

REVIEW

Neuropeptides: implications for alcoholism

Michael S. Cowen^{*,†}, Feng Chen^{*,†} and Andrew J. Lawrence^{*,†}

**The Howard Florey Institute, University of Melbourne, VIC 3010, Australia*

†Department of Pharmacology, Monash University, VIC 3800 Australia

Abstract

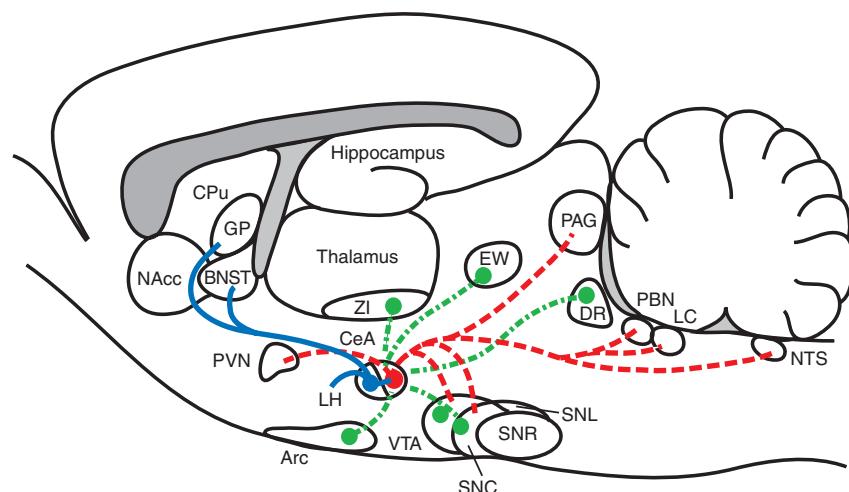
The role of neuromodulatory peptides in the aetiology of alcoholism has been relatively under-explored; however, the development of selective ligands for neuropeptide receptors, the characterization and cloning of receptors, and the development of transgenic mouse models have greatly facilitated this analysis. The present review considers the most recent preclinical evidence obtained from animal models for the role of two of the opioid peptides, namely β -endorphin and enkephalin; corticotropin-releasing factor

(CRF), urocortin 1 and neuropeptide Y (NPY) in deleterious and excessive alcohol consumption, focussing on specific brain regions, in particular the central nucleus of the amygdala, that appear to be implicated in the pathophysiology of alcoholism. The review also outlines potential directions for further research to clarify neuropeptide involvement in neuromodulation within discrete brain nuclei pertinent to behavioural patterns.

J. Neurochem. (2004) 89, 273–285.

Alcohol causes as much, if not more death and disability as measles, malaria, tobacco or illegal drugs (World Health Organization, 2001). In economic terms, alcohol abuse has been estimated at US\$167 billion per year; however, 'in human terms, the costs are incalculable' (National Institute on Alcohol Abuse and Alcoholism, 2001). For these reasons there has been extensive research into the pathophysiology underlying alcoholism; however, current therapeutic approaches cannot be regarded as a comprehensive solution to this extensive problem (Graham *et al.* 2002). A number of brain regions have been identified as being significantly involved in the reinforcing (and ultimately addictive) properties of alcohol, including the ventral tegmental area, the nucleus accumbens and the amygdala (Fig. 1; see Koob *et al.* 1998). In particular, as will be emphasised in this review, the central nucleus of the amygdala (CeA) appears to have a significant role in this regard. Several neurotransmitters have now been implicated in the pathophysiology of alcoholism, including dopamine, serotonin, GABA (Koob *et al.* 1998) and glutamatergic-mediated neurotransmission (Tsai and Coyle 1998). Until relatively recently however, the role of neuromodulatory peptides in the aetiology of alcoholism has been somewhat under-explored (with the possible exception of opioid peptides), due in part to the lack of selective ligands for neuropeptide receptors, the late characterization and cloning of the receptors themselves, and the relatively recent development of other tools (such as transgenic/knockout mice and genetic analysis of trait loci) that can facilitate this

analysis. However, drugs that interact with neuropeptide systems have great potential in the pharmacotherapy of alcoholism: witness the widespread (although somewhat less than satisfactory) use of the opioid antagonist naltrexone in the treatment of alcoholism (O'Malley *et al.* 1992; Volpicelli *et al.* 1992), identified prior to clinical use via a large body of preclinical data (see Cowen and Lawrence 1999). Based on the preclinical and other data, several other neuropeptides may have a significant role in the aetiology of alcoholism; these are discussed herein.


Opioid peptides

A reasonable body of evidence now indicates that ethanol, at reward-relevant doses, causes the release of β -endorphin from both neuronal (hypothalamic) and non-neuronal (i.e. the anterior pituitary) sources. As indicated in Table 1, people at high risk for the development of alcoholism (strong family history) show a significantly greater ethanol-induced pituitary release of β -endorphin (reflected in serum levels)

Received May 12, 2003; revised manuscript received October 12, 2003; accepted November 7, 2003.

Address correspondence and reprint requests to Dr Michael Cowen, The Howard Florey Institute, University of Melbourne, VIC 31010, Australia. E-mail: m.cowen@hfi.unimelb.edu.au

Abbreviations used: CeA, Central nucleus of the amygdala; CRF, corticotropin-releasing factor; i.c.v., intracerebroventricular; i.p., intraperitoneal; NPY, neuropeptide Y.

Fig. 1 Schematic diagram of the rat brain with particular reference to the neuroanatomical connections of the central nucleus of the amygdala (CeA). Projections predominantly arising from the lateral CeA are shown in blue (solid line); projections predominantly arising from the medial CeA are shown in red (long dashes). Projections to the CeA are shown in green (long-short dashes). Note this diagram is not a comprehensive schematic. The CeA receives dopaminergic input from the medial substantia nigra/dorsolateral ventral tegmental area (SN/VTA; Fallon and Moore 1978; Loughlin and Fallon 1983), as well as the A13 group in the medial zona incerta (ZI; Eaton *et al.* 1994; Wagner *et al.* 1995), a serotonergic projection presumably from the dorsal raphe nucleus (DR; Yoshimoto *et al.* 2000), β -endorphin-immunoreactive terminals from the arcuate nucleus (Arc; Finley *et al.* 1981; Gray *et al.* 1984) and urocortin-immunoreactive terminals (Bittencourt *et al.* 1999) that may arise from neurons within the Edinger-Westphal nucleus (EW), but may also arise from other urocortin-expressing neuronal populations. The primary neuronal origin of NPY-immunoreactive terminals within the CeA is not yet clear. GABAergic neurons from the

lateral CeA project to the medial CeA (Sun and Cassell 1993; Sun *et al.* 1994). Enkephalin and corticotropin-releasing factor occur in the lateral portion of the CeA where they are coexpressed with GABA but rarely with each other (Veinante *et al.* 1997). Enkephalin- and CRF-expressing neurons contribute to the projection from the lateral CeA to the bed nucleus of the stria terminalis (BNST; Uhl *et al.* 1978; Sakanaka *et al.* 1986); CRF to the projection to the lateral hypothalamus (LH; Fellmann *et al.* 1982; Sakanaka *et al.* 1986) and enkephalin in the projection to the globus pallidus (GP; Arlison *et al.* 1990). Neurons from the medial CeA project to a number of brain regions (with minor projections from the lateral CeA) including the nucleus of the solitary tract (NTS), the parabrachial nucleus of the pons (PBN), the locus coeruleus (LC), the periaqueductal gray (PAG), the substantia nigra pars compacta/ventral tegmental area (SNC/VTA) and the paraventricular nucleus of the hypothalamus (PVN; Veening *et al.* 1984; Cassell *et al.* 1986; Gray *et al.* 1989; Wallace *et al.* 1989; Gray and Magnuson 1992; Wallace *et al.* 1992). CPu, caudate-putamen; NAcc, nucleus accumbens.

compared with people at low risk for the development of alcoholism. Paralleling the human situation, alcohol-preferring strains of rats and mice show a significantly greater release of β -endorphin from the hypothalamus compared to alcohol-non-preferring strains of rat and mice. Although the parallels between the animal models with the human situation are intriguing, the role of the release of β -endorphin from the anterior pituitary in the reinforcing properties of ethanol is unclear, although there remains the possibility of retrograde transport to the median eminence and hypothalamus (Gianoulakis *et al.* 1989, 1996). Serum β -endorphin levels may simply be a reflection of the ethanol-induced synthesis and release of CRF (and vasopressin) from the paraventricular nucleus of the hypothalamus (Rivier *et al.* 1984; Ogilvie *et al.* 1997), which causes the release of adrenocorticotropic hormone (ACTH) and β -endorphin from the anterior pituitary (Rivier *et al.* 1982; Jackson *et al.* 1984). Given the generally recognised association of the nucleus accumbens with reward processes (Koob 1992; Koob *et al.* 1998), the release of β -endorphin within the nucleus

accumbens in response to ethanol, as well in response to the psychostimulants cocaine and d-amphetamine (Olive *et al.* 2001) would appear to be significant. Since the effect of ethanol on β -endorphin release in the nucleus accumbens may occur via stimulation of the endorphinergic cell bodies within the hypothalamus (de Waele *et al.* 1992; de Waele *et al.* 1994), ethanol may induce release of β -endorphin from other terminal regions.

We also posit a role for enkephalinergic neurons within the central nucleus of the amygdala (see Fig. 1) in the reinforcing properties of ethanol. Induction of c-Fos protein occurs in the central nucleus of the amygdala (CeA) following either acute injection of alcohol (Chang *et al.* 1995; Ryabinin *et al.* 1997) in rats or during the acquisition of alcohol self-administration by C57BL/6 J mice (Ryabinin *et al.* 2001), but not once the self-administration is established (Weitemier *et al.* 2001; Ryabinin *et al.* 2003). However, we have recently demonstrated that chronic free-choice ethanol consumption by alcohol-preferring Fawn-Hooded rats led to an up-regulation in preproenkephalin mRNA in the CeA

Table 1 Release of β -endorphin-like immunoreactivity induced by ethanol

Study	Model	Dose/Concentration of Ethanol	Release characteristics
(Gianoulakis <i>et al.</i> 1989)	Serum levels of β -endorphin (human) 15, 45 & 120 min postdrink, β -endorphin measured by radioimmunoassay (RIA) and gel filtration	0.5 g/kg	Greater in those with a family history of alcoholism (high-risk) vs. those with no family history of alcoholism (low-risk); predominant peptide was β -lipotropin
(de Waele <i>et al.</i> 1992)	Perfusion of dissected hypothalami (mouse), β -endorphin measured by RIA & high pressure liquid chromatography (HPLC)	10, 20, 25, 30 & 60 mM	Concentration-dependent release; greater from the hypothalami of alcohol-preferring C57BL/6 mice compared with alcohol- non-preferring DBA/2 mice
(de Waele <i>et al.</i> 1994)	Perfusion of dissected hypothalami (rat), β -endorphin measured by RIA & HPLC	10, 20, 30 & 60 mM	Concentration-dependent release; release of bioactive form (nonacetylated β -endorphin 1–31) was greater from the hypothalami of alcohol-preferring AA rats compared with alcohol-non-preferring ANA rats
(Gianoulakis <i>et al.</i> 1996)	Serum levels of β -endorphin 15, 45, 120 & 180 min postdrink (human), β -endorphin measured by RIA and gel filtration	0, 0.25, 0.5 & 0.75 g/kg	Dose-dependent release in those with a family history of alcoholism (high-risk) but not in those with no family history of alcoholism (low-risk); predominant peptide was β -lipotropin
(Olive <i>et al.</i> 2001)	Microdialysis measurement of neurotransmitter release from the nucleus accumbens of conscious, freely moving rats; β -endorphin measured by RIA	2 \times 2 g/kg i.p.	
(Marinelli <i>et al.</i> 2003)	Microdialysis measurement of the nucleus accumbens of conscious, freely moving rats; β -endorphin measured by RIA	0.8, 1.6 & 2.4 g/kg i.p.	Dose-dependent release

(Cowen and Lawrence 2001) and Criado and Morales (2000) have shown that following an acute injection of ethanol (2 g/kg, i.p.) in Sprague-Dawley rats, 94% of Fos-immunoreactive cells in the CeA are colocalised with preproenkephalin mRNA. Interestingly, administration of the opioid antagonist methylnaloxonium directly into the CeA decreased ethanol self-administration at doses slightly lower than those necessary when delivered directly into the nucleus accumbens (Heyser *et al.* 1999). Although not yet demonstrated, we speculate that ethanol consumption facilitates the release of enkephalin within the CeA, although since β -endorphin terminals are also present in the (medial) CeA (Finley *et al.* 1981; Gray *et al.* 1984), the effect of methylnaloxonium in the CeA may be directed towards β -endorphin-mediated neuromodulation.

Ethanol consumption by mice lacking the preproenkephalin gene (Table 2; Koenig and Olive 2002) or by mice expressing a truncated form of the *Pomc* gene such that β -endorphin is not expressed (Table 2; Grisel *et al.* 1999; Grahame *et al.* 2000) is not significantly greater than that of wild-type mice; under certain paradigms, mice expressing the truncated form of the *Pomc* gene actually drank more alcohol

(Grisel *et al.* 1999; Grahame *et al.* 2000). Such data are difficult to interpret, given the now-recognized phenomenon of phenotypic drift (Sur *et al.* 2001; Cowen *et al.* 2003); however, the data may indicate redundancy in alcohol-induced opioid peptide-mediated signalling. This would appear to be confirmed by the fact that the opioid antagonist naltrexone decreased alcohol consumption under limited access conditions by both wild-type and β -endorphin-deficient mice (Grahame *et al.* 2000). Ultimately, a double enkephalin/endorphin null mouse (if viable), or a more temporally restricted inhibition of gene expression, for example using RNA interference (Fire *et al.* 1998), may get to the heart of this issue. In contrast to the equivocal results with the neuropeptide-deficient mouse models, the diminished level of alcohol self-administration by μ -opioid receptor deficient mice (Roberts *et al.* 2000b) would appear to clearly indicate that this receptor (and neuromodulation mediated by this receptor) is significant in the reinforcing properties of alcohol, regardless of the endogenous peptide that may be mediating the effect. Whereas the δ -opioid receptor knockout mouse demonstrated enhanced ethanol consumption subsequent to operant self-administration

Study	Mouse model	Effect on ethanol consumption
(Koenig and Olive 2002)	Preproenkephalin deficient mice	No effect
(Grahame <i>et al.</i> 1998; Grisel <i>et al.</i> 1999; Grahame <i>et al.</i> 2000)	Truncated form of Pomp gene; no expression of β -endorphin	No effect; increase in certain paradigms
(Roberts <i>et al.</i> 2000b)	μ -opioid receptor deficient mice	Decreased ethanol consumption
(Roberts <i>et al.</i> 2001)	δ -opioid receptor deficient mice	Increased ethanol consumption
(Olive <i>et al.</i> 2003)	CRF-deficient mice	Increased ethanol consumption
(Sillaber <i>et al.</i> 2002)	CRF ₁ receptor deficient mice	No difference to wild-type mice under basal conditions, marked post-stress increase in ethanol consumption
(Thiele <i>et al.</i> 1998; Thiele <i>et al.</i> 2000)	Neuropeptide Y deficient mice	Increased ethanol consumption
(Thiele <i>et al.</i> 2002)	NPY Y1 receptor deficient mice	Increased ethanol consumption
(Pandey <i>et al.</i> 2003a)	NPY Y2 receptor deficient mice	Decreased ethanol consumption
(Thiele <i>et al.</i> 2000)	NPY Y5 receptor deficient mice	No effect on ethanol consumption; increased sensitivity to sedative/hypnotic effects

Table 2 'Knockout' mice and ethanol consumption

training (Roberts *et al.* 2001), the authors suggested that this consumption was in fact related to an anxiolytic effect of ethanol, since these mice demonstrated an anxiety-related phenotype that was reversed by ethanol consumption.

The data with respect to alcohol and opioid peptides clearly concurs with the use of the opioid antagonist naltrexone in the clinical treatment of alcoholism (O'Malley *et al.* 1992; Volpicelli *et al.* 1992), as noted in the introduction. However, the latest Cochrane review has suggested limited effectiveness for naltrexone in the treatment of alcoholism (Srisurapanont and Jarusuraisin 2003). Thus far, naltrexone would appear to be most effective in combination with coping skills training, with continued use over the medium term rather than a short initial intervention (O'Malley *et al.* 1992; O'Malley *et al.* 1996a; Heinala *et al.* 2001). There has been some discussion as to whether naltrexone is more effective in blocking craving or the rewarding effects of alcohol per se (Sinclair 1998; O'Malley *et al.* 2002); opioid-mediated signalling appears to have a role in both. Subjective rewarding responses to alcohol (Volpicelli *et al.* 1995) have been reported to be blocked by concurrent self-administration of naltrexone in alcoholics; naltrexone has also been reported to decrease self-measured craving in alcoholics, both in those seeking treatment (O'Malley *et al.* 1996b) and those not seeking treatment (O'Malley *et al.* 2002). The preclinical data presented above, for example on β -endorphin release induced by alcohol, could support a role for opioid-mediated signalling in the rewarding properties of alcohol; however, in one of the few preclinical animal studies that may adequately model craving, Liu and Weiss (2002) recently demonstrated that reinstatement of alcohol consumption, induced by an olfactory cue previously associated with the availability of alcohol, was prevented by naltrexone. Naltrexone was ineffective,

however, on reinstatement of alcohol seeking behaviour induced by footshock stress (Liu and Weiss 2002). The clinical studies clearly indicate that in spite of treatment with naltrexone, relapse is a recurring problem (O'Malley *et al.* 1996a; Heinala *et al.* 2001); in the study by Heinala *et al.* (2001) approximately 70% of patients treated with naltrexone/coping skills had relapsed at the end of the study period (the best outcome of the four treatment groups), although a relatively high proportion of these had only one relapse episode. We would argue that this result indicates that strong motivational factors for relapse remain, and that a combination pharmacotherapy approach (e.g. Rezvani *et al.* 2000) is most likely to produce the greatest long-term benefit.

Corticotropin-releasing factor (CRF)

A number of recent studies have demonstrated that CRF antagonists prevent or diminish alcohol consumption or alcohol-seeking behaviour in several quite varied models associated with states of dysphoria (see Table 3). Thus, footshock stress-induced reinstatement of alcohol-seeking behaviour (Le *et al.* 2000; Liu and Weiss 2002), ethanol withdrawal-induced operant responding for alcohol (Valdez *et al.* 2002b) and anxiety-related alcohol consumption (Lodge and Lawrence 2003) are diminished by the use of the non-selective CRF antagonist d-Phe-CRF (Le *et al.* 2000; Liu and Weiss 2002; Valdez *et al.* 2002b) or selective CRF₁ receptor antagonists (Le *et al.* 2000; Lodge and Lawrence 2003). Although there appears to be a common pharmacological pathway, different neuroanatomical locations may account for the effects of these CRF antagonists on alcohol-seeking behaviour or alcohol consumption. Thus, Le *et al.* (2002) have demonstrated that delivery of the CRF antagonist d-Phe-CRF within the median raphe nucleus blocks

Table 3 CRF antagonists decrease alcohol consumption/alcohol-seeking behaviour

Study	Antagonist/dose	Effect/Model
(Le <i>et al.</i> 2000)	d-Phe-CRF ₁₂₋₄₁ (0, 0.3 & 1 µg i.c.v) CP-154 526 (selective CRF ₁ antagonist) (0, 15, 30 & 45 mg/kg i.p.)	Dose-dependent decrease in footshock-induced reinstatement of extinguished responding for alcohol.
(Le <i>et al.</i> 2002)	d-Phe-CRF ₁₂₋₄₁ (0 & 50 ng, intramedian raphe nucleus)	Blocked footshock-induced reinstatement of extinguished responding for alcohol.
(Liu and Weiss 2002)	d-Phe-CRF ₁₂₋₄₁ (0, 1 & 10 µg i.c.v.)	Dose-dependent decrease in footshock-induced reinstatement of extinguished responding for alcohol, but no effect on conditioned stimulus-induced reinstatement.
(Valdez <i>et al.</i> 2002b)	d-Phe-CRF ₁₂₋₄₁ (0, 1, 5 & 10 µg i.c.v.)	Dose-dependent decrease in responding for alcohol in rats that had undergone withdrawal from chronic ethanol vapour 2 h and 3–5 weeks prior to operant session, but not in control rats.
(Lodge and Lawrence 2003)	Antalarmin (selective CRF ₁ antagonist) (20 mg/kg i.p. bi-daily)	Prevented the acquisition and reduced established ethanol consumption by isolation-reared Fawn-Hooded rats.

stress-induced reinstatement of alcohol-seeking behaviour, indicating a role for this nucleus in stress-induced alcohol-seeking behaviour. Whether the primary source of CRF in the median raphe nucleus is the CRF-expressing neurons within this nucleus (Sakanaka *et al.* 1987) or from some other distal nucleus such as the dorsal raphe nucleus (Sakanaka *et al.* 1987) is unclear. However, ethanol withdrawal in rats has also been shown to cause a marked release of CRF in the CeA (Fig. 1) as measured by microdialysis, reaching a maximum at 10–12 h from the beginning of withdrawal (Merlo Pich *et al.* 1995). Further, direct application of a CRF receptor antagonist, α -helical-CRF, into the CeA caused a decrease in the anxiogenic effects of withdrawal from ethanol (Rassnick *et al.* 1993). Finally, basal levels of CRF release in the CeA as measured by microdialysis were shown to be elevated in the alcohol-preferring sP (Sardinian-preferring) rat strain compared with the sNP (Sardinian-non-preferring) rat strain (Richter *et al.* 2000); the elevated release of CRF from the CeA of sP rats was suggested to be related to their greater levels of anxiety, as measured by the elevated plus maze (Richter *et al.* 2000). Thus the data would appear to suggest that a primary locus of the effects of CRF antagonists on withdrawal-related alcohol consumption may be the CeA, and this nucleus may also have a more generalized role in anxiety-related alcohol consumption.

That ‘dysphoria’-induced relapse has a significant role in the clinical situation has been emphasised by Koob and colleagues recently (Roberts *et al.* 2000a; Valdez *et al.* 2002b). Thus in a sample of 100 alcoholic patients, 96 had experienced depression and 94 anxiety in the 28 days prior to interview; 80 of the 100 patients identified anxiety or depression or both as having provoked drinking (Hershon 1977). In another study (Marlatt and Gordon 1980), 39% of alcoholics indicated negative emotional states were the

primary reason for relapse (in contrast, 11% indicated urges and temptations were the primary motivation). However, the potential of selective CRF₁ receptor antagonists, such as antalarmin, as therapeutic drugs appears to be in conflict with data demonstrating that CRF-deficient mice drank approximately twice as much as their wild-type counterparts when ethanol (at concentrations above the taste threshold) and water were available in a two-bottle preference test (Olive *et al.* 2003; Table 2), although it has been suggested (Bachtell *et al.* 2003; Olive *et al.* 2003) that this may be due to a compensatory increase in urocortin I expression (see below) in these mice (Weninger *et al.* 2000). More problematic was the demonstration that a series of stressful episodes lead to a marked and prolonged increase in ethanol consumption in CRF₁-receptor deficient but not wild-type mice (Sillaber *et al.* 2002), even though initially there were no significant differences in alcohol consumption between CRF₁-receptor deficient and wild-type mice. These data seem to suggest that the CRF₁ receptor is involved in adaptive responses to stress that are impaired in these mice, as well as the acute response to stressors (Timpl *et al.* 1998). One of the few clinical studies published thus far examining the effect of a CRF₁ receptor antagonist (Zobel *et al.* 2000) indicated the drug (R121919) was well tolerated and produced significant improvements in measures of anxiety and depression over a period of 30 days. While the conflicting data may simply represent species differences in terms of CRF signalling within the central nervous system, the data may argue against a blanket, chronic use of CRF antagonists in the treatment of alcoholism; clearly further study is needed.

Urocortin

c-Fos immunoreactivity is induced in the Edinger-Westphal nucleus by ethanol in a range of experimental paradigms (see

Table 4 Induction of c-Fos immunoreactivity by ethanol in the Edinger-Westphal nucleus

Study	Model
(Chang <i>et al.</i> 1995)	Acute injection of ethanol (3 g/kg i.p), Sprague-Dawley rats
	Chronic injection of ethanol (3 g/kg i.p. bi-daily, 17–24 days), Sprague-Dawley rats
(Ryabinin <i>et al.</i> 1997)	Acute injection of ethanol (0.5 & 1.5 g/kg i.p), Sprague-Dawley rats
(Topple <i>et al.</i> 1998)	Limited-access beer consumption, Wistar rats
Bachtell <i>et al.</i> 1999)	Limited-access ethanol/sucrose consumption, C57BL/6 J mice
(Ryabinin <i>et al.</i> 2001)	Initiation of ethanol/sucrose consumption, C57BL/6 J mice
(Weitemier <i>et al.</i> 2001)	Operant responding for 10% ethanol by alcohol-preferring AA rats
(Bachtell <i>et al.</i> 2002a)	Acute injection of ethanol (2.4 g/kg i.p), C57BL/6 J mice
(Bachtell <i>et al.</i> 2002b)	Acute injection of ethanol (0, 0.6–4.8 g/kg i.p), C57BL/6 J & DBA/2 J mice
(Ryabinin <i>et al.</i> 2003)	Chronic injection of ethanol (2.4 g/kg i.p. daily, 14 days), C57BL/6 J & DBA/2 J mice
(Bachtell <i>et al.</i> 2003)	Dark-phase limited-access ethanol consumption, C57BL/6 J mice
	Limited-access ethanol/sucrose consumption, C57BL/6 J & DBA/2 J mice

Table 5 Relationship between ethanol consumption, hypothermic effects of ethanol and urocortin in the Edinger-Westphal (EW) and lateral septal nucleus (LSN)

Mouse strain	Hypothermic response/number of urocortin-positive cells (EW)	Ethanol consumption/number of urocortin positive cells (EW)	Ethanol consumption/urocortin in the lateral septal nucleus
Heterogenous B6D2 F2 mice	Positive correlation between hypothermic response and urocortin positive cells (Bachtell <i>et al.</i> 2002b)	Positive correlation between ethanol consumption (limited access; not continual access) and urocortin positive cells (Bachtell <i>et al.</i> 2003).	Negative correlation between ethanol consumption and urocortin-immunoreactive processes in the LSN (Bachtell <i>et al.</i> 2003).
COLD/HOT mice	COLD mice – greater hypothermic response than HOT mice (Crabbe <i>et al.</i> 1987) and higher number of urocortin positive cells (Bachtell <i>et al.</i> 2002b)	COLD mice drink more ethanol at concentrations above 5% (Cunningham <i>et al.</i> 1991); higher number of urocortin positive cells (Bachtell <i>et al.</i> 2002b)	
C57BL/6 J mice/ DBA/2 J mice		C57BL/6 J consume more ethanol (Belknap <i>et al.</i> 1993) and have a higher number of urocortin positive cells (Bachtell <i>et al.</i> 2002b).	
HAP/LAP mice		HAP mice consume more alcohol than LAP mice (Grahame <i>et al.</i> 1999) and have a higher number of urocortin positive cells (Bachtell <i>et al.</i> 2003).	HAP mice – Replicate 1: greater number of urocortin immunoreactive processes (Bachtell <i>et al.</i> 2003). Replicate 2: No difference in urocortin immunoreactive processes (Bachtell <i>et al.</i> 2003).

Table 4); unlike the effect of ethanol in the CeA and the paraventricular nucleus of the hypothalamus, this Fos response still occurs with chronic experimenter-administered ethanol (Chang *et al.* 1995; Bachtell *et al.* 2002b) or chronic self-administration (Topple *et al.* 1998; Weitemier *et al.* 2001). The neuropeptide urocortin I is predominantly expressed within the Edinger-Westphal nucleus (Vaughan *et al.* 1995), and as such efforts have concentrated on determining the relationship between the effects of alcohol

and urocortin I expression in this nucleus (summarised in Table 5). A positive correlation between the hypothermic response to alcohol (3.6 g/kg i.p) and the number of urocortin I-expressing cells in heterogenous B6D2 F2 was determined (Bachtell *et al.* 2002b). Similarly COLD mice, which are relatively sensitive to the hypothermic effects of alcohol, have a higher number of urocortin I-expressing cells than HOT mice, which are relatively insensitive to the hypothermic effects of alcohol (Bachtell *et al.* 2002b).

However, as the authors point out, the c-Fos response in the Edinger-Westphal nucleus occurs at far lower concentrations of alcohol than the hypothermic response (Bachtell *et al.* 2002b).

Bachtell *et al.* (2002b) have also determined that alcohol-non-preferring DBA/2 J mice have fewer urocortin I-positive cells than alcohol-preferring C57BL/6 J mice. Suggestive of a role in alcohol consumption, Bachtell *et al.* (2003) have further demonstrated that alcohol consumption under limited access conditions by heterogenous B6D2 F2 mice positively correlates with urocortin I immunoreactivity and urocortin I-positive cells in the Edinger-Westphal nucleus but negatively correlates with urocortin I-immunoreactive processes in the lateral septal nucleus (Table 5). COLD mice also demonstrate higher ethanol consumption than HOT mice at concentrations above 5% (Cunningham *et al.* 1991). However, although alcohol-preferring HAP mice demonstrated greater levels of urocortin I immunoreactivity and urocortin I-positive cells in the Edinger-Westphal nucleus compared with alcohol-non-preferring LAP mice (Bachtell *et al.* 2003), HAP mice either had greater number of urocortin I-immunoreactive processes in the lateral septal nucleus (replicate 1) or no significant difference (replicate 2) compared with LAP mice. Thus far, the data would appear to support a role for the Edinger-Westphal nucleus/urocortin I in the differential ethanol consumption of alcohol-preferring/non-preferring strains of mice; however, the primary projection site(s) through which urocortin may produce this differential ethanol consumption is as yet unclear.

As urocortin I has greater affinity than CRF for the CRF₂ receptor and slightly greater affinity for the CRF₂ than the CRF₁ receptor (Vaughan *et al.* 1995), urocortin I was suggested to be an endogenous ligand for the CRF₂ receptor (Vaughan *et al.* 1995). However, neuropeptides more selective for the CRF₂ receptor have since been discovered – urocortin II (Reyes *et al.* 2001) and urocortin III (Lewis *et al.* 2001). Urocortin II has been shown to cause a decrease in food (Reyes *et al.* 2001; Inoue *et al.* 2003) and water intake (Inoue *et al.* 2003), a mild decrease in locomotor activity (Valdez *et al.* 2002a) and decreased anxiety-like behaviour (Valdez *et al.* 2002a). Urocortin III similarly caused a decrease in locomotor activity and decreased anxiety-like behaviour (Valdez *et al.* 2003). The effects of selective non-peptide CRF₂ receptor antagonists such as K41498 (Lawrence *et al.* 2002) on alcohol consumption have not yet been tested. Although the anxiolytic actions of urocortin II and III, presumably mediated via CRF₂ receptors, may facilitate a decrease in ‘dysphoria’-induced alcohol consumption, it is unclear whether the appetite suppressant effects may be counterproductive.

Neuropeptide Y (NPY)

An increasing body of research has indicated an interaction between neuropeptide Y and alcohol consumption (Pandey *et al.* 2003a). The main impetus for the examination of this

interaction was the finding that NPY-deficient mice show increased ethanol consumption, whereas NPY-overexpressing mice show decreased ethanol consumption (Thiele *et al.* 1998; Table 2). Although the NPY-deficient mice were less sensitive to the sedative/hypnotic effects of ethanol, whereas the NPY-overexpressing mice were more sensitive (Thiele *et al.* 1998), a second strain of NPY-deficient mice on a different genetic background did not demonstrate this decreased sensitivity to the hypnotic effects of ethanol, but did demonstrate greater ethanol consumption than wild-type mice when a 20% solution was offered (Thiele *et al.* 2000). Alcohol consumption by several other NPY-related knockout mice have now been analysed (Table 2). The regulatory effect of NPY on ethanol consumption appears to be mediated via the Y1 receptor, as Y1^{–/–} mice show increased ethanol consumption relative to wild-type mice, but normal consumption of sucrose or quinine solutions (Thiele *et al.* 2002). In contrast, Y2^{–/–} mice (the Y2 receptor believed to be an inhibitory autoreceptor on NPY-containing terminals; Naveilhan *et al.* 1999) were shown to have decreased ethanol consumption relative to wild-type controls (Pandey *et al.* 2003a). This effect was replicated with the selective Y2 receptor antagonist BIIE0246, which decreased responding for a sweetened ethanol solution (Thorsell *et al.* 2002). Evidence from other experimental models also indicate that dysregulation of NPY expression may have a role in heavy/excessive alcohol consumption. Badia-Elder *et al.* (2001) have demonstrated that intracerebroventricular (i.c.v.) delivery of NPY caused decreased ethanol consumption in alcohol-preferring P rats, but not in Wistar or alcohol-non-preferring NP rats and interestingly, low levels of NPY have been reported in the CeA of P and HAD rat strains compared with alcohol-non-preferring NP and LAD rat strains (Table 6; Hwang *et al.* 1999). However, no similar difference was found in alcohol-preferring AA rats compared with ANA rats (Caberlotto *et al.* 2001), although there was a significantly lower expression of NPY mRNA in the hippocampus; nor did i.c.v. administration of NPY affect ethanol consumption by AA rats under operant conditions (Slawecki *et al.* 2000), clearly indicating strain differences in the probable etiology of excessive alcohol consumption.

In humans, an association between alcoholism and a polymorphism in the signal peptide region of the NPY gene (resulting in a substitution of Pro7 for Leu7) has been suggested but conflicting data have been obtained (Pandey *et al.* 2003a; Zhu *et al.* 2003). To date, no study examining the effect of NPY (or non-peptide analogues) in the treatment for alcoholism has been published. However, given the antistress/anxiolytic-like effects of NPY in several animal models (Heilig and Thorsell 2002) as well as the reversal of anxiolytic effects of NPY by antisense inhibition of the Y1 receptor (Heilig 1995), it may be anticipated that non-peptide NPY analogues, particularly those selective for the Y1 receptor, or possibly Y2 antagonists (Thorsell *et al.* 2002),

Study	Rats strains	Significant effects
(Hwang <i>et al.</i> 1999)	Alcohol-preferring P vs. alcohol-non-preferring NP;	↑ NPY immunoreactivity in the PVN, Arc ↓ NPY immunoreactivity in the CeA
(Hwang <i>et al.</i> 1999)	Alcohol-preferring HAD vs. alcohol-non-preferring LAD	↓ NPY immunoreactivity in the PVN, Arc ↓ NPY immunoreactivity in the CeA
(Caberlotto <i>et al.</i> 2001)	Alcohol-preferring AA vs. alcohol-non-preferring ANA	↓ NPY mRNA expression in HC

may produce positive outcomes in the treatment of alcohol dependence.

Other neuropeptides

The data for other neuropeptides appears to be less complete. Substance P and neuropeptide-like immunoreactivity were shown to be low in the frontal cortex of alcohol-preferring P rats compared with alcohol-non-preferring NP rats (Slawecki *et al.* 2001); interestingly, the NK₃ receptor agonist senktide was shown to decrease alcohol consumption in this same strain of alcohol-preferring rat (Ciccocioppo *et al.* 1995); however, further data by the same authors suggest that senktide may have rewarding properties itself (Ciccocioppo *et al.* 1998). The neuropeptide NTS1 receptor appears to have a significant role in the hypnotic effects of ethanol (Erwin *et al.* 2001). Differential CCK-1 and CCK-2 receptor expression and density were recently found between the alcohol-preferring Fawn-Hooded and alcohol-non-preferring Wistar Kyoto strains of rats (Lodge and Lawrence 2001). Finally nociceptin, which is an endogenous ligand for the opioid receptor-like 1 (ORL1) receptor, decreases alcohol consumption in rats under a range of experimental protocols (Ciccocioppo *et al.* 2002).

Central nucleus of the amygdala

Alluded to throughout this review is the significant role that the central nucleus of the amygdala (CeA; Koob *et al.* 1998; McBride 2002; see Fig. 1) may play in excessive alcohol consumption. We hypothesize that the reinforcing properties of ethanol, both positive and negative, are mediated via the CeA, although not exclusively. Several other strands of evidence not heretofore mentioned would support this view, notably the release of dopamine and serotonin within the CeA induced by systemic alcohol administration (Yoshimoto *et al.* 2000); the alteration in local cerebral glucose utilization within the CeA induced by alcohol self-administration (McBride 2002), the alterations in ethanol consumption induced by drugs that modulate GABAergic neurotransmission (Hyytiä and Koob 1995; Roberts *et al.* 1996) and protein kinase A (PKA) activity (Pandey *et al.* 2003a; Pandey *et al.* 2003b) when microinjected into the CeA; finally the decrease in ethanol consumption induced by bilateral lesions of the central but not the basolateral nuclei of the amygdala (Moller *et al.* 1997). Other neuroanatomical

Table 6 Alterations in NPY-like immunoreactivity and NPY mRNA in alcohol-preferring/non-preferring strains of rats. Arc, arcuate nucleus; HC, hippocampus; PVN, paraventricular nucleus of the hypothalamus.

strands of evidence may be woven into this model; for example, the presence of β -endorphin-immunoreactive terminals in the medial portion of the CeA (Finley *et al.* 1981; Gray *et al.* 1984) and the presence of urocortin-immunoreactive terminals, which although occurring 'sparsely' throughout the cerebral cortex, basal ganglia and amygdala, occur at moderately dense levels in the medial central nucleus (and posterior cortical nucleus) of the amygdala (Bittencourt *et al.* 1999), suggestive that these two neuropeptides, implicated in the etiology of excessive alcohol consumption, may mediate some of their effects at this brain nucleus.

How the various neurotransmitters and peptides interact within the CeA in response to ethanol consumption, ethanol withdrawal and stress (and other dysphoric states) has yet to be ascertained, although several aspects can be outlined. Although not yet demonstrated directly, we would suggest that alcohol consumption facilitates the release of opioid peptides within the CeA, whereas alcohol withdrawal, as noted previously (Merlo Pich *et al.* 1995) causes the release of CRF in the CeA. Interestingly, CRF and enkephalin are both expressed in GABAergic neurons within the (lateral) CeA (Veening *et al.* 1984; Cassell *et al.* 1986; Fallon and Leslie 1986; Sakanaka *et al.* 1986; Veinante *et al.* 1997) but are apparently not coexpressed (Veinante *et al.* 1997). Why ethanol should differently regulate these two neuronal populations is as yet unclear. Low levels of NPY within the CeA (Hwang *et al.* 1999) and/or possibly the release of serotonin and dopamine by alcohol (Yoshimoto *et al.* 2000) may facilitate or inhibit one or other of these two groups of neurons. However, experiments examining the relevant colocalization of neuropeptides and receptors within this brain region have yet to be performed.

Liu and Weiss (2002), as noted previously, demonstrated that reinstatement of alcohol-seeking behavior by conditioned olfactory cues was significantly diminished by the opioid antagonist naltrexone, suggestive of role of opioidergic signalling in this behavior, whereas reinstatement of alcohol-seeking behavior by footshock stress was reversed by the CRF antagonist d-Phe-CRF. Whether alcohol-associated cues may lead to the release of opioid peptides within the CeA is a matter for speculation; however, that neurons within the CeA (in particular those expressing CRF) are responsive to stress are well documented. For example,

bilateral electrolytic lesions of the CeA prevented the turnover of dopamine in the prefrontal cortex in rats in response to both a novel stressful environment and footshock stress (Davis *et al.* 1994); bilateral lesions of the CeA using ibotenic acid have been shown to prevent the increase in anxiety-like behavior caused by one hour of restraint stress prior to the elevated plus-maze test (Moller *et al.* 1997). Restraint stress was shown to lead to CRF release directly within the CeA (Merlo Pich *et al.* 1995; Richter *et al.* 2000) and psychological stress (placement of non-stressed rats in the same cage as a group of rats previously stressed by footshock) was shown to cause an up-regulation of CRF mRNA and content in the CeA (Makino *et al.* 1999).

How alterations in neuropeptide and neurotransmitter signalling within the CeA should influence drug-seeking behavior is not completely clear; whether this involves, for example, modulation of the mesolimbic dopaminergic system, does not appear to have been determined. Although there is a projection from the CeA to the substantia nigra/ventral tegmental area (Fig. 1; Veening *et al.* 1984; Cassell *et al.* 1986; Wallace *et al.* 1989, 1992), Maeda and Mogen-son (1981) demonstrated that electric stimulation of the CeA results in activation (or in one-third of cases, suppression) of dopaminergic and non-dopaminergic neurons within the ventral tegmental area primarily via multisynaptic pathways, although a relatively high number of non-dopaminergic neurons were activated by stimulation of the central nucleus via a monosynaptic pathway.

Combination pharmacotherapy & conclusions

Clearly, alcohol interacts with several neuropeptide systems and modulation of these could potentially provide useful therapies in the treatment of alcoholism. The clinical data appear to support a combination pharmacotherapy approach; for example naltrexone in combination with a CRF antagonist or NPY Y1 receptor agonist; there is also the possibility of combination with drugs that target other neuronal systems, such as serotonin (Pettinati 2001). In the clinical studies outlined previously, levels of anxiety/depression would appear to have had a contributory role in relapse even if they were not the primary etiologic cause (Hershon 1977; Marlatt and Gordon 1980). We suggest that an appropriate broad-band pharmacological intervention will facilitate the continuation of abstinence or the prevention of relapse while other factors (social support structure, coping skills, Brown *et al.* 1995) develop or improve. With regard however, to the role of neuropeptides in alcoholism and its treatment possibilities, perhaps the most significant problem is the relative lack of water-soluble, non-peptide analogues of the neuropeptides (both agonists and antagonists). The development of such compounds would of course have benefits not only for the treatment of alcoholism but for the treatment of other widespread problems such as anxiety and depression.

Acknowledgements

The authors acknowledge the support of the National Health and Medical Research Council, Australia and the Australian Brewers' Foundation.

References

- Arluison M., Vankova M., Cesselin F. and Leveil V. (1990) Origin of some enkephalin-containing afferents to the ventro-medial region of the globus pallidus in the rat. *Brain Res. Bull.* **25**, 25–34.
- Bachtell R. K., Wang Y. M., Freeman P., Risinger F. O. and Ryabinin A. E. (1999) Alcohol drinking produces brain region-selective changes in expression of inducible transcription factors. *Brain Res.* **847**, 157–165.
- Bachtell R. K., Tsivkovskaia N. O. and Ryabinin A. E. (2002a) Alcohol-induced c-Fos expression in the Edinger-Westphal nucleus: pharmacological and signal transduction mechanisms. *J. Pharmacol. Exp. Ther.* **302**, 516–524.
- Bachtell R. K., Tsivkovskaia N. O. and Ryabinin A. E. (2002b) Strain differences in urocortin expression in the Edinger-Westphal nucleus and its relation to alcohol-induced hypothermia. *Neuroscience* **113**, 421–434.
- Bachtell R. K., Weitemier A. Z., Galvan-Rosas A., Tsivkovskaia N. O., Risinger F. O., Phillips T. J., Grahame N. J. and Ryabinin A. E. (2003) The Edinger-Westphal-lateral septum urocortin pathway and its relationship to alcohol consumption. *J. Neurosci.* **23**, 2477–2487.
- Badia-Elder N. E., Stewart R. B., Powrozek T. A., Roy K. F., Murphy J. M. and Li T. K. (2001) Effect of neuropeptide Y (NPY) on oral ethanol intake in Wistar, alcohol-preferring (P), and – nonpreferring (NP) rats. *Alcohol. Clin. Exp. Res.* **25**, 386–390.
- Belknap J. K., Crabbe J. C. and Young E. R. (1993) Voluntary consumption of ethanol in 15 inbred mouse strains. *Psychopharmacology (Berl)* **112**, 503–510.
- Bittencourt J. C., Vaughan J., Arias C., Rissman R. A., Vale W. W. and Sawchenko P. E. (1999) Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. *J. Comp. Neurol.* **415**, 285–312.
- Brown S. A., Vik P. W., Patterson T. L., Grant I. and Schuckit M. A. (1995) Stress, vulnerability and adult alcohol relapse. *J. Stud. Alcohol* **56**, 538–545.
- Caberlotto L., Thorsell A., Rimondini R., Sommer W., Hyytia P. and Heilig M. (2001) Differential expression of NPY and its receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. *Alcohol. Clin. Exp. Res.* **25**, 1564–1569.
- Cassell M. D., Gray T. S. and Kiss J. Z. (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. *J. Comp. Neurol.* **246**, 478–499.
- Chang S. L., Patel N. A. and Romero A. A. (1995) Activation and desensitization of Fos immunoreactivity in the rat brain following ethanol administration. *Brain Res.* **679**, 89–98.
- Ciccocioppo R., Panocka I., Pompei P., Polidori C., de Caro G. and Massi M. (1995) Subcutaneous injections of the tachykinin senktide reduce alcohol intake in alcohol-preferring rats. *Peptides* **16**, 533–537.
- Ciccocioppo R., Panocka I., Polidori C., Froldi R., Angeletti S. and Massi M. (1998) Mechanism of action for reduction of ethanol intake in rats by the tachykinin NK-3 receptor agonist amino-senktide. *Pharmacol. Biochem. Behav.* **61**, 459–464.
- Ciccocioppo R., Polidori C., Antonelli L., Salvadori S., Guerrini R. and Massi M. (2002) Pharmacological characterization of the

nociceptin receptor which mediates reduction of alcohol drinking in rats. *Peptides* **23**, 117–125.

Cowen M. S. and Lawrence A. J. (1999) The role of opioid–dopamine interactions in the induction and maintenance of ethanol consumption. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* **23**, 1171–1212.

Cowen M. S. and Lawrence A. J. (2001) Alterations in central prepro-enkephalin mRNA expression after chronic free-choice ethanol consumption by fawn-hooded rats. *Alcohol. Clin. Exp. Res.* **25**, 1126–1133.

Cowen M. S., Schumann G., Yagi T. and Spanagel R. (2003) Role of Fyn tyrosine kinase in ethanol consumption in mice. *Alcohol. Clin. Exp. Res.* **27**, 1213–1219.

Crabbe J. C., Kosobud A., Tam B. R., Young E. R. and Deutsch C. M. (1987) Genetic selection of mouse lines sensitive (COLD) and resistant (HOT) to acute ethanol hypothermia. *Alcohol Drug Res.* **7**, 163–174.

Criado J. R. and Morales M. (2000) Acute ethanol induction of c-Fos immunoreactivity in pre-pro-enkephalin expressing neurons of the central nucleus of the amygdala. *Brain Res.* **861**, 173–177.

Cunningham C. L., Hallett C. L., Niehus D. R., Hunter J. S., Nouth L. and Risinger F. O. (1991) Assessment of ethanol's hedonic effects in mice selectively bred for sensitivity to ethanol-induced hypothermia. *Psychopharmacology (Berl)* **105**, 84–92.

Davis M., Hitchcock J. M., Bowers M. B., Berridge C. W., Melia K. R. and Roth R. H. (1994) Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala. *Brain Res.* **664**, 207–210.

Eaton M. J., Wagner C. K., Moore K. E. and Lookingland K. J. (1994) Neurochemical identification of A13 dopaminergic neuronal projections from the medial zona incerta to the horizontal limb of the diagonal band of Broca and the central nucleus of the amygdala. *Brain Res.* **659**, 201–207.

Erwin V. G., Gehle V. M., Davidson K. and Radcliffe R. A. (2001) Confirmation of correlations and common quantitative trait loci between neuropeptin receptor density and hypnotic sensitivity to ethanol. *Alcohol. Clin. Exp. Res.* **25**, 1699–1707.

Fallon J. H. and Leslie F. M. (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. *J. Comp. Neurol.* **249**, 293–336.

Fallon J. H. and Moore R. Y. (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. *J. Comp. Neurol.* **180**, 545–580.

Fellmann D., Bugnon C. and Goujet A. (1982) Immunocytochemical demonstration of corticoliberin-like immunoreactivity (CLI) in neurones of the rat amygdala central nucleus (ACN). *Neurosci. Lett.* **34**, 253–258.

Finley J. C., Lindstrom P. and Petrusz. P. (1981) Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. *Neuroendocrinology* **33**, 28–42.

Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E. and Mello C. C. (1998) Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* **391**, 806–811.

Gianoulakis C., Beliveau D., Angelogianni P., Meaney M., Thavundayil J., Tawar V. and Dumas M. (1989) Different pituitary beta-endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism. *Life Sci.* **45**, 1097–1109.

Gianoulakis C., Krishnan B. and Thavundayil J. (1996) Enhanced sensitivity of pituitary beta-endorphin to ethanol in subjects at high risk of alcoholism. *Arch. General Psychiatry* **53**, 250–257.

Graham R., Wodak A. D. and Whelan G. (2002) New pharmacotherapies for alcohol dependence. *Med. J. Aust.* **177**, 103–107.

Grahame N. J., Low M. J. and Cunningham C. L. (1998) Intravenous self-administration of ethanol in beta-endorphin-deficient mice. *Alcohol. Clin. Exp. Res.* **22**, 1093–1098.

Grahame N. J., Li T. K. and Lumeng L. (1999) Selective breeding for high and low alcohol preference in mice. *Behav. Genet.* **29**, 47–57.

Grahame N. J., Mosemiller A. K., Low M. J. and Froehlich J. C. (2000) Naltrexone and alcohol drinking in mice lacking beta-endorphin by site-directed mutagenesis. *Pharmacol. Biochem. Behav.* **67**, 759–766.

Gray T. S. and Magnuson D. J. (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. *Peptides* **13**, 451–460.

Gray T. S., Cassell M. D. and Kiss J. Z. (1984) Distribution of pro-opiomelanocortin-derived peptides and enkephalins in the rat central nucleus of the amygdala. *Brain Res.* **306**, 354–358.

Gray T. S., Carney M. E. and Magnuson D. J. (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. *Neuroendocrinology* **50**, 433–446.

Grisel J. E., Mogil J. S., Grahame N. J., Rubinstein M., Belknap J. K., Crabbe J. C. and Low M. J. (1999) Ethanol oral self-administration is increased in mutant mice with decreased beta-endorphin expression. *Brain Res.* **835**, 62–67.

Heilig M. (1995) Antisense inhibition of neuropeptide Y (NPY)-Y1 receptor expression blocks the anxiolytic-like action of NPY in amygdala and paradoxically increases feeding. *Regul. Pept.* **59**, 201–205.

Heilig M. and Thorsell A. (2002) Brain neuropeptide Y (NPY) in stress and alcohol dependence. *Rev. Neurosci.* **13**, 85–94.

Heinala P., Alho H., Kjianmaa K., Lonnqvist J., Kuoppasalmi K. and Sinclair J. D. (2001) Targeted use of naltrexone without prior detoxification in the treatment of alcohol dependence: a factorial double-blind, placebo-controlled trial. *J. Clin. Psychopharmacol.* **21**, 287–292.

Hershon H. I. (1977) Alcohol withdrawal symptoms and drinking behavior. *J. Stud. Alcohol* **38**, 953–971.

Heyser C. J., Roberts A. J., Schulteis G. and Koob G. F. (1999) Central administration of an opiate antagonist decreases oral ethanol self-administration in rats. *Alcohol. Clin. Exp. Res.* **23**, 1468–1476.

Hwang B. H., Zhang J. K., Ehlers C. L., Lumeng L. and Li T. K. (1999) Innate differences of neuropeptide Y (NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats with high and low alcohol preference. *Alcohol. Clin. Exp. Res.* **23**, 1023–1030.

Hytyä P. and Koob G. F. (1995) GABA_A receptor antagonism in the extended amygdala decreases ethanol self-administration in rats. *Eur. J. Pharmacol.* **283**, 151–159.

Inoue K., Valdez, G. R., Reyes T. M., Reinhardt L. E., Tabarin A., Rivier J., Vale W. W., Sawchenko P. E., Koob G. F. and Zorrilla E. P. (2003) Human urocortin II, a selective agonist for the type 2 corticotropin-releasing factor receptor, decreases feeding and drinking in the Rat. *J. Pharmacol. Exp. Ther.* **305**, 385–393.

Jackson R. V., DeChemey G. S., DeBold C. R., Sheldon W. R., Alexander A. N., Rivier J., Vale W. and Orth D. N. (1984) Synthetic ovine corticotropin-releasing hormone: simultaneous release of proopiomelanocortin peptides in man. *J. Clin. Endocrinol. Metab.* **58**, 740–743.

Koenig H. N. and Olive M. F. (2002) Ethanol consumption patterns and conditioned place preference in mice lacking preproenkephalin. *Neurosci. Lett.* **325**, 75–78.

Koob G. F. (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. *Trends Pharmacol. Sci.* **13**, 177–184.

Koob G. F., Roberts A. J., Schulteis G., Parsons L. H., Heyser C. J., Hyttia P., Merlo-Pich E. and Weiss F. (1998) Neurocircuitry targets in ethanol reward and dependence. *Alcohol. Clin. Exp. Res.* **22**, 3–9.

Lawrence A. J., Krstew E. V., Dautzenburg F. M. and Rühmann A. (2002) The highly selective CRF₂ receptor antagonist K41498 binds to presynaptic CRF₂ receptors in rat brain. *Br. J. Pharmacol.* **136**, 896–904.

Le A. D., Harding S., Juzytsch W., Fletcher P. J. and Shaham Y. (2002) The role of corticotropin-releasing factor in the median raphe nucleus in relapse to alcohol. *J. Neurosci.* **22**, 7844–7849.

Le A. D., Harding S., Juzytsch W., Watchus J., Shalev U. and Shaham Y. (2000) The role of corticotrophin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. *Psychopharmacology (Berl)* **150**, 317–324.

Lewis K., Li C., Perrin M. H. et al (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. *Proc. Natl. Acad. Sci. USA* **98**, 7570–7575.

Liu X. and Weiss F. (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. *J. Neurosci.* **22**, 7856–7861.

Lodge D. J. and Lawrence A. J. (2001) Comparative analysis of the central CCK system in Fawn Hooded and Wistar Kyoto rats: extended localisation of CCK-A receptors throughout the rat brain using a novel radioligand. *Regul. Pept.* **99**, 191–201.

Lodge D. J. and Lawrence A. J. (2003) The CRF₁ receptor antagonist antalarmin reduces volitional ethanol consumption in isolation-reared fawn-hooded rats. *Neuroscience* **117**, 243–247.

Loughlin S. E. and Fallon J. H. (1983) Dopaminergic and non-dopaminergic projections to amygdala from substantia nigra and ventral tegmental area. *Brain Res.* **262**, 334–338.

Maeda H. and Mogenson G. J. (1981) Electrophysiological responses of neurons of the ventral tegmental area to electrical stimulation of amygdala and lateral septum. *Neuroscience* **6**, 367–376.

Makino S., Shibasaki T., Yamauchi N., Nishioka T., Mimoto T., Wakabayashi I., Gold P. W. and Hashimoto K. (1999) Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat. *Brain Res.* **850**, 136–143.

Marinelli P. W., Quirion R. and Gianoulakis C. (2003) A microdialysis profile of beta-endorphin and catecholamines in the rat nucleus accumbens following alcohol administration. *Psychopharmacology (Berl)* in press.

Marlatt G. A. and Gordon J. R. (1980) Determinants of relapse: implications for the maintenance of behavior change. In: *Behavioral Medicine: Changing Health Lifestyles* (Davidson, P. O. and Davidson, S. M., eds), pp. 410–452. Brunner/Mazel, New York.

McBride W. J. (2002) Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents. *Pharmacol. Biochem. Behav.* **71**, 509–515.

Merlo Pich E., Lorang M., Yeganeh M., Rodriguez de Fonseca F., Raber J., Koob G. F. and Weiss F. (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. *J. Neurosci.* **15**, 5439–5447.

Moller C., Wiklund L., Sommer W., Thorsell A. and Heilig M. (1997) Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions. *Brain Res.* **760**, 94–101.

National Institute on Alcohol Abuse and Alcoholism (2001) *Alcoholism: Getting the facts*. [www document]. URL <http://www.niaaa.nih.gov/publications/booklet.htm> [accessed 7 Feb 2003]

Naveilhan P., Hassani H., Canals J. M. et al (1999) Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. *Nat. Med.* **5**, 1188–1193.

O'Malley S. S., Jaffe A. J., Chang G., Rode S., Schottenfeld R., Meyer R. E. and Rounsvaile B. (1996a) Six-month follow-up of naltrexone and psychotherapy for alcohol dependence. *Arch. General Psychiatry* **53**, 217–224.

O'Malley S. S., Jaffe A. J., Chang G., Schottenfeld R. S., Meyer R. E. and Rounsvaile B. (1992) Naltrexone and coping skills therapy for alcohol dependence. A controlled study. *Arch. General Psychiatry* **49**, 881–887.

O'Malley S. S., Jaffe A. J., Rode S. and Rounsvaile B. J. (1996b) Experience of a 'slip' among alcoholics treated with naltrexone or placebo. *Am. J. Psychiatry* **153**, 281–283.

O'Malley S. S., Krishnan-Sarin S., Farren C., Sinha R. and Kreek J. (2002) Naltrexone decreases craving and alcohol self-administration in alcohol-dependent subjects and activates the hypothalamo-pituitary-adrenocortical axis. *Psychopharmacology (Berl)* **160**, 19–29.

Ogilvie K. M., Lee S. and Rivier C. (1997) Role of arginine vasopressin and corticotropin-releasing factor in mediating alcohol-induced adrenocorticotropin and vasopressin secretion in male rats bearing lesions of the paraventricular nuclei. *Brain Res.* **744**, 83–95.

Olive M. F., Koenig H. N., Nannini M. A. and Hodge C. W. (2001) Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. *J. Neurosci.* **21**, RC184.

Olive M. F., Mehmert K. K., Koenig H. N., Camarini R., Kim J. A., Nannini M. A., Ou C. J. and Hodge C. W. (2003) A role for corticotropin releasing factor (CRF) in ethanol consumption, sensitivity, and reward as revealed by CRF-deficient mice. *Psychopharmacology (Berl)* **165**, 181–187.

Pandey S. C., Carr L. G., Heilig M. and Ilveskoski and Thiele T. E. (2003a) Neuropeptide Y and alcoholism: genetic, molecular, and pharmacological evidence. *Alcohol. Clin. Exp. Res.* **27**, 149–154.

Pandey S. C., Roy A. and Zhang H. (2003b) The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats. *Alcohol. Clin. Exp. Res.* **27**, 396–409.

Pettinati H. M. (2001) The use of selective serotonin reuptake inhibitors in treating alcoholic subtypes. *J. Clin. Psychiatry* **62**, 26–31.

Rassnick S., Heinrichs S. C., Britton K. T. and Koob G. F. (1993) Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. *Brain Res.* **605**, 25–32.

Reyes T. M., Lewis K., Perrin M. H. et al. (2001) Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. *Proc. Natl. Acad. Sci. USA* **98**, 2843–2848.

Rezvani A. H., Overstreet D. H., Mason G. A., Janowsky D. S., Hamed M., Clark E. Jr and Yang Y. (2000) Combination pharmacotherapy: a mixture of small doses of naltrexone, fluoxetine, and a thyrotropin-releasing hormone analogue reduces alcohol intake in three strains of alcohol-preferring rats. *Alcohol. Alcohol.* **35**, 76–83.

Richter R. M., Zorrilla E. P., Basso A. M., Koob G. F. and Weiss F. (2000) Altered amygdalar CRF release and increased anxiety-like behavior in Sardinian alcohol-preferring rats: a microdialysis and behavioral study. *Alcohol. Clin. Exp. Res.* **24**, 1765–1772.

Rivier C., Brownstein M., Spiess J., Rivier J. and Vale W. (1982) In vivo corticotropin-releasing factor-induced secretion of adrenocorticotropin, beta-endorphin, and corticosterone. *Endocrinology* **110**, 272–278.

Rivier C., Bruhn T. and Vale W. (1984) Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF). *J. Pharmacol. Exp. Ther.* **229**, 127–131.

Roberts A. J., Cole M. and Koob G. F. (1996) Intra-amygdala muscimol decreases operant ethanol self-administration in dependent rats. *Alcohol. Clin. Exp. Res.* **20**, 1289–1298.

Roberts A. J., Gold L. H., Polis I., McDonald J. S., Filliol D., Kieffer B. L. and Koob G. F. (2001) Increased ethanol self-administration in delta-opioid receptor knockout mice. *Alcohol. Clin. Exp. Res.* **25**, 1249–1256.

Roberts A. J., Heyser C. J., Cole M., Griffin P. and Koob G. F. (2000a) Excessive ethanol drinking following a history of dependence: animal model of allostasis. *Neuropsychopharmacology* **22**, 581–594.

Roberts A. J., McDonald J. S., Heyser C. J., Kieffer B. L., Matthes H. W., Koob G. F. and Gold L. H. (2000b) μ -Opioid receptor knockout mice do not self-administer alcohol. *J. Pharmacol. Exp. Ther.* **293**, 1002–1008.

Ryabinin A. E., Criado J. R., Henriksen S. J., Bloom F. E. and Wilson M. C. (1997) Differential sensitivity of c-Fos expression in hippocampus and other brain regions to moderate and low doses of alcohol. *Mol. Psychiatry* **2**, 32–43.

Ryabinin A. E., Bachtell R. K., Freeman P. and Risinger F. O. (2001) ITF expression in mouse brain during acquisition of alcohol self-administration. *Brain Res.* **890**, 192–195.

Ryabinin A. E., Galvan-Rosas A., Bachtell R. K. and Risinger F. O. (2003) High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. *Psychopharmacology (Berl)* **165**, 296–305.

Sakanaka M., Shibasaki T. and Lederis K. (1986) Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. *Brain Res.* **382**, 213–238.

Sakanaka M., Shibasaki T. and Lederis K. (1987) Corticotropin releasing factor-like immunoreactivity in the rat brain as revealed by a modified cobalt-glucose oxidase-diaminobenzidine method. *J. Comp. Neurol.* **260**, 256–298.

Sillaber I., Rammes G., Zimmermann S., Mahal B., Ziegglansberger W., Wurst W., Holsboer F. and Spanagel R. (2002) Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH₁ receptors. *Science* **296**, 931–933.

Sinclair J. D. (1998) New treatment options for substance abuse from a public health viewpoint. *Ann. Med.* **30**, 406–411.

Slawecski C. J., Betancourt M., Walpole T. and Ehlers C. L. (2000) Increases in sucrose consumption, but not ethanol consumption, following ICV NPY administration. *Pharmacol. Biochem. Behav.* **66**, 591–594.

Slawecski C. J., Jimenez-Vasquez P., Mathe A. A. and Ehlers C. L. (2001) Substance P and neurokinin levels are decreased in the cortex and hypothalamus of alcohol-preferring (P) rats. *J. Stud. Alcohol* **62**, 736–740.

Srisurapanont M. and Jarusuraisin N. (2003) Opioid antagonists for alcohol dependence (Cochrane Review). In: *The Cochrane Library*, Volume Issue, 1. Update Software, Oxford.

Sun N. and Cassell M. D. (1993) Intrinsic GABAergic neurons in the rat central extended amygdala. *J. Comp. Neurol.* **330**, 381–404.

Sun N., Yi H. and Cassell M. D. (1994) Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. *J. Comp. Neurol.* **340**, 43–64.

Sur C., Wafford K. A., Reynolds D. S. *et al* (2001) Loss of the major GABA_A receptor subtype in the brain is not lethal in mice. *J. Neurosci.* **21**, 3409–3418.

Thiele T. E., Marsh D. J., Ste Marie L., Bernstein I. L. and Palmiter R. D. (1998) Ethanol consumption and resistance are inversely related to neuropeptide Y levels. *Nature* **396**, 366–369.

Thiele T. E., Miura G. I., Marsh D. J., Bernstein I. L. and Palmiter R. D. (2000) Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. *Pharmacol. Biochem. Behav.* **67**, 683–691.

Thiele T. E., Koh M. T. and Pedrazzini T. (2002) Voluntary alcohol consumption is controlled via the neuropeptide Y Y₁ receptor. *J. Neurosci.* **22**, RC208.

Thorsell A., Rimondini R. and Heilig M. (2002) Blockade of central neuropeptide Y (NPY) Y2 receptors reduces ethanol self-administration in rats. *Neurosci. Lett.* **332**, 1–4.

Timpl P., Spanagel R., Sillaber I., Kresse A., Reul J. M., Stalla G. K., Blanquet V., Steckler T., Holsboer F. and Wurst W. (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. *Nat. Genet.* **19**, 162–166.

Topple A. N., Hunt G. E. and McGregor I. S. (1998) Possible neural substrates of beer-craving in rats. *Neurosci. Lett.* **252**, 99–102.

Tsai G. and Coyle J. T. (1998) The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. *Annu. Rev. Med.* **49**, 173–184.

Uhl G. R., Goodman R. R., Kuhar M. J. and Snyder S. H. (1978) Enkephalin and neuropeptides: immunohistochemical localization and identification of an amygdalofugal pathway. *Adv. Biochem. Psychopharmacol.* **18**, 71–87.

Valdez G. R., Inoue K., Koob G. F., Rivier J., Vale W. and Zorrilla E. P. (2002a) Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. *Brain Res.* **943**, 142–150.

Valdez G. R., Roberts A. J., Chan K., Davis H., Brennan M., Zorrilla E. P. and Koob G. F. (2002b) Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. *Alcohol. Clin. Exp. Res.* **26**, 1494–1501.

Valdez G. R., Zorrilla E. P., Rivier J., Vale W. W. and Koob G. F. (2003) Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. *Brain Res.* **980**, 206–212.

Vaughan J., Donaldson C., Bittencourt J. *et al* (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. *Nature* **378**, 287–292.

Veening J. G., Swanson L. W. and Sawchenko P. E. (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study. *Brain Res.* **303**, 337–357.

Veinante P., Stoeckel M. E. and Freund-Mercier M. J. (1997) GABA- and peptide-immunoreactivities co-localize in the rat central extended amygdala. *Neuroreport* **8**, 2985–2989.

Volpicelli J. R., Alterman A. I., Hayashida M. and O'Brien C. P. (1992) Naltrexone in the treatment of alcohol dependence. *Arch. General Psychiatry* **49**, 876–880.

Volpicelli J. R., Watson N. T., King A. C., Sherman C. E. and O'Brien C. P. (1995) Effect of naltrexone on alcohol 'high' in alcoholics. *Am. J. Psychiatry* **152**, 613–615.

de Waele J. P., Papachristou D. N. and Gianoulakis C. (1992) The alcohol-preferring C57BL/6 mice present an enhanced sensitivity of the hypothalamic beta-endorphin system to ethanol than the alcohol-avoiding DBA/2 mice. *J. Pharmacol. Exp. Ther.* **261**, 788–794.

de Waele J. P., Kiiianmaa K. and Gianoulakis C. (1994) Spontaneous and ethanol-stimulated in vitro release of beta-endorphin by the hypothalamus of AA and ANA rats. *Alcohol. Clin. Exp. Res.* **18**, 1468–1473.

Wagner C. K., Eaton M. J., Moore K. E. and Lookingland K. J. (1995) Efferent projections from the region of the medial zona incerta

containing A13 dopaminergic neurons: a PHA-L anterograde tract-tracing study in the rat. *Brain Res.* **677**, 229–237.

Wallace D. M., Magnuson D. J. and Gray T. S. (1989) The amygdalobrainstem pathway: selective innervation of dopaminergic, noradrenergic and adrenergic cells in the rat. *Neurosci. Lett.* **97**, 252–258.

Wallace D. M., Magnuson D. J. and Gray T. S. (1992) Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. *Brain Res. Bull.* **28**, 447–454.

Weitemier A. Z., Woerner A., Backstrom P., Hytyia P. and Ryabinin A. E. (2001) Expression of c-Fos in Alko alcohol rats responding for ethanol in an operant paradigm. *Alcohol. Clin. Exp. Res.* **25**, 704–710.

Weninger S. C., Peters L. L. and Majzoub J. A. (2000) Urocortin expression in the Edinger-Westphal nucleus is up-regulated by stress and corticotropin-releasing hormone deficiency. *Endocrinology* **141**, 256–263.

World Health Organization (2001) *A summary of global status report on alcohol*. [www document] URL <http://www.who.int/training/khow/publications/en/globalstatussummary.pdf> [accessed 23 January 2003]

Yoshimoto K., Ueda S., Kato B., Takeuchi Y., Kawai Y., Noritake K. and Yasuhara M. (2000) Alcohol enhances characteristic releases of dopamine and serotonin in the central nucleus of the amygdala. *Neurochem. Int.* **37**, 369–376.

Zhu G., Pollak L., Mottagui-Tabar S., Wahlestedt C., Taubman J., Virkkunen M., Goldman D. and Heilig M. (2003) NPY leu⁷pro and alcohol dependence in Finnish and Swedish Populations. *Alcohol. Clin. Exp. Res.* **27**, 19–24.

Zobel A. W., Nickel T., Kunzel H. E., Ackl N., Sonntag A., Ising M. and Holsboer F. (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. *J. Psychiatr. Res.* **34**, 171–181.