin secretion97.

Circadian disruption
Insulin resistance
Insulin resistance of liver, muscle and adipose tissue, 
which is initially compensated for by increased insulin 
secretion, is an early characteristic in the development of 
T2DM. Of note, in addition to insulin resistance, β-cell 
failure contributes to the development of T2DM102.

Insulin resistance in skeletal muscle is characterized 
by a reduced insulin-​stimulated glucose uptake as a 
result of reduced insulin signalling and GLUT4 trans-
location103. As skeletal muscle is responsible for the 

Box 2 | Metabolic definitions

insulin resistance240

Resistance to the physiological effects of insulin at the tissue level. The gold standard to 
measure insulin sensitivity is the hyperinsulinaemic euglycaemic clamp.

HoMA-ir241

Homeostatic model assessment of insulin resistance, based on a single combination of 
fasting glucose and insulin levels.

glucose tolerance
Plasma glucose excursion after a fixed oral or intravenous glucose load, with higher 
glucose excursions being indicative of reduced glucose tolerance.

Prediabetes2

Fasting plasma glucose 5.6–6.9 mmol/l (100–125 mg/dl), 2 h plasma glucose after oral 
glucose tolerance test (75 g glucose) 7.8–11.0 mmol/l (140–199 mg/dl) or HbA1c 
39–47 mmol/mol (5.7-6.4%).

diabetes mellitus2

Fasting plasma glucose ≥7 mmol/l (126 mg/dl), 2 h plasma glucose after oral glucose 
tolerance test (75 g glucose) ≥11.1 mmol/l (200 mg/dl) or HbA1c ≥48 mmol/mol ( ≥6.5%) 
or random plasma glucose ≥11.1 mmol/l (200 mg/dl) with hyperglycaemic symptoms.

Type 2 diabetes mellitus2

Diabetes mellitus due to peripheral insulin resistance, combined with relative insulin 
deficiency.

The metabolic syndrome242

Three or more of the following:

•	Waist circumference >102 cm in men or >88 cm in women
•	Triglycerides ≥1.69 mmol/l (150 mg/dl)
•	HDL-​cholesterol <1.04 mmol/l (40 mg/dl) in men or <1.30 mmol/l (50 mg/dl) in women
•	Blood pressure ≥130/85 mmHg
•	Fasting plasma glucose ≥5.6 mmol/l (100 mg/dl)
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majority of glucose uptake in the postprandial state104, 
skeletal muscle insulin resistance contributes to ele-
vated postprandial glucose levels and reduced glucose 
tolerance.

The main role of the liver in the maintenance of 
glucose homeostasis is to release glucose — that is, 
endogenous glucose production — when plasma glucose 
and insulin levels are low. Under normal conditions, 
endogenous glucose production is strongly suppressed 
by insulin. Following hepatic insulin resistance, endog-
enous glucose production remains unsuppressed despite 
high plasma insulin levels, thereby contributing to ele-
vated glucose levels via enhanced gluconeogenesis 
and reduced glucose uptake105. Insulin also suppresses 
de  novo lipogenesis and VLDL production in the 
liver, and therefore hepatic insulin resistance is also 
characterized by elevated VLDL secretion106.

The role of adipose tissue insulin resistance in the 
development of T2DM is more indirect than that of 
muscle and hepatic insulin resistance. Insulin suppresses 
adipose tissue lipolysis; therefore, patients with T2DM 
are characterized by having elevated levels of plasma free 
fatty acids107. Tissues such as liver and muscle take up 
the additional circulating plasma free fatty acids, which 
contributes to ectopic lipid accumulation. This ectopic 
fat accumulation in itself strongly contributes to the 
development of liver and muscle insulin resistance108.

Circadian disruption and insulin resistance
The first clue that the circadian timing system might 
be involved in the pathophysiology of insulin resist-
ance was the observation in the 1960s of an altered 
daily rhythm in glucose tolerance in patients with 
T2DM109. Later, observations including the devel-
opment of metabolic syndrome in the Clock mutant 
mouse110, the discovery that food intake at the wrong 
circadian phase (the habitual sleeping phase) causes 
obesity in mice111 and the observation that circadian 
misalignment results in decreased glucose tolerance in 
humans112 led to the proposal of the circadian disrup-
tion hypothesis113. Sophisticated tissue-​specific pan-
creatic94,99,100,114, hepatic82,91, muscle53,115 and adipose116 
transgenic and knockout models gave further support 
for this hypothesis. On the other hand, several studies, 
including transgenic mouse models117–119 and studies 
with desynchronized food intake120–122, have not been 
able to confirm the circadian disruption hypothesis, as 
they reported no negative metabolic effects of circadian 
disruption. An overview of the metabolic phenotypes 
of published transgenic animal models is outside the 
scope of the present Review, but can be found in several 
previous papers123–125.

According to the circadian disruption hypothesis, 
metabolic health is optimal when the different daily 
rhythms, including the behavioural fasting–feeding 
and sleep–wake rhythms, hormonal and autonomic 
nervous system rhythms and central and peripheral 
clock rhythms, oscillate in synchrony with each other. 
By contrast, misalignment between certain components 
of this system, such as between behavioural and tissue 
clock rhythms, can result in circadian disruption and 
the development of insulin resistance and T2DM. In the 
sections below, we discuss epidemiological and experi-
mental human studies that investigated the association 
between insulin resistance and several forms of circadian 
disruption (Box 3).

Clock genes in humans. In line with the rodent clock 
gene mutation studies, human mutations in several 
clock genes were shown to contribute to the genetic 
susceptibility to obesity, insulin resistance and T2DM. 
Observational studies have shown associations between 
single nucleotide polymorphisms in ARNTL126 and 
T2DM, between specific haplotypes of CLOCK and obe-
sity127,128, between polymorphisms in CRY2 and elevated 
fasting glucose129,130 and between polymorphisms in the 
circadian clock gene NR1D1 and obesity131. Inspired 
by these findings, several investigators explored gene–
behaviour interactions and showed that interactions 
between diet and clock gene mutations affect fasting 
glucose132, insulin resistance133,134, body weight135,136 
and T2DM137.

We only identified three studies that investigated 
tissue clock gene expression rhythms in patients with 
T2DM. One study described a reduced amplitude of 
the daily rhythm in leukocyte clock gene expression 
in patients with T2DM138. Another study investigated 
the diurnal rhythm in clock gene expression in gluteal 
subcutaneous adipose tissue and surprisingly found 
no differences between lean participants, participants 
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Fig. 2 | circadian clocks regulate glucose metabolism, insulin sensitivity and insulin 
secretion. The molecular clock consists of a transcriptional translational feedback loop 
involving the clock proteins CLOCK , ARNTL , PER and CRY and the nuclear receptors 
NR1D1, NR1D2 and ROR . The central and peripheral clocks are responsible for a variety 
of functions. SCN, suprachiasmatic nucleus.

Amplitude
On a line graph, the amplitude 
is half the distance between 
the peak and trough of a daily 
or circadian rhythm.
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with obesity and patients with T2DM139. A study in 
circadian myotube explants described unaltered clock 
gene expression rhythms, but a decreased amplitude in 
NR1D1 expression in patients with T2DM44. In sum, 
indications of altered tissue clock rhythms in patients 
with T2DM are very limited.

Effects of light. Daylight is the main synchronizer of the 
central clock. Our modern lifestyle, however, is charac-
terized by reduced light exposure during the day and 
increased light exposure during the night. These lifestyle 
changes have a substantial effect on the alignment of our 
circadian timing system to the solar day, as illustrated by 
an elegant study that investigated the effects of camp-
ing in natural light–dark conditions on human daily 
sleep–wake behaviour140.

In several animal models, investigators have shown 
that dim light at night disturbs diurnal rhythms of food 
intake and locomotor behaviour120,125,141, causing obesity 
and reduced glucose tolerance in mice125,141 but not in 
rats120. In line with these findings, observational studies 
in humans have shown correlations of exposure to light 
at night with obesity142,143 and T2DM144.

Under conditions of controlled food intake and phys-
ical activity, bright ambient light directly reduces insu-
lin sensitivity in a time-​dependent manner in healthy 
individuals145. When healthy participants are kept 
awake during the night, bright light causes increased 
levels of glucose in plasma146. In patients with T2DM, 
bright morning light increases fasting and postprandial 
levels of glucose147. A 2017 study in rats reported wave-
length-​dependent effects of ambient light on glucose 

tolerance, with white and green light but not blue and 
red light reducing glucose tolerance148, but whether 
these observations translate to humans remains to be 
determined.

Melatonin. Melatonin is secreted by the pineal gland 
and shows a pronounced diurnal rhythm. During the 
dark period, plasma levels of melatonin are high149, and 
melatonin secretion is acutely suppressed by light expo-
sure26. Melatonin acutely increases insulin secretion in 
cultured human islets24. By contrast, melatonin admin-
istration in healthy women acutely decreases glucose 
tolerance150,151, an effect that is dependent on a common 
gain-​of-function variant of the melatonin receptor gene 
MTNR1B152.

The role of melatonin signalling in the pathophysio
logy of T2DM remains a topic of lively debate153. On the 
one hand an association exists between reduced mel-
atonin levels and the incidence of T2DM154, and rare 
loss-of-function mutations in MTNR1B are associated 
with an increase in the risk of T2DM155. On the other 
hand, one publication suggests that increased pancreatic 
β-cell melatonin signalling might reduce insulin secre-
tion in humans25.

Sleep–wake rhythms. Accumulating evidence from 
both epidemiological and experimental studies shows 
that behavioural sleep–wake rhythms affect the risk of 
developing insulin resistance. A 2015 meta-​analysis 
of prospective studies showed that both individuals 
who sleep for short periods and those who sleep for 
long periods are at increased risk of developing T2DM, 
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with a proposed ‘optimal’ sleep duration of 7–8 h 
per night156.

The interpretation of epidemiological studies, how-
ever, should be made with caution. It has been suggested 
that the relationship between long sleep duration and 
adverse health could be the result of reversed causality, 
undiagnosed disease, residual confounding and the sub-
jective reporting on sleep duration possibly represent-
ing time in bed157. On the other hand, investigators are 
in general agreement that poor sleep quality increases 
the risk of obesity and T2DM. A meta-​analysis showed 
that people with reduced subjective sleep quality are at 
increased risk of developing T2DM158. In line with this 
finding, patients with obstructive sleep apnoea are at 
increased risk of developing T2DM, which could be 

mediated by increased food intake and/or decreased 
physical activity159,160, among other mechanisms, owing 
to disturbed sleep161.

Several well-​controlled human experimental stud-
ies shed further light on the relationship between sleep 
deprivation and insulin sensitivity. The seminal exper-
imental study showed reduced glucose tolerance after 
five nights of chronic partial sleep loss (4 h per night) 
compared with five well-​rested nights (12 h per night) 
in healthy human participants, under conditions of con-
trolled food intake and physical activity162. Subsequent 
experimental studies under controlled conditions con-
firmed reduced liver163, adipose164 and whole-​body163–168 
insulin sensitivity as a result of sleep restriction to 4–6 h 
per night for 1–14 nights in healthy individuals. By con-
trast, other studies under controlled conditions found 
only short-​term effects169 or no effect170 of sleep restric-
tion on insulin sensitivity, which could be the result of 
milder sleep restriction169 or a mitigating effect of the 
negative energy balance owing to the experimental 
design170. Further to these observations, studies have 
shown that experimental slow-​wave sleep suppression 
resulted in reduced whole-​body insulin sensitivity in 
healthy individuals171–173.

The proposed mechanisms for the effects of sleep 
restriction and sleep disturbance on insulin sensitiv-
ity include an altered sympatho–vagal balance162,171,172 
and increased circulating levels of catecholamines167 or 
cortisol167,172. In conditions of ad libitum food intake, 
increased food intake as a result of sleep restriction or 
disturbance probably contributes to decreased insulin 
sensitivity159,160.

A systematic review and meta-​analysis showed that in 
patients with established T2DM, individuals who sleep 
for a short duration or a long duration and individuals 
with lower sleep quality have reduced glycaemic control 
compared with individuals who get adequate sleep174. 
Although several of the studies included in the system-
atic review and meta-​analysis corrected for physical 
activity, the meta-​analysis did not correct for food intake 
or physical activity, so it is possible that these correla-
tions are partly confounded by increased food intake or 
decreased physical activity174.

The incidence of obstructive sleep apnoea is high 
in patients with T2DM. Furthermore, in patients with 
comorbid obstructive sleep apnoea and T2DM, poor 
glycaemic control correlates with the severity of obstruc-
tive sleep apnoea, a finding that could again be partly 
confounded by increased food intake and/or decreased 
physical activity161.

Chronotype and social jet lag. An individual’s chrono-
type could also be a risk factor for insulin resistance. 
Observational studies show that evening chronotypes 
are at increased risk of developing T2DM compared 
with morning chronotypes175, even when results are 
corrected for sleep duration and physical activity (food 
intake was not corrected for in this study)176. Some evi-
dence suggests that this increased risk could be the result 
of increased social jet lag — the discrepancy between 
the social (behavioural) and endogenous (circadian) 
time. Individuals with an evening chronotype who are 
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working regular daytime hours are at increased risk of 
social jet lag.

Social jet lag is associated with the development of 
T2DM, independently of sleep duration177–179, even 
when results are corrected for food intake and physi-
cal activity177. Patients with T2DM who are evening 
chronotypes show worse glycaemic control compared 
with patients who are morning chronotypes, a find-
ing that might, in part, be mediated by an increase in 
evening food intake180; however, an association between 
poor glycaemic control and chronotype, independent of 
sleep duration, total food intake and physical activity, 
does also exist180,181.

Shift work and jet lag. Shift workers are at increased risk  
of developing T2DM, as shown by a 2015 meta-​analysis  
of observational studies182; the degree of increased 
risk relates to the number of night shifts per month183. 
This increased risk of T2DM might be mediated by a 
combination of acute and chronic effects.

Experimental circadian misalignment under strictly 
controlled conditions acutely decreases glucose toler-
ance and insulin sensitivity both in non-shift workers 
and in chronic shift workers14,32,112,184–186. To our knowl-
edge, the chronic effects of repeated phase shifts on 
food intake, physical activity and insulin sensitivity 
have not been studied experimentally in humans, but 
several animal studies show that repeated phase shifts 

cause increased food intake, increased body weight 
and disturbed glucose metabolism187. A 2014 trans-
lational study showed that repeated jet lag in mice 
causes reduced glucose tolerance via disturbance of 
the intestinal microbiome. Fascinatingly, faecal trans-
fer from jet-​lagged humans into germ-​free mice also 
reduced glucose tolerance in mice, suggesting that the 
microbiome clock might have an important role in the 
development of insulin resistance owing to repeated 
phase shifts188.

Does circadian disruption contribute to insulin resistance?  
Taken together, the hypothesis that circadian disrup-
tion contributes to the development of insulin resist-
ance in humans is supported by the following findings: 
decreased glucose tolerance caused by experimental 
circadian misalignment in humans; the association 
between human clock gene polymorphisms and insu-
lin resistance; the experimentally observed effects of 
night-​time light exposure and sleep disturbance on 
glucose metabolism; and the association of short sleep 
duration, long sleep duration, low sleep quality, late 
chronotype, social jet lag and shift work with insulin 
resistance. Therefore, it seems probable that disturbance 
of the central and/or tissue clock rhythms (Fig. 9) con-
tributes to the pathophysiology of insulin resistance at 
the tissue level. Furthermore, circadian disruption might 
cause misalignment of nutrient fluxes. For instance, a 
mismatch between hepatic glucose production, mus-
cle glucose uptake and carbohydrate intake could con-
tribute to elevated levels of glucose and an imbalance 
between lipid storage in WAT, lipid oxidation in BAT 
and hepatic lipid production might contribute to ectopic 
lipid accumulation.

Circadian synchrony and metabolic health
Modulating light exposure
Light provides the main input for the SCN, and 
optimization of daily light exposure can therefore 
increase circadian synchrony140. To our knowledge, 
however, no published randomized controlled tri-
als (RCTs) have investigated the effects of long-​
term natural light exposure on insulin sensitivity or 
glycaemia.

One potential strategy is the adaptation of architec-
ture and/or indoor lighting conditions. For example, 
one RCT showed that supplementing daytime indoor 
light conditions with bright artificial light in homes for 
the elderly improves cognitive functioning, sleep qual-
ity and the diurnal rhythm of locomotor activity189,190. 
Another study found that increasing blue light intensity 
in the morning with a system of wavelength-​controlled 
light bulbs and LEDs at home improved subjective sleep 
quality in elderly women compared with low morning 
blue light intensity191.

A second potential strategy is to limit the use of 
screens from computers, tablets and smartphones in the 
evening, or to use blue light filters with these devices. An 
experimental study showed that reading a paper book in 
the evening reduced sleep-​onset latency and improved 
daytime alertness the next day compared with reading a 
book on a light-​emitting tablet192.
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Modulating rhythmic behaviour
Sleep–wake behaviour. In view of the strong association 
between disturbed sleep and impaired insulin sensitivity, 
sleep improvement could be a sensible approach in the 
prevention and treatment of insulin resistance193,194, but 
high-​quality intervention studies are currently lacking 
(Fig. 9). One study in chronically sleep-​restricted healthy 
individuals showed a correlation between improved 
indices of insulin sensitivity and increased sleep dura-
tion after 40 days of sleep extension (~45 min extra 
each night)195. A study on the metabolic effects of sleep 
extension in sleep-​restricted individuals who are obese 
is ongoing196.

Evidence-​based strategies to treat insomnia include 
cognitive behavioural therapy (high-​quality evidence 
according to the GRADE criteria), light therapy 
(low-quality evidence) and exercise (low-​quality evi-
dence)197. A short course (<4 weeks) of benzodiazepines 
or benzodiazepine receptor agonists can be considered 
if these strategies are not successful197, but concerns exist 
of negative effects of these hypnotic drugs on glucose 
tolerance, possibly owing to a reduction in slow-​wave 
sleep after hypnotic drug use193.

Individuals with obstructive sleep apnoea represent 
a unique population regarding sleep–wake behaviour. 
A 2017 meta-​analysis of four RCTs assessed the effect 
of continuous positive airway pressure (CPAP) treat-
ment on insulin resistance in patients with obstructive 

sleep apnoea who had either normal glucose values or 
prediabetes. The authors found no effect on HOMA-​
IR, but reported a small reduction of fasting insu-
lin198. A 2017 meta-​analysis showed that treatment of 
obstructive sleep apnoea with CPAP does not improve 
levels of haemoglobin A1c (HbA1c) or fasting levels 
of glucose in patients with obstructive sleep apnoea 
who have established T2DM, despite reduced daytime 
sleepiness199. The surprising lack of effect of CPAP 
treatment on glycaemia in patients with obstructive 
sleep apnoea could be related to treatment adher-
ence199, as two studies with good adherence did show 
a decrease in HbA1c (ref.200) or mean 24 h glucose 
concentrations201.

Physical activity. Regular physical activity is one of 
the cornerstones of the lifestyle changes prescribed to 
patients with T2DM (Fig. 9). Regular physical exercise 
decreases insulin resistance and reduces HbA1c (ref.202). 
As physical activity also shifts the central circadian 
pacemaker in humans203, improves sleep duration and 
quality204 and affects the muscle clock48,49, it is possible 
that some of the beneficial metabolic effects of (day-
time) physical activity are mediated through the cir-
cadian timing system. To our knowledge, however, no 
studies have proved this idea. We are also not aware of 
any studies investigating the optimal timing of physical 
exercise for the reduction of body weight and insulin 
resistance.

Feeding behaviour. Individualized nutrition therapy is 
another core intervention in the prevention and treat-
ment of insulin resistance and T2DM2. Classically, the 
main focus points for feeding behaviour are calorie 
reduction and healthy macronutrient distribution. 
An approach with a focus on the timing of food intake 
can also be of great value for people with insulin 
resistance205. A 2017 systematic review on meal tim-
ing and frequency in the prevention of cardiovascular 
disease proposed an approach to eating that included 
the recommendations to eat a greater share of calories 
early in the day and to use consistent overnight fast 
periods206 (Fig. 9).

The advice to consume a greater share of calories 
early in the day mainly results from RCTs showing that 
breakfast consumption (compared with breakfast skip-
ping) improves insulin sensitivity207–210, although not all 
studies agree211,212. A hallmark study on the overnight 
fast in 156 North American individuals showed that 
most people do not consume the ‘normal’ three meals 
per day within 12 h, but instead showed an irregular 
eating pattern spread over a >15 hr period. In that same 
study it was reported that a small group of eight people 
classed as obese who were treated with ‘time-​restricted 
feeding’ (that is, they were asked to restrict eating to 
a 10 h period for 16 weeks) lost 3 kg in weight, which 
persisted over 1 year213. In line with this finding, a 2018 
randomized crossover trial in eight individuals with 
prediabetes showed that isocaloric early time-​restricted 
feeding (that is, a 6 h feeding period with dinner before 
15:00 h) reduces insulin resistance compared with a 12 h 
feeding period214.
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Chronotherapy in patients with T2DM
In patients with T2DM, glycaemic control with oral 
glucose-​lowering drugs and/or insulin reduces micro-
vascular and cardiovascular complications2,215. To 
our knowledge and despite preclinical observations 
on the effects of metformin on the molecular clock216,217, 
the time-​dependent effects of metformin on blood levels 
of glucose218 and the time-​dependent effects of the sul-
phonylurea tolbutamide on insulin secretion219, no trials 
have assessed the chronotherapeutic effects of these fre-
quently prescribed glucose-​lowering drugs on clinically 
relevant outcomes.

The only potential example of evidence-​based 
chronotherapy in T2DM is the dopamine agonist bro-
mocriptine (Fig. 9). Dopaminergic activity shows a 
diurnal rhythm220 and dopamine signalling increases 
insulin sensitvity221. When administered in the morning, 
a quick-release bromocriptine formulation reduces 

HbA1c and fasting levels of glucose in patients with 
T2DM2,222. To our knowledge, however, no human 
trials have compared the effects of different adminis-
tration times, which would be the ultimate proof that 
bromocriptine treatment is actually a chronotherapy.

The effects of timed melatonin administration in 
patients with T2DM have been investigated in one small 
RCT with 36 participants, which compared 3 weeks of 
melatonin administration with placebo223. The inves-
tigators reported no convincing evidence of beneficial 
metabolic effects of melatonin.

The insulin requirements of patients on insulin 
therapy vary over the diurnal cycle owing to the diurnal 
rhythms of sleep–wake behaviour, physical activity, food 
intake and insulin sensitivity. The research community 
has made tremendous efforts to improve insulin phar-
macokinetics with the aim of matching them to the 
individual patient’s diurnal pattern in insulin require-
ments224,225. The question of whether the beneficial 
effects of insulin are (partly) mediated through central 
or peripheral clock modulation, however, remains to 
be resolved.

The artificial pancreas — which consists of an insu-
lin pump controlled by a control algorithm coupled to 
a continuous glucose sensor226 — was in 2016 shown 
to increase the length of time spent in target glucose 
ranges in patients with T2DM who had been admitted to 
hospital227. One possible approach to further improve the 
algorithm controlling the artificial pancreas for patients 
with T2DM would be to incorporate information on the 
diurnal rhythm of insulin sensitivity.

The administration of exogenous glucocorticoids 
causes insulin resistance23. Data from a subgroup anal-
ysis of a small open-​label randomized trial228 and two 
prospective cohort studies229,230 suggest once-​daily 
modified-release hydrocortisone formulations might be 
beneficial for metabolic health compared with thrice-​
daily immediate-release hydrocortisone. Analysis of the 
small subgroup of patients with comorbid adrenal insuf-
ficiency and diabetes mellitus showed that replacement 
therapy with once-​daily modified-​release hydrocortisone 
formulations (which mimic the physiological diurnal 
rhythm of cortisol levels) might lead to improvements 
in body weight and HbA1c compared with thrice-​daily 
immediate-​release hydrocortisone.

Circadian molecules
New circadian therapies might arise from large-​scale 
chemical screens looking for clock-​improving mole-
cules231–233 (Fig. 9). Promising candidates include the 
REV-​ERBα agonist SR9011 and the REV-​ERBβ agonist 
SR9009, both of which directly target the molecular 
clock and were shown to decrease obesity and hyper-
glycaemia in diet-​induced obese mice. Timed twice-​
daily administration of these REV-​ERB agonists alters 
metabolic gene expression patterns in muscle and WAT, 
leading to increased muscle glucose and fatty acid oxi-
dation (increased energy expenditure), in combination 
with decreased WAT triglyceride synthesis234.

Another promising candidate is the natural cit-
rus compound nobiletin, which has been shown to 
reduce body weight and improve insulin sensitivity 
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Box 3 | circadian disruption and insulin resistance

Epidemiological studies in humans

•	Clock gene polymorphisms (ARNTL126, CLOCK127,128, 
CRY2 (refs129,130), NR1D1 (ref.131)

•	Light at night125,142,143

•	Reduced or increased melatonin signalling25,153,154,155

•	Short or long sleep (optimal: 7–8 h)156,158

•	Reduced sleep quality158

•	Evening chronotype175,176,181

•	Social jet lag177–179

•	Shift work182,183

Experimental studies in humans

•	Diet-clock gene mutation interactions132–137

•	Ambient light145–147

•	Melatonin150–152

•	Sleep restriction162–170 and sleep disruption171–173

•	Circadian misalignment14,32,112,184–186
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in two different mouse models of the metabolic syn-
drome (diet-​induced obese mice and db/db mice). 
Nobiletin directly targets the molecular clock by acti-
vating RORα and RORγ, thus increasing the amplitude 
of circadian locomotor behaviour, the rhythm of tissue 
clock gene expression and the rhythm of hepatic meta-
bolic gene expression. As a result, energy expenditure 
increases, adiposity decreases and hepatic steatosis 

decreases235. Finally, in preliminary reports, two different 
CRY stabilizers were shown to improve glucose tolerance 
in diet-​induced obese mice236 and db/db mice237. The 
exact mechanism responsible for these metabolic 
benefits, however, remains to be elucidated.

In conclusion, REV-​ERB agonists, ROR agonists and 
CRY stabilizers are promising circadian molecules for 
the treatment of T2DM, and human phase I studies of 
these compounds are to be expected.

Conclusions
Despite the large body of evidence from animal studies, 
the exact mechanisms mediating the metabolic derange-
ments resulting from circadian disruption remain to be 
resolved. For example, does circadian misalignment 
cause a mismatch of glucose and lipid fluxes between the 
various organs or do disrupted tissue clocks cause insu-
lin resistance at the tissue level, or are both mechanisms 
involved?

Currently, the clinical utility of the knowledge on 
circadian clock regulation of insulin sensitivity is only 
beginning to be explored. A clear need exists for RCTs 
that investigate the metabolic effects of natural light–dark 
exposure, sleep improvement, time-​restricted feeding 
and the daily timing of exercise. Clinical trials are needed 
that investigate methods to prevent metabolic complica-
tions in shift workers. With regard to biomarkers, evi-
dence suggests that circadian phase biomarkers can help 
to optimally synchronize the circadian timing of behav-
ioural or pharmacological interventions238. We are in no 
doubt that new circadian molecules targeting the mole
cular clock will be identified within the next 10 years. 
Furthermore, mathematical models could be an impor-
tant aid to predict the effects of timed administration of  
clock agonists239. We expect the further development 
of promising candidate circadian molecules, including 
nobiletin, in phase I human trials in the coming years.
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Fig. 9 | Potential interventions promoting metabolic health through circadian 
synchrony. Improving the synchrony between behavioural fasting–feeding and sleep–
wake rhythms, hormonal and autonomic nervous system rhythms, and central and 
peripheral clock rhythms, might prove a valuable approach to prevent and/or treat 
insulin resistance and type 2 diabetes mellitus. Therapeutic interventions to improve 
circadian synchrony are possible at several levels: the light input to the circadian timing 
system; the behavioural level (sleep–wake behaviour, physical activity and food intake), 
directly targeting the molecular clock  and the timing of medication (chronotherapy). 
Dark blue boxes show information that has some clinical human evidence supporting an 
effect on insulin sensitivity. Light blue boxes show information that has no clinical 
evidence supporting an effect on insulin sensitivity.
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