(3) Elliott and Yost: J. Am. Chem. Soc. 66, 1057 (1934).
(4) Garner, Green, and Yost: J. Am. Chem. Soc. 57, 2055 (1935).
(5) Larsen and Hunt: J. Phys. Chem. 38, 801 (1934).
(6) Pleskov and Monosgon: J. Phys. Chem. (U. S. S. R.) 6, 513 (1935).
(7) Ritchey and Hunt: J. Phys. Chem. 43, 407 (1939).
(8) Scotr: Standard Methods of Chemical Analysis, p. 372. D. Van Nostrand Company, Inc., New York (1939).
(9) Willard and Furman: Elementary Quantitative Analysis, p. 295. D. Van Nostrand Company, Inc., New York (1935).

# AN ABBREVIATION OF THE METHOD OF LEAST SQUARES GERALD J. COX and MARGARET C. MATUSCHAK <br> The Nutrition Fellowship of The Buhl Foundation, Mellon Institute, Pittsburgh, Pennsylvania 

Received October 1, 1938
Many physical and chemical data can be summarized by equations of the type

$$
y=a+b x+c x^{2}+g x^{3}
$$

but the labor of accurate reduction by the method of least squares is too frequently discouraging or even prohibitive.

In the special case in which the successive values of $x$ are in arithmetic progression, the calculation of the parameters of the power series can be much abbreviated. If an arbitrary origin is set in the middle of the range of observations, then for every positive value of $x$ there will be a corresponding negative value of equal absolute magnitude and the sums of the odd powers of $x$ will all be zero. The equation given above would then be altered to

$$
y=A+B X+C X^{2}+G X^{3}
$$

in which the capital letters indicate that the equation has been referred to the arbitrary origin and $X=x-h$.

Baily (1) has shown that further abbreviation of the calculations can be made by extracting certain constant values which recur in the solution of the normal equations, such as those shown below for a third-order power series:

$$
\begin{aligned}
& A=\frac{\Sigma y \Sigma X^{4}-\Sigma X^{2} y \Sigma X^{2}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}} \\
& B=\frac{\Sigma X y \Sigma X^{6}-\Sigma X^{3} y \Sigma X^{4}}{\Sigma X^{6} \Sigma X^{2}-\left(\Sigma X^{4}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
C & =\frac{\Sigma X^{2} y \Sigma X^{0}-\Sigma y \Sigma X^{2}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}} \\
G & =\frac{\Sigma X^{3} y \Sigma X^{2}-\Sigma X y \Sigma X^{4}}{\Sigma X^{6} \Sigma X^{2}-\left(\Sigma X^{4}\right)^{2}}
\end{aligned}
$$

In these formulae the factors in $y$ must be derived from the observations, but those involving $X$ alone, including the denominators, are independent of the data. Baily (1) has tabulated the functions in $X$.

Use of the tables of Baily requires the determination of a quotient of the difference of two products. We have found that the calculation can be reduced to the difference of two products by the following consideration:

$$
\begin{aligned}
A & =\frac{\Sigma y \Sigma X^{4}-\Sigma X^{2} y \Sigma X^{2}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}} \\
& =\frac{\Sigma y \Sigma X^{4}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}}-\frac{\Sigma X^{2} y \Sigma X^{2}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}} \\
& =k_{3} \Sigma y-k_{4} \Sigma X^{2} y
\end{aligned}
$$

in which

$$
k_{3}=\frac{\Sigma X^{4}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}}
$$

and

$$
k_{4}=\frac{\Sigma X^{2}}{\Sigma X^{4} \Sigma X^{0}-\left(\Sigma X^{2}\right)^{2}}
$$

Similarly, the values of such functions in $X$ necessary for the derivation of equations of order lower or higher than the third can be obtained. We have calculated the values of $k_{n}$ necessary for the reduction of data to first-, second-, or third-degree equations through those required for fifty-one observations, as given in tables 1 and 2.

In table 3 are shown the products and differences of products used in the derivation of equations from data. The factors $\Sigma y, \Sigma X y, \Sigma X^{2} y$, and $\Sigma X^{3} y$, as needed for the degree of the equation chosen, are calculated from the data arranged with the midpoint as the origin. The factors $k_{1}$ to $k_{8}$, inclusive, are taken from table 1 if the number of observations is odd; from table 2 , if even.

If the number of observations is even, the midpoint of the data is taken halfway between the two middle items, and half an interval is used as the unit.

Equations derived by use of tables 3 and 1 or 2 generally should be transformed with respect to the independent variable to either the point
TABLE 1
Value of $k_{n}$. Odd number of observations

| $N$ | $k_{1}$ | $k=$ | ks | $k$ | $k{ }^{\text {c }}$ | $k{ }^{\text {a }}$ | ${ }^{1}$ | $k_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 33333333 (8) | 50000000 (8) | 10000000 (7) | 10000000 (7) | 15000000 (7) |  |  |  |
| 5 | 20000000 | 10000000 | 48571429 (8) | 14285714 (8) | 71428571 (9) | 90277778 (8) | 23611111 (8) | 69444444 (9) |
| 7 | 14285714 | 35714286 (9) | 33333333 | 47619048 (9) | 11904762 | 26256614 | 32407407 (9) | 46296296 (10) |
| 9 | 11111111 | 16666667 | 25541126 | 21645022 | 32467532 (10) | 11433782 | 8277 2166(10) | $70145903(11)$ |
| 11 | 90909091 (9) | 90909091 (10) | 20745921 | 11655012 | 11655012 | 60379435 (9) | 28813779 | 16187516 |
| 13 | 76923077 | 54945055 | 17482517 | 6993 0070(10) | 49950050 (11) | 35846098 | 12140637 | 4856 2549(12) |
| 15 | 66666667 | 35714286 | 15113122 | 45248869 | 24240465 | 23045899 | $58306799(11)$ | 17457125 |
| 17 | 58823529 | 24509803 | 13312693 | 30959752 | 12899897 | 15702041 | 30816420 | 7166 6093(13) |
| 19 | 52631579 | 17543860 | 11897391 | 22114109 | 73713696 (12) | 11183168 | 17525617 | 32575497 |
| 21 | 47619048 | 12987013 | 10755149 | 16345211 | 44577848 | 8248 5070(10) | 10562015 | 16051694 |
| 23 | 43478261 | 98814229 (11) | 9813 6646(9) | 12422360 | 28232637 | 62590791 | $66720719(12)$ | 8445 6606(14) |
| 25 | 40000000 | 76923077 | 90241546 | 96618357 (11) | 18580453 | 48623545 | 43823595 | 46920337 |
| 27 | 37037037 | 61050061 | 83524904 | 76628352 | 12631047 | 38527423 | 29745336 | 27289299 |
| 29 | 34482759 | 49261084 | 77740700 | 61797058 | 8828 1512(13) | 31047316 | 20764076 | 16505625 |
| 31 | 32258065 | 40322581 | 72707048 | 50561230 | 63201537 | 25386983 | 14850296 | 10327049 |
| 33 | 30303030 | 33422460 | 68286552 | 41893590 | 46206166 | 21024471 | 10847991 | 66552091 (15) |
| 35 | 28571429 | 28011204 | 6437 3464 | 35100035 | 34411799 | 17607811 | 8073 4407(13) | 44020942 |
| 37 | 27027027 | 23707918 | 60885061 | 29700030 | 26052658 | 14893734 | 61087522 | 29798791 |
| 39 | 25641026 | 20242915 | 57755692 | 25353684 | 20016066 | 12710408 | 46910081 | 20592661 |
| 41 | 24390244 | 17421603 | 54932589 | 21815961 | 15582829 | 10934097 | 36504910 | 14497581 |
| 43 | 23255814 | 15101178 | 52372849 | 18907166 | 12277380 | 9474 1490(11) | 28751015 | 10379428 |
| 45 | 22222222 | 13175231 | 50041234 | 16493485 | 97787461 (14) | 82631159 | 22892527 | 7545 3288(16) |
| 47 | 21276596 | 11563367 | 47908525 | 14473875 | 78662362 | 72501033 | 18410171 | 55619852 |
| 49 | 20408163 | 10204082 | 45950295 | 12771066 | 63855329 | 63962170 | 14941103 | 41526134 |
| 51 | 19607843 | 9049 7738(12) | 44145960 | 11325285 | 52270545 | 56713855 | 12227830 | 31369497 |

TABLE 2
Value of $k_{n}$. Even number of observations

| N | $k_{1}$ | $k_{2}$ | $k_{3}$ | $k_{4}$ | $k s$ | $k^{6}$ | $\mathrm{k}_{7}$ | ${ }^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 25000000 (8) | 50000000 (9) | 64062500 (8) | 78125000 (9) | 15625000 (9) | 63368056 (8) | 71180556 (9) | 8680 5556(10) |
| 6 | 16666667 | 14285714 | 39453125 | 19531250 | 1674 1071(10) | 11267499 | 4870 7562(10) | 24112654 (11) |
| 8 | 12500000 | 5952 3810(10) | 28906250 | 7812 5000(10) | 37202381 (11) | 41963534 (9) | 97327441 (11) | 2630 4714(12) |
| 10 | 10000000 | 30303030 | 22890625 | 39062500 | 11837121 | 20401329 | 29643389 | 50585988 (13) |
| 12 | 8333 3333(9) | 17482517 | 18973214 | 22321429 | $46828172(12)$ | 11494485 | 11466157 | 13489597 |
| 14 | 71428571 | 10989011 | 16210938 | 13950893 | 21462912 | 7125 6741(10) | 51865517 (12) | 4463 4695(14) |
| 16 | 62500000 | 7352 9412(11) | 14155506 | 93005952 (11) | 10941877 | 47259999 | 26220143 | 17227426 |
| 18 | 55555556 | 51599587 | 12565104 | 65104167 | 6046 8266(13) | 32967149 | 14407871 | 7465 2181(15) |
| 20 | 50000000 | 37593985 | 11297349 | 47348485 | 35600365 | 23917243 | 84483844 (13) | 35408149 |
| 22 | 4545 4545 | 28232637 | 10262784 | 35511364 | 22056748 | 17905616 | 52188071 | 18058156 |
| 24 | 41666667 | 21739130 | 94023164 (9) | 27316434 | 14252052 | 13754794 | 33645791 | 97750702 (16) |
| 26 | 38461538 | 17094017 | 86753091 | 21462912 | 9539 0720(14) | 10795940 | 22480302 | 55616779 |
| 28 | 35714286 | 13683634 | 80528846 | 17170330 | 65786704 | $86295508(11)$ | 15482276 | 33011249 |
| 30 | 33333333 | 11123471 | 75139509 | 13950893 | 46554704 | 70068080 | 10944042 | 20319424 |
| 32 | 31250000 | $91642229(12)$ | 70127390 | 11488971 | 33691996 | 57671532 | 79131009 (14) | 12908811 |
| 34 | 29411765 | 76394191 | 66272213 | 9574 1423(12) | 24867902 | 48037846 | 58362361 | $84314304(17)$ |
| 36 | 27777778 | $6435006 .+$ | 62580624 | 50624358 | 18677458 | 40437597 | 43806481 | 56437105 |
| 38 | 26315789 | 54710581 | 59279058 | 68530703 | 14247547 | 34360952 | 33398722 | 38611239 |
| 40 | 25000000 | 46904315 | 56308741 | 58740602 | 11020751 | 29444203 | 25822837 | 2693 807t |
| 42 | 23809524 | 40515355 | 53622160 | 50730520 | \$632 5332(15) | 25423116 | 20219092 | 19128753 |
| 44 | 22727273 | 35236081 | 51180477 | 44113495 | 68393016 | 22102564 | 16013580 | 13802431 |
| 46 | 21739130 | $3083: 5646$ | 4895 1643 | 38599309 | 54750792 | 19336316 | 128156016 | 10105351 |
| 48 | 20833333 | 27138515 | 16\% | 33967392 | 44247580 | 17013314 | $10354+26$ | 7497 7742(18) |
| 50 | 20000000 | 24009604 | 45030038 | 30048077 | 36072121 | 15048177 | $84393512(15)$ | 56314922 |

of origin of the data or other origin such as zero. This translation of the axis requires the substitution of $x=X+h$. For ready reference the functions necessary for the transformation of the parameters in terms of $X$ to those in $x$ are given in table 4. The value of $h$ may be obtained from the number of observations, $N$, and the initial observation, $x_{i}$. Equations for obtaining $h$ are appended to table 4 . For odd observations $x_{i}$ is expressed in the original units, but for even observations in half-units.

In the calculation of equations to fit even numbers of observations the unit is half an interval. Therefore the unit of the original data must be restored by multiplying the parameters $a, b, c$, and $g$ by $1,2,4$, and 8 ,

TABLE 3
Functions for derivation of parameters for origin at midpoint of observations

| DEGREE | PARAMETERS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| tion | A | $B$ | C | G |
| 1 | $k_{1} \Sigma_{2}$ | $k_{2} \Sigma X_{y}$ |  |  |
| 2 | $k_{3} \Sigma y-k_{1} \Sigma X^{2} y$ | $k_{2} \mathrm{\Sigma X} \mathrm{~V}_{y}$ | $k_{5} \Sigma X^{2} y-k_{4} \Sigma y$ |  |
| 3 | $k_{3} \Sigma \Sigma^{2}-k_{1} \Sigma X^{2} y$ | $k_{5} \Sigma X y-k_{7} \Sigma X^{3} y$ | $k_{5} \Sigma X^{2} y-k_{4} \Sigma y$ | $k_{8} \Sigma X^{3} y-k_{7} \Sigma X y$ |

TABLE 4
Formulae jor transformation of equations

| Degres <br> OF <br> EqUA- <br> TION | Parameters for $x=X+h$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $A-B h$ | $b$ | $C$ |  |
| 1 | $A-B h+C h^{2}$ | $B$ |  |  |
| 2 | $A-B h+C h^{2}-G h^{3}$ | $B-2 C h+3 G h^{2}$ | $C-3 G h$ | $G$ |

For odd obscrvations $h=\frac{N-1}{2}+x_{i}$, with $x_{i}$ in the original units.
For even observations $h=N-1+x_{i}$, with $x_{i}$ in half-units.
respectively. If, in addition, it is desired to alter the original measure of the independent variable, $a, b, c$, and $g$ are to be multiplied by $m^{0}, m^{1}$, $m^{2}$, and $m^{8}$, in which $m$ is the ratio of the desired unit to the original measure.

Frequently a series of experiments yields sets of parallel data, namely, with an equal number of observations for which a special set of factors can be derived by combining the values of table 1 or 2 with tables 3 and 4, with the inclusion of $m$ so that the desired equation is obtained directly. Such a combination yields little if any advantage over the procedure of derivation and transformation in the case of third-order equations. But
for first- and second-degree expressions such procedures can lead to economies if many sets of data are to be reduced.

USE OF TABLES 1 AND 2
The values of $k_{n}$ in tables 1 and 2 as required for the equation are to be multiplied by $10^{-r}$, in which $r$ is apponded in parentheses to $k_{n}$ given to

TABLE 5
Derivation of an equation for an odd number of observations

| hat weiget |  | srm | difterence | $T$ |
| :---: | :---: | :---: | :---: | :---: |
| grams | gram. | grams | grams |  |
| 58.6 | 11.6 | 70.2 | $+7.0$ | 21 |
| 57.6 | 12.7 | 70.3 | 44.9 | 20 |
| 57.1 | 13.3 | 70.4 | 43.8 | 19 |
| 54.8 | 14.1 | 68.9 | 40.7 | 18 |
| 54.2 | 15.6 | 69.8 | 38.6 | 17 |
| 53.8 | 16.1 | 69.9 | 37.7 | 16 |
| 51.4 | 17.0 | 68.4 | 34.4 | 15 |
| 50.4 | 18.0 | 68.4 | 32.4 | 14 |
| 50.0 | 18.8 | 68.8 | 31.2 | 13 |
| 47.8 | 20.0 | 67.8 | 27.8 | 12 |
| 46.7 | 21.9 | 68.6 | 24.8 | 11 |
| 46.4 | 22.0 | 68.4 | 24.4 | 10 |
| 45.3 | 22.9 | 68.2 | 22.4 | 9 |
| 42.8 | 24.0 | 66.8 | 18.8 | 8 |
| 42.3 | 24.4 | 66.7 | 17.9 | 7 |
| 40.0 | 25.6 | 65.6 | 14.4 | 6 |
| 39.1 | 27.6 | 66.7 | 11.5 | 5 |
| 39.0 | 28.5 | 67.5 | 10.5 | 4 |
| 37.0 | 29.5 | 66.5 | 7.5 | 3 |
| 35.5 | 32.0 | 67.5 | 3.5 | 2 |
| 35.0 | 32.5 | 67.5 | 2.5 | 1 |
| $\overline{984.8}$ | $\overline{448.1}$ | 1432.9 | 536.7 |  |
| 481.1 | 33.0 | 33.0 | 448.1 |  |
| $\overline{1465.9}$ | $\overline{481.1}$ | $\overline{1465.9}$ | $\overline{984.8}$ |  |

$\Sigma W=1465.9 ; \Sigma W T=7630.0 ; \Sigma W T^{2}=229,323.0 ; \Sigma W T^{3}=2,092,861.6$
(1) $W=33.41+1.212 T+0.004388 T_{i}^{2}-0.0002143 T_{1}^{3}$
(2) $W=5.913+0.2218 t+0.02561 t^{2}-0.0002143 t^{3}$
(3) $W=5.913+0.6654 d+0.2305 d^{2}-0.005786 d^{3}$
eight places. The exponent $r$ is shown only for the first entry of a series of $k_{n}$ for which $r$ is the same, subsequent values taking the same $r$.

## EXAMPLES OF CALCULATIONS

In tables 5 and 6 are shown the data of the weight of a suckling rat taken at 8-hr. intervals from the fourth to the eighteenth day. Table 6
contains one more weight ( 60.9 g . at 18 days, 8 hr .) than table 5 ; thus the differences in the treatment of almost identical data are illustrated in the cases of odd and even observations.

The weights in the first column of table 5 are, reading from the bottom, the weights of the last twenty-one $8-\mathrm{hr}$. periods; those of the second

TABLE 6
Derivation of an equation for an even number of observations

| rat weight |  | sum | difference | $T$ |
| :---: | :---: | :---: | :---: | :---: |
| grams | grams | grams | grams |  |
| 60.9 | 11.6 | 72.5 | 49.3 | 43 |
| 58.6 | 12.7 | 71.3 | 45.9 | 41 |
| 57.6 | 13.3 | 70.9 | 44.3 | 39 |
| 57.1 | 14.1 | 71.2 | 43.0 | 37 |
| 54.8 | 15.6 | 70.4 | 39.2 | 35 |
| 54.2 | 16.1 | 70.3 | 38.1 | 33 |
| 53.8 | 17.0 | 70.8 | 36.8 | 31 |
| 51.4 | 18.0 | 69.4 | 33.4 | 29 |
| 50.4 | 18.8 | 69.2 | 31.6 | 27 |
| 50.0 | 20.0 | 70.0 | 30.0 | 25 |
| 47.8 | 21.9 | 69.7 | 25.9 | 23 |
| 46.7 | 22.0 | 68.7 | 24.7 | 21 |
| 46.4 | 22.9 | 69.3 | 23.5 | 19 |
| 45.3 | 24.0 | 69.3 | 21.3 | 17 |
| 42.8 | 24.4 | 67.2 | 18.4 | 15 |
| 42.3 | 25.6 | 67.9 | 16.7 | 13 |
| 40.0 | 27.6 | 67.6 | 12.4 | 11 |
| 39.1 | 28.5 | 67.6 | 10.6 | 9 |
| 39.0 | 20.5 | 68.5 | 9.5 | 7 |
| 37.0 | 32.0 | 69.0 | 5.0 | 5 |
| 35.5 | 32.5 | 68.0 | 3.0 | 3 |
| 35.0 | 33.0 | 68.0 | 2.0 | 1 |
| $\overline{1045.7}$ | $\overline{481.1}$ | $\overline{1526.8}$ | $\overline{564.6}$ |  |
| 481.1 |  |  | 481.1 |  |
| $\overline{1526.8}$ |  |  | 1045.7 . |  |

$\cdot \Sigma W=1,526.8 ; \Sigma W T=16,412.8 ; \Sigma W T^{2}=1,000 ; 842.0 ; \Sigma W T^{3}=18,877,307.2$
(1) $W=33.99+0.6047 T+0.001098 T^{2}-0.00002275 T^{3}$
(2) $W=5.247+0.1512 t_{1}+0.005671 t_{1}^{2}-0.00002275 t_{1}^{3}$
(2a) $W=5.247+0.3024 t+0.02268 t^{2}-0.0001820 t^{3}$
(3) $W=5.247+0.9072 d+0.2041 d^{2}-0.004914 d^{3}$
column, reading from the top, are of the first twenty-one periods. The weight at the midpcriod was 33.0 g . In table 6 , twenty-two weights appear in each column and no weight for a midperiod.

The third and fourth columns show, respectively, the sums and differences of the items of the first and second columns. A check on the
accuracy of these sums and differences is shown by the totals of the columns.
$\Sigma W$ is obtained by summing the weights of the forty-three observations of table 5 and of the forty-four observations of table 6 .
$\Sigma W T$ is the sum of the products of the items of columns 4 and 5 of cach table.
$\Sigma W T^{2}$ is the sum of the product of the items of column 3 and the square of the items in column 5 .
$\Sigma W T^{3}$ is the sum of the product of the items of column 4 and the cube of the items in column 5 .

The values of $k_{n}$ were taken for $N=43$ in table 1 and $N=44$ in table 2 for the data of tables 5 and 6 , respectively.

Equation 1 in each table represents the data referred to the midpoint origin in terms of 8 -hr. intervals. Equation 2 in each table shows cquation 1 translated to origin at birth of the suckling rat through the use of $h=33$ for table 5 and $h=67$ for table 6 . Equation 2a of table 6 shows the restoration of the original unit of measurement by multiplication of the successive parameters by 1, 2, 4, and 8, respectively. For odd observations the value of $x_{i}$ was 12 , as the first weight was recorded on the 4 th day,-namely, twelve 8 -hr. periods from zero origin,--but $x_{i}$ was 24 for even observations, as the 4 th day was twenty-four 4-hr. periods removed from the time of birth. Equation 3 in table 5 shows the weight as a function of age in days obtained from equation 2 by multiplying the cocfficients of $t, t^{2}$, and $t^{3}$ by $m, m^{2}$, and $m^{3}$, respectively, in which $m=d / t=3$. Equation 3 of table 6 was similarly derived from equation 2a. All calculations and transformations of equations in tables 5 and 6 were carried out to eight significant figures and then rounded to four.

The foregoing equations merely summarize the data and are not to be regarded as expressions of the law of growth of suckling rats. The equations are excellent interpolation formulae but fail in extrapolation, as can readily be seen by their difference at zero time.

REFERENCE
(1) Baily, J. L.: Ann. Math. Statistics 2, 355 (1931).

