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SUMMARY

A diurnal rhythm of eating-fasting promotes health,
but the eating pattern of humans is rarely assessed.
Using a mobile app, we monitored ingestion events
in healthy adults with no shift-work for several
days. Most subjects ate frequently and erratically
throughout wakeful hours, and overnight fasting
duration paralleled time in bed. There was a bias to-
ward eating late, with an estimated <25% of calories
being consumed before noon and >35% after 6 p.m.
‘‘Metabolic jetlag’’ resulting from weekday/weekend
variation in eating pattern akin to travel across time
zones was prevalent. The daily intake duration
(95% interval) exceeded 14.75 hr for half of the
cohort. When overweight individuals with >14 hr
eating duration ate for only 10–11 hr daily for
16 weeks assisted by a data visualization (raster
plot of dietary intake pattern, ‘‘feedogram’’) that
we developed, they reduced body weight, reported
being energetic, and improved sleep. Benefits per-
sisted for a year.

INTRODUCTION

Life on earth has evolved in the context of a 24 hr periodicity in

environmental conditions and a dependent daily rhythm in food

availability and predator avoidance. Consequently, organisms

have evolved endogenous circadian oscillators that allow them

to anticipate and prepare for activity, sleep, and food intake at

a specific time of the day. Both food ingestion and fasting can

alter the metabolic state. Therefore, molecular responses to

feeding and fasting exhibit temporal dynamics with a 24 hr

period. The circadian oscillator and time of feeding act together

to drive daily rhythms in gene expression and protein function

such that the anticipation of and responses to feeding events

are properly timed (Adamovich et al., 2014; Vollmers et al.,

2009) every day. Genetic disruption of circadian rhythms in

experimental animals and behavioral disruption of circadian

rhythm among shift workers likely perturbs such temporal

regulation and predisposes to metabolic diseases (Asher and

Schibler, 2011). Frequent caloric intake in animal models of

diet-induced obesity also dampens molecular circadian rhythms
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(Kohsaka et al., 2007). Conversely, recent studies in both

nocturnal (mice) and diurnal (Drosophila melanogaster) model

organisms have demonstrated that restricting the time of caloric

intake to a window of 8–12 hr without altering the quantity or

quality of diet can impart pleiotropic physiological benefits

(Chaix et al., 2014; Gill et al., 2015; Hatori et al., 2012; Sherman

et al., 2012; Zarrinpar et al., 2014). Such time-restricted feeding

(TRF) supports a robust circadian rhythm and is associated with

reduced adiposity, elevated lean mass, longer sleep duration,

increased endurance, reduced systemic inflammation, deceler-

ated cardiac aging, gut homeostasis, and improvement in other

clinically relevant biomarkers.

Despite these observed benefits in model organisms, the

applicability of TRF for human health has remained unknown,

because the temporal aspect of human eating pattern is rarely

measured. A lack of methods and parameters to describe the

daily eating pattern in humans makes it difficult to ascertain

whether eating events in humans are spread over a long enough

segment of the 24 hr day such that there is an opportunity to

reduce this duration. Furthermore, differences between meta-

bolic properties of humans and those of small model organisms

make it difficult to predict whether an 8–12 hr eating window will

impart physiological benefits in humans. Nevertheless, accumu-

lating data indicate that the temporal aspect of food intake, in

addition to total caloric intake, can be an important determinant

of predisposition to chronic diseases (Mattson et al., 2014),

which now are the predominant cause of morbidity and mortality

in developed nations (Bauer et al., 2014). Therefore, the objective

longitudinal assessment of the content and the daily temporal

pattern of human nutrition could have a major public health

impact in terms of finding at-risk individuals for chronic disease

and subsequent corrective action through lifestyle interventions.

Current methods to monitor human nutrition are subjective

(such as questionnaires), remove subjects from their usual

spatiotemporal niche (e.g., in-lab videography with limited food

choices), or provide negative feedback that interferes with sub-

jects’ behavior (food diaries). Moreover, these methods gather

information on the quantity and quality of nutrition and generally

do not seek information regarding the time at which the food

or beverage was consumed. The availability of smartphones

presents an opportunity to objectively monitor human nutrition

along with the advantage of complete control over feedback.

The wide-ranging adoption of smartphones across age, gender,

and socioeconomic segments can be leveraged to study

behaviors of free-living individuals at scale in heterogeneous

populations.
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In this study, we developed and used a smartphone-based

monitoring method with minimal feedback to collect the natural

daily eating pattern of free-living healthy adults. In contrast to

the conventional wisdom that modern humans eat 3 meals a

day within a 12 hr interval, eating pattern was found to be largely

erratic and differing between weekdays and weekends. In a pilot

feasibility study, we tested whether reducing the eating interval

to 10–11 hr without an overt attempt to change nutrition could

lead to weight loss in healthy overweight individuals. Overall,

the results presented here show that a large segment of the

human adult population displays an erratic daily rhythm of

eating-fasting, which can be manipulated to obtain desirable

health benefits.

RESULTS AND DISCUSSION

A Smartphone App to Monitor Daily Eating Patterns
We built a smartphone software application (‘‘app’’) to longitu-

dinally monitor the daily temporal pattern of caloric intake in

free-living humans. To record an ingestive event, the partici-

pants used the camera function of the smartphone to take a

picture of the food or beverage. Food pictures taken in the

JPEG format were downscaled to 1/10 their original size on

the device itself to reduce network data usage. Participants

also had the option for textual entries to substitute for food/

drink pictures when picture taking was difficult or when sub-

jects forgot to log their picture entries. Immediately after data

logging, the food picture and text entries along with timestamp

and geolocation were immediately transferred to a server.

Upon confirmation of successful data transfer, the data and

the associated metadata (i.e., the timestamp and geolocation)

were erased from the subject’s device, eliminating the possibil-

ity for the ‘‘feedback effect’’ of prior-recorded information upon

present behavior.

We made use of push notifications as an orthogonal measure-

ment technique for assessing the time of diet intake. These push

notifications were manually triggered at a random time of the

day, during the stated wakeful period of the subject and

numbered 1–2 per day. The specific push notification query pre-

sented to the subject was dependent on the time when he/she

responds to it, not when it was originally dispatched from the

server. The push notification presented a query on the user’s

device inquiring whether they ate/drank anything in the past

30 min. Subjects had to push a ‘‘Yes’’ or ‘‘No’’ button displayed

on their screen, and their responses were recorded on the

server. From such responses to push notifications sent at a

random time during wakeful hours, we estimated the false nega-

tive rate (i.e., when the subject consumed food/beverage/water,

but forgot to log the event) for our methodology to be 10.34%.

We monitored healthy, non-shift-worker adult males and fe-

males (Figures 1A and 1B, Table S1) for 3 weeks. After meeting

the inclusion and exclusion criteria (Table S2) and signing an

informed consent document during an office visit, subjects

used the custom mobile application (Salk Metabolic App)

installed on their smartphone to take pictures of every food,

beverage, or water item they consumed, irrespective of volume

or calorie, just prior to consumption (Figures S1 and S2).

Appending a textual annotation describing the amount and the

item(s) consumed to the pictures was optional.
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The food pictures or occasional text entries (2.1%of all events)

were further annotated by looking up the reference nutrition

values from Calorie King or FNDDS (Six et al., 2011). Out of the

26,676 events recorded, 22% (5846) were water, 28% (7420)

consisted of pre-packaged items with readily accessible nutri-

tion information, and 50% (13,410) were mixed meals with mul-

tiple items. We hypothesized that the reported caloric intake

should at least meet the resting energy expenditure or mainte-

nance caloric (MC) intake (Roza and Shizgal, 1984). The average

daily estimated caloric intake for the group (mean 1,947 kcal;

95% CI: 1,917–1,977) was more than their respective mainte-

nance caloric intake (mean 1.233-fold over MC; 95% CI:

1.214–1.251). From push notifications, we had measured a false

negative rate or underreporting of food/beverage/water to be

10.34%. Therefore, the actual caloric intake was likely little

higher. The extra caloric intake likely accounts for activity above

resting metabolism. There was no significant change in body

weight during the 3-week reporting period (Table S1), indicating

any potential feedback effect on weight loss due to recording

food intake was absent.

Daily Eating Patterns in Humans
The timestamp of every ingestion event allowed analyses of the

temporal aspect of eating. Aggregate data from 3weeks ofmoni-

toring was used to assess eating pattern of the cohort. Caloric

(i.e., >5 kcal) events populated a large segment of the 24 hr

day (Figures 1C and 1D), and there were only 5 hr between 1–6

a.m. when the number of events/hr were <1% of total events

(Figure 2A). The fraction of events with estimated energy content

>5 kcal also reached its nadir (Figure 2B) in that interval. Because

at the population level human digital activity reaches the trough

between 2 and 4 a.m. (Golder and Macy, 2011), none of the sub-

jects were self-reported shift-workers, and the reporting trough

was close to 4 a.m. (Figures 2A and 2B), we considered 4 a.m.

as the onset of ‘‘metabolic day’’ (i.e., events between 00:00:00

and 03:59:59 hr were included in the previous calendar day).

Surprisingly, in contrast to the self-reported 3 meals/day

structure of meals from most of the participants, a breakfast-

lunch-dinner temporal pattern was largely absent (Figure 2C).

At the individual level, the number of events/day showed wide

variation ranging from 4.22 ± 0.1 (mean + SEM) for the bottom

decile to 15.52 ± 0.34 for the top decile, of which 3.33 ± 0.07

and 10.55 ± 0.24, respectively, were caloric events (Figure 2D).

From a subset of events that marked the beginning and end of

an eating report (i.e., pictures of food at the start and of leftovers

at the end of the meal), we calculated the average meal duration

to be 14 min 36 s. Therefore, ‘‘events’’ from an individual with

a <15 min inter-event interval were combined into one ‘‘meal.’’

At the group level, 25% of all meals were within 1 hr 25 min of

another meal, and the median inter-meal interval was 3 hr

6 min. Only 25% of the meals occurred after >6 hr 41 min of

fasting (Figure 2E).

The fraction of total calories consumed (starting at 4 a.m.)

showed that less than 25% of caloric intake occurs before

noon (Figure 2F). The percentages of total calories consumed

after 6 p.m., 9 p.m., and 11 p.m. (and before 4 a.m. of the next

day) were 37.5%, 12.2%, and 3.9%, respectively (Figure 2F).

After adjusting for maintenance calories (MC) for each individual

(Roza and Shizgal, 1984), the average cumulative percentage of
Inc.
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Figure 1. A Scalable Method to Monitor Daily Patterns of Dietary Intake in Humans

(A and B) Schematic (A) of the smartphone-based approach to monitor human eating pattern used to monitor all ingestion events for a 3-week period in healthy

adults (B).

(C and D) Polar plot of all (C) or calorie-containing (R5 kcal) (D) ingestion events of each individual plotted against the time of day (radial axis) in each concentric

circle. Data from 156 individuals are shown.
MC ingested over diurnal time showed the average time by

which 50%, 70%, 90%, and 100% of MC were consumed to

be 3:32 p.m., 5:04 p.m., 6:11 p.m., and 6:36 p.m., respectively
Cell M
(see Figure 2G formedian values). In summary, there is a system-

atic bias toward consuming a larger portion of the daily caloric

intake toward the late afternoon and evening hours. At the cohort
etabolism 22, 789–798, November 3, 2015 ª2015 Elsevier Inc. 791
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Figure 2. Human Eating Lacks 3-Meals-a-Day Structure
(A) Percentage of all ingestion events in 1 hr bin shows the nadir at 4 a.m.

(B) The fraction of events with <5 kcal also reaches its peak at 4 a.m. Therefore, we considered 4 a.m. (instead of midnight) as the beginning of the metabolic day.

(C) Representative scatter plot of ingestion events of 11 subjects during the observation period shows the lack of clustering of events into three principal bins for

most individuals and a large variation in the total number of events.

(D) Number of ingestion events/day in all subjects binned into 10 deciles shows a wide distribution of number of total and calorie-containing events every day.

(E) Frequency distribution and cumulative frequency of inter-meal interval for the entire cohort.

(F) Percentage of calories remaining to be consumed in each hourly bin shows that >75% of all calories are consumed after midday.

(G) Time (median + 25%–50% range and 10%–90% interval) at which percentage of maintenance calories are consumed in 10% increments is shown.
level, in general, food consumed after 6:36 p.m. exceeded the

maintenance calories requirement.

Eating Pattern Relative to Wakeful Hours
To compare the eating pattern with diurnal activity period, wrist

actigraphy (Blood et al., 1997) data were collected from 47

randomly selected participants using a CamNTechMotionwatch

8, a device that measured both activity and light. A nighttime
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drop in activity and an absence of light was scored as time in

bed. Integration of activity, light, and ingestion events allowed

analyses of eating time relative to activity period (Figure 3A).

The average time of activity onset and of time to bed showed

large variation even among this non-shift worker cohort (Fig-

ure 3B). The median time interval between daily activity onset

and first caloric intake was 1 hr 18min, while themedian time be-

tween the last caloric intake and going to bed was 2 hr 22 min
Inc.



Figure 3. Activity and Eating Duration in Adult Humans

(A) Representative actogram and light exposure pattern (from a wrist-worn device) of a subject for 3 weeks overlaid with ingestion events (from smartphone app)

show that the latter occur erratically throughout the active period.

(B) Wakeful activity duration in a subset of the subjects is shown. Each horizontal bar shows the interval between average wake up and bedtime (+SEM, up to

21 days of monitoring).

(C) Time interval betweenwaking up and the first caloric ingestion or the last caloric ingestion and going to bed. Bars (orange and blue, y axis) indicate the percent

of the individuals for whom actigraphy was performedwith the indicated number of hours (x axis, 1 hr bins) fromwaking up to the first caloric intake or from the last

caloric intake to sleep. Cumulative percentages (secondary y axis) are shown in color-matched lines.

(D and E) Median time of first (D) and last (E) caloric event of all individuals on different days of the week. Median (25%–75% interval in box, 10%–90% interval in

lines) local time is shown.
(Figure 3C). Therefore, the total overnight fasting duration paral-

leled the time of inactivity (sleep) at night.

The day-to-day variation in the time of first or last caloric intake

was spread over a few hours (Figure S3). Feeding after several

hours of fasting is known to affect neuroendocrine metabolic

pathways and adjust the phase of the circadian clock in periph-

eral organs (Vollmers et al., 2009) so that physiological state

transitions from the fasting to the fed state. Changes in the

sleep-wake cycle between social/work days and free/weekend

days is similar to the circadian desynchrony arising from jet travel

between time zones and is called social jetlag (Roenneberg et al.,

2012). By analogy, we postulated that the variation in breakfast

time between working/week days and free/weekend days likely

affects the peripheral clocks in metabolic organs, causing meta-

bolic desynchrony or ‘‘metabolic jetlag.’’ The median breakfast

(i.e., the first caloric intake event) time for the entire population

changed on Saturday and Sunday (Figures 3D and S3), so we

considered those two days as the ‘‘metabolic weekend.’’ The

time of last caloric intake did not significantly change in any of
Cell M
the days, but the variability was relatively large on Friday and

Saturday (Figures 3E and S3). At the population level, the

mean times of first caloric intake during weekdays and weekend

were 9:21 a.m. (95% CI: 9:15–9:27 a.m.) and 10:26 a.m. (95%

CI:10:15–10:37 a.m.), respectively. Delaying breakfast was

more common than advancing it, with 40%of the subjects delay-

ing breakfast by 1 hr or longer and 25%by 2.18 hr, while only 7%

advanced their breakfast time by >1 hr. The time of last caloric

intake wasmore variable than breakfast. The average last caloric

intake time was advanced by >1 hr in 17%, while only 15% de-

layed the time of last caloric intake by >1 hr on the weekend.

Eating Duration and Eating Pattern
Having observed a large variance in the first and last caloric

intake (Figure S3) and the absence of a clear 3 meals/day eating

pattern (Figures 2C and 2D) for most subjects, a potentially bet-

ter description of an individual’s eating pattern could be the daily

duration of caloric intake. Because food intake triggers post-

prandial changes in neuroendocrine state that can take minutes
etabolism 22, 789–798, November 3, 2015 ª2015 Elsevier Inc. 793
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Figure 4. Daily Duration of Caloric Intake

(A) Eating duration of all individuals is shown in the order of late (top) to early (bottom) nighttime fasting onset time.

(B) The time of last caloric intake weakly positively correlates with the time of first caloric intake.

(C and D) The daily duration of eating does not correlate with the time of first caloric intake (C) but weakly positively correlates with the time of the last caloric

intake (D).

(E and F) The subjects’ daily eating duration does not correlate with their BMI (kg/m2) (E), frequency distribution (red bars), and cumulative percentage (black line

and blue filled area) of eating duration (hours) (F).
to hours to return to resting or fasting state, eating too often

could clamp the physiological state between frequent meals to

the post-prandial state. Therefore, we defined the daily eating

duration as the time interval (4 a.m. onward) that contained

95% (2.5–97.5 percentile) of all intake events during the moni-

toring period (Figure 4A). This approach for arriving at the eating

duration from aggregate data over several days is tolerant of

occasional non-reporting of some random eating events. Break-

fast time weakly positively correlated with the last caloric intake

(r2 = 0.379), so that individuals with earlier breakfast also had

their last caloric intake earlier in the evening (Figure 4B). The

eating duration better correlated with the time of last caloric

intake (r2 = 0.215) than with the time of breakfast (r2 = 0.035)

(Figures 4C and 4D) or with BMI (r2 = 0.017) (Figure 4E). The

median daily eating duration was 14 hr 45 min, and only 9.7%

of the subjects had a daily eating duration <12 hr (Figure 4F)

long. The weak correlation (r2 = 0.017) between the eating

duration and BMI could be due to the limited sample size, the

heterogeneity of the participants in terms of gender and age,

and the fact that the eating pattern recorded in the monitoring

period is a short-term snapshot of a person’s long-term diet-

related behaviors.
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Restricting Eating Duration Reduces Body Weight
Many factors, including nutrition quality, quantity, physical

activity, and genetics contribute to obesity. Although we did

not find a simple correlation between BMI and eating duration,

we wanted to test whether longer eating duration and erratic

eating pattern are contributing factors in subjects with co-

occurrence of >25 BMI and >14 hr eating duration. We tested

if reducing the eating duration and metabolic jetlag associated

with weekday/weekend differences in a subset of individuals

would lead to reduction in body weight. We recruited 8 individ-

uals with >14 hr eating duration for a 16-week pilot intervention

study, such that each individual’s own baseline data served as

the control (Figure 5A) condition. Individualized ‘‘feedogram’’

graphics representing a temporal raster plot of ingestion

events in successive days were constructed (Figure 5B). After

obtaining informed consent for intervention, the participants

were provided data regarding their eating pattern accrued in

the 3-week baseline period (95% eating duration, variance in

first and last caloric intake, and weekday-weekend metabolic

jetlag) and were shown their own baseline ‘‘feedogram’’ prior

to the intervention. Because in rodents a daily eating period

of up to 12 hr improves metabolic fitness (Chaix et al., 2014),
Inc.



A B

E

F

C D

Figure 5. Improved Eating Pattern Reduces Body Weight in Healthy Overweight Individuals

(A) Schematic of the study design to test the effect of eating pattern on body weight.

(B) Representative ‘‘feedogram’’ of a participant during baseline and during intervention. The times of ingestion events are denoted as prominent black rectangles

along the 24 hr day represented in each horizontal line (x axis). Yellow represents the time between 6 a.m. and 6 p.m. Eating duration during baseline and

intervention is shown as broken lines.

(C) The daily eating duration of each individual during baseline (red) and intervention (blue) plotted against the local time (y axis).

(D) Scatter plot and average (±SEM) change in body weight in 8 participants during 3 weeks of baseline monitoring, after 16 weeks of intervention and after 1 year.

(E) Average (+SEM) body weight at the end of 3 weeks of baseline, after 16 weeks of monitored intervention and at 1 year.

(F) Average (+SEM) of subjective measures of energy level, hunger, and sleep in subjects. These subjective measures were assessed on a scale of 1–10, with 10

being the preferred (healthier) end of the range. Higher numbers thus indicated healthier values for the quantity, i.e., more energetic, less hunger at bedtime, and

more sleep satisfaction. *p < 0.05, t test.
the participants were requested to reduce their caloric-contain-

ing eating duration to a self-selected window of 10–12 hr and to

consistently follow this duration during both weekdays and

weekends so that the metabolic jetlag could be minimized.

No overt suggestion concerning nutrition quality, quantity, or

caloric content was provided. The individuals continued logging

their food pictures using the same app as used in the baseline

period for the next 16 weeks and also received a weekly sum-

mary of their feedograms and daily eating duration.
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All subjects reduced their eating duration (average reduction:

4 hr 35 min; 95% CI: 3 hr 30 min–5 hr 40 min; p < 0.001), and

their weekday/weekend metabolic jetlag was also reduced

to <1 hr (Figures 5B and 5C). The participants showed a reduc-

tion in total body weight (average loss 3.27 kg; 95% CI: 0.9081–

5.624 kg) and, accordingly, excess body weight (Figures 5D

and 5E, Table S3) and BMI (average reduction 1.15 kg/m2;

95% CI: 0.3247–1.980 kg/m2). In a subjective self-assessment

of sleep satisfaction, hunger at bedtime, and energy level
etabolism 22, 789–798, November 3, 2015 ª2015 Elsevier Inc. 795



(in the mornings, and overall over the past few days), statistically

significant improvement was observed (Figure 5F). All partici-

pants voluntarily expressed an interest in continuing unsuper-

vised with the 10–11 hr time-restricted eating regimen after

the conclusion of the 16-week supervised intervention. After

36 weeks (1 year since the intervention began), the participants

maintained weight loss and sleep improvement and felt more en-

ergetic (Figures 5D–5F, Table S3).

Although the participants were not overtly asked to change

nutrition quality or quantity, reducing the eating duration led to

reduced estimated caloric intake. Unlike mice, where reducing

the eating duration to �10 hr does not alter total caloric intake

(Hatori et al., 2012), our human intervention cohort reduced the

estimated daily caloric intake (average reduction 20.26%; 95%

CI 4.92%–35.6%; paired t test p < 0.05). Humans consume het-

erogeneous food types in a time-of-the-day-dependent manner

(Figure S4), e.g., coffee is almost always consumed in mornings,

while alcohol at night. As a result, during the intervention, it was

not the case that items that would have otherwise (in the baseline

period) been consumed in the designated 14 hr nighttime fasting

hours had been moved to the self-selected 10 hr feeding period

during the intervention. Instead, the person would simply not

consume such an item rather than consume it at the wrong

time of day. This could be one potential explanation for the

reduction in caloric intake.

Discussion
Collecting human nutrition information in the free-living condition

has been a persistent challenge. Recording dietary intake using

text entries, selecting from a large library of food items, and

specifying the portion size is a ubiquitous feature found in

most nutrition apps. Although such apps improve adherence

relative to the traditional diary log (Carter et al., 2013), data log-

ging can be cumbersome for mixed meals, and consequently,

users may not bother to log small snacks. Furthermore, portion

size reporting can be subjective. By adopting an approach

centered on food pictures with an optional user-side annotation

together with infrequent, but randomly timed, push notifications,

we reduced the barrier to data recording. Server side annotation

of the picture metadata ensured uniformity across the cohort.

Supervised crowd-sourced annotation can make this approach

scalable to large cohorts.

By overlaying the daily patterns of food and beverage intake,

activity-rest, and light exposure, we could uncover relationships

among them (Figures 3A–3C). Data integration from multiple

such longitudinal data streams has immense promise for disease

prognosis. Although the subjects did not have any chronic med-

ical conditions, they also logged their consumption of vitamins,

supplements, and occasional over-the-counter medications for

minor ailments, thus offering a temporal pattern of drug and sup-

plement use (Figure S4). Greater than 50% of the mammalian

transcriptome exhibits diurnal rhythms in a tissue-specific

manner (Zhang et al., 2014), the gut microbiome shows daily

rhythms (Thaiss et al., 2014), the timing of food affects these

rhythms in peripheral organs (Vollmers et al., 2009), and the tar-

gets of a large number of FDA approved drugs show circadian

expression (Zhang et al., 2014). Therefore, monitoring the timing

of drug intake relative to the sleep-wake or feeding-fasting cycle

can have a significant impact on disease prognosis and unravel-
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ing interactions among food, sleep, and drugs in free-living

individuals.

Formally, our work introduces a method and the critical

defining parameters for describing the diurnal and longer-term

temporal characteristics of nutrition in humans. By creating a

scalable method to longitudinally monitor human nutrition in an

evidence-based manner, we discovered that the daily eating

pattern even among healthy non-shift young workers is highly

variable from day to day. For more than half of the participants

in the baseline monitoring study, the eating pattern is erratic,

and energy intake events span over a large fraction of a 24 hr

day, with a relatively short fasting period (Figure 4). Although

the first caloric intake after leaving the bed happened within

1 hr 18 min (median value) (Figure 3C), less than 25% of the

daily caloric intake occurred before noon, while 37.5% was

consumed after 6 p.m. (Figure 2F). This suggests that breakfast

is relatively small in terms of energetic input and that major

caloric intake is delayed until later in the afternoon or evening

in this set of relatively young (Table S1) non-shift-worker sub-

jects. To address the universality of our observations concerning

eating patterns, this method may be extended to a larger popu-

lation spread over different geographical regions, work sched-

ules (e.g., shift-workers, retired individuals, nurses, pilots), age

groups, and/or cultures. It would also be useful to describe the

diurnal patterns of caloric intake in humans that do not have a

modern lifestyle influenced by electricity, such as hunter-gather

societies.

Individuals in our study largely ate throughout the wakeful

hours (Figure 3). Consequently, sleep duration and quality largely

dictated the eating pattern. Furthermore, since the sleep pattern

changes between weekdays (workdays) and weekends, leading

to social jetlag (Roenneberg et al., 2012; Wittmann et al., 2006),

the breakfast time also changes between weekdays and week-

ends. These changes in breakfast time are analogous to a

person traveling across time zones every weekend and can be

described as metabolic jetlag. The intricate connection we

observed between sleep and overnight fasting duration sug-

gests that the observed relationship between a short sleep dura-

tion and predisposition to metabolic diseases (Cappuccio et al.,

2011; Copinschi et al., 2014) may be partly explained by the

reduced duration of overnight fasting. Similarly, the reported cor-

relation between social jetlag and BMI may also involve meta-

bolic jetlag. The increased daily eating duration likely contributes

to increased caloric intake. A change in eating pattern between

days (e.g., weekday versus weekend) can affect time-of-day/

night-specific changes in food intake from specific food groups

(Figure S4). Therefore, one mode by which reduced sleep dura-

tion contributes to the increased risk for metabolic diseases

could be the increased daily eating duration and associated

changes in caloric intake and nutrition quality.

We did not find a simple positive correlation between the daily

eating duration and BMI in our cohort. This may be for several

reasons, including a limited sample size, heterogeneity of the

cohort, and a likely scenario that individuals with long eating

duration may also have more physical activity. Nevertheless,

reducing the temporal eating period in a feasibility study im-

parted measurable benefits of clinically relevant magnitude in

terms of body weight reduction and sleep improvement without

increasing the subjective sense of hunger. This relatively large
Inc.



effect on body weight reduction, even in the small intervention

cohort, implies that the benefits might result from multiple

changes: restoration of the diurnal rhythm of feeding/fasting,

reduction of the weekday/weekend metabolic jetlag, and a

reduction in the daily caloric intake. Some benefits of TRF might

arise from caloric reduction (CR). At the same time, we cannot

rule out the possibility that some benefits of CR in vertebrates

including humansmight be from TRF, asmost CR studies involve

caloric intake within a defined time frame. Nevertheless, if time

restriction under free-living condition inadvertently leads to

caloric reduction, TRF as a method to reduce caloric intake is

a more attractive option, as individuals, caregivers, case man-

agers, physicians, and scientists do not have to adopt expensive

and laborious methods to accurately track caloric count. Hence,

irrespective of mechanism, time restriction offers an effective

approach to improve health.

While the relative contribution of daily eating pattern, calories,

and nutrition quality to multifaceted health improvement in hu-

mans should be examined in detail in future studies, our results

highlight that suitable manipulation of the diurnal temporal

pattern of caloric intake is a feasible therapeutic approach for

improving human health in the free-living condition, in spite of

the vast variety of food and beverage types consumed by the

average person from day to day. This opens up the possibility

for utilizing this strategy by itself or in combination with existing

approaches for health improvement.

EXPERIMENTAL PROCEDURES

This study was approved by the IRB of the Salk Institute. Participants were re-

cruited during 2012–2013 through a newspaper advertisement, paper flyers,

and online advertisements. Inclusion and exclusion criteria were determined

by an online questionnaire and an in-person interview. All subjects provided

written informed consent during the first office visit and were asked to record

all of their food, beverage, and water intake using the smartphone app. Sub-

jects’ height and weight were measured using a calibrated scale and tape

measure at the beginning and end of the 3-week baseline period. Participants

were nominally compensated for their time and effort.

For the baseline study aimed at observing eating patterns in free-living

adults, data were collected from a Tuesday/Wednesday midnight to another

Tuesday/Wednesday midnight 21 days later. Subjects received instructions

to record every item consumed (food, drink, water) regardless of its size using

the app on their smartphone. The leftovers from items that were not completely

consumedwere to be recorded again, but described as such in the annotation.

Days with fewer than 3 total events (including non-caloric content items) were

flagged and verified with the participants for any observed fasting day or

whether they forgot to log data.

Subjects from the baseline study with BMI > 25 kg/m2 and whose intake

interval exceeded 14 hr were offered the opportunity to participate in the

intervention study. After a detailed presentation on the known benefits of

time-restricted feeding in rodents, data on their own eating pattern, and

what the intervention study would entail, subjects chose a 10 hr eating in-

terval of their choice and were to limit all non-water intake (including coffee

and tea) to that 10 hr interval. Eight subjects entered the study: 5 males

(age 34.4 ± 2.9 years, weight 96.7 ± 4.8 kg, BMI 31.77 ± 2.05 kg/m2), 3 fe-

males (age 36.3 ± 4.3 years, weight 91.8 ± 15 kg, BMI 34.91 ± 3.84 kg/m2;

average ± SEM). Ethnicity: 2 Hispanics, 6 non-Hispanic or Latino. Race:

3 Asian, 4 white, 1 more than one race. To identify undiagnosed fasting hy-

poglycemia, a fasting blood metabolic panel was performed at a certified

clinic prior to the intervention study for every subject. During the 16-

week-long intervention study, the participants were instructed to log in to

a personalized website every week to check their eating duration. Anthro-

pometrics were performed prior to the start of the intervention, just after

the completion of the 16-week-long intervention and 1 year after the start
Cell M
of the intervention. As the goal for this feasibility pilot study was to test

TRF in healthy overweight subjects with no recent history of fasting blood

sugar, cholesterol, and triglycerides outside the reference range, we did

not thoroughly investigate clinical biomarkers of metabolic diseases.

Software

The smartphone application was coded in Objective-C. When the application

is run for the first time, it generates a unique 20-character alphanumeric code

to identify the device as well as records the user’s Push Notification Service

identifier in a database. Access to the application was restricted to study par-

ticipants by a one-time username-based validation procedure. Food pictures

taken in JPEG format were downscaled to 1/10 their original size on the device

itself to reduce data usage. The functionality of each app tab is shown in

Figure S1. Push notifications were manually triggered at a random time of

the day during the stated wakeful period of the subject and numbered 1–2

per day. The specific push notification-based query presented to the subject

is dependent on the time when he/she sees it, not when it was originally initi-

ated from the server. The presented query and the response were recorded

on the server.

TheSalkMetabolic Study appwas available from the Apple AppStore during

the study period. To limit usage to subjects who provided a written informed

consent, the app activation required a randomly generated unique activation

key for each participant. Recently, the appwas revised, upgraded, and re-writ-

ten to run on the latest operating systems in iOS and Android devices under the

name ‘‘myCircadianClock.’’ Under Salk IRB approved study, the app is avail-

able to adults living in the U.S. Potential users can visit the website (http://

mycircadianclock.mycircadianclock.org/) to review the ongoing study objec-

tives and the consent document. If they consent to participate through elec-

tronic consenting, they are sent an activation key to use the app.

Data Annotation and Analysis

Duplicate pictures were first automatically removed by comparing MD5

checksums, which serve as a fingerprint of a file. A second round of de-

duplication was performed by manually inspecting the contents of sequen-

tially received food/drink pictures. De-duplicated data were then indepen-

dently annotated by two researchers for multiple characteristics that

describe each item. The items and estimated portion size were also looked

up in FNDDS or CalorieKing website for estimated caloric content. A third

researcher tallied the annotations and where discrepancies existed; all

three individuals conferred and arrived at a consensus description. In

recognition of the fact that lifestyles and work schedules are controlled

more by conventional time than solar time, the time data shown herein

referred to as ‘‘local time’’ incorporate daylight savings time when appli-

cable. In other words, depending on whether daylight savings time was

in effect (March–November) or not (November–March), a local time of 9.5

would refer to 9:30 a.m. PDT or 9:30 a.m. PST for an event recorded in

California. Polar plots were generated using Mathematica 9 (Wolfram). All

other plots and statistical analyses were prepared using Prism 5 (GraphPad

Software).

Feedogram

To generate a feedogram raster plot, events were binned into 15 min intervals

starting at midnight. Corresponding to each such bin, if an event was recorded

in it, the segment in the raster plot was colored black. If no event was present,

the segment was colored gray if it was between 6 p.m. and 6 a.m. and yellow

otherwise.
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