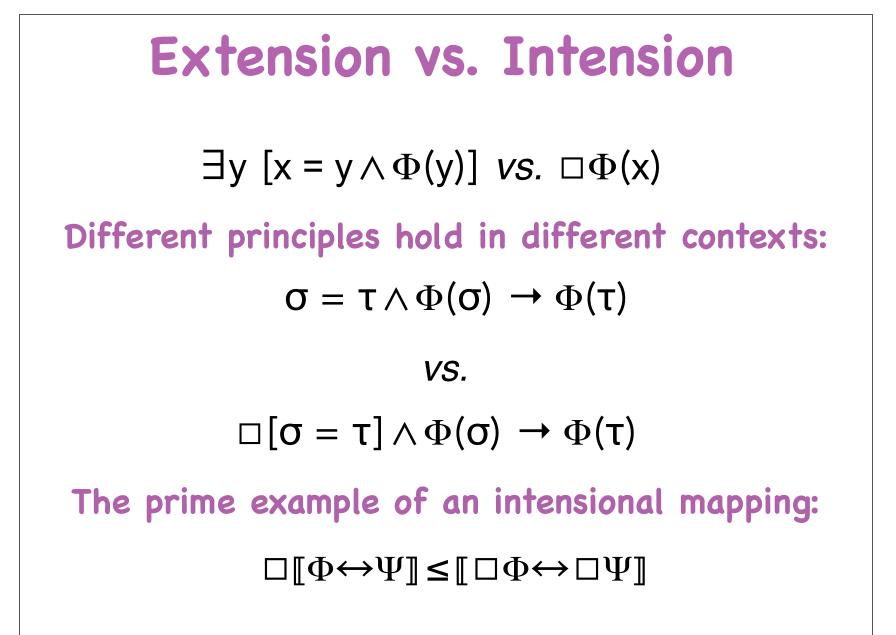
Seminar III A Boolean-valued Modal Set Theory

Dana S. Scott

University Professor Emeritus *Carnegie Mellon University* Visiting Scholar *University of California, Berkeley* Visiting Fellow *Magdalen College, Oxford*

Oxford, Tuesday 8 June, 2010 Edinburgh, Thursday 8 July, 2010



Extensional Powersets

Definition: Given a complete **M**-set A the *extensional powerset* of A is the collection of P: A \rightarrow **M** where, for all x,y \in A, we have P(x) $\land [x = y] \leq P(y)$. And we can use the definition:

$$\llbracket \mathsf{P} = \mathsf{Q} \rrbracket = \bigwedge_{x \in \mathsf{A}} (\mathsf{P}(x) \leftrightarrow \mathsf{Q}(x))$$

Theorem: The extensional powerset of A is a complete **M**-set.

Note: A Principle of Comprehension follows for extensional predicates.

Theorem: \mathbb{R}_{M} together with its extensional powerset satisfies the **Dedekind Completeness Axiom**.

Intensional Powersets

Definition: Given a complete **M**-set A the *intensional powerset* of A is the collection of P: $A \rightarrow M$ where, for

all $x, y \in A$, we have $P(x) \land \Box [x = y] \le P(y)$.

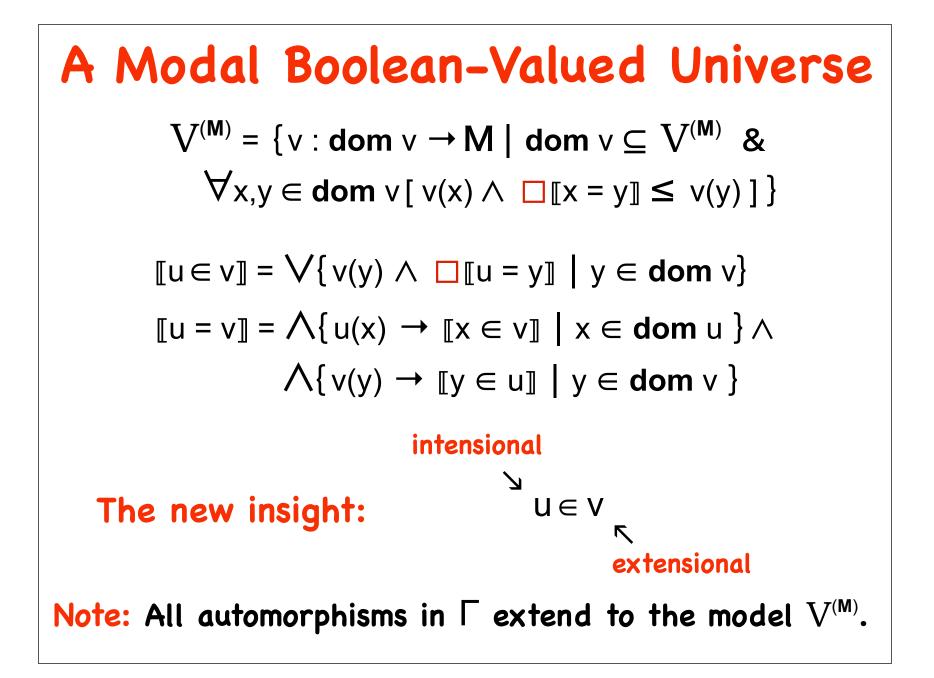
And we use the definition

$$\llbracket \mathsf{P} = \mathsf{Q} \rrbracket = \bigwedge_{x \in \mathsf{A}} (\mathsf{P}(x) \leftrightarrow \mathsf{Q}(x))$$

Theorem: The intensional powerset of A is a complete **M**-set.

Note: A Principle of Comprehension follows.

Question: Should we be able to iterate this notion of powerset?



For Technical Details See:

John L. Bell, **Set Theory: Boolean-Valued Models and Independence Proofs**, Third Edition, OUP 2005, xviii + 191 pp.

Nicolas D. Goodman, *A genuinely intensional set theory*, in: Stewart Shapiro (ed.), **Intensional Mathematics**, North-Holland 1985, pp. 63-80.

Nicolas D. Goodman, *Topological models of epistemic set theory,* **Annals of Pure and Applied Logic**, vol. 46 (1990), pp. 119-126.

A.G. Kusraev and S.S. Kutateladze, **Boolean Valued Analysis**, Kluwer 1999, xii + 322 pp.

What is MZF?

Substitution (A number of previous lemmata are needed.) $\Box [u = v] \land \Phi(u) \rightarrow \Phi(v)$

Extensionality & Comprehension

 $\forall u, v [u = v \leftrightarrow \forall x [x \in u \leftrightarrow x \in v]]$ $\forall u \exists v \Box \forall x [x \in v \leftrightarrow x \in u \land \Phi(x)]$

Singleton

 $\forall u \exists v \Box \forall x [x \in v \leftrightarrow \Box [x = u]]$ Intensional Leibniz' Law $\forall x, y [\Box [x = y] \leftrightarrow \forall u [x \in u \rightarrow y \in u]]$ Definable Modality $\{ \varnothing \} = \{ \varnothing \mid \Phi \} \leftrightarrow \Phi$ $\Box \Phi \leftrightarrow \forall u [\{ \varnothing \} \in u \rightarrow \{ \varnothing \mid \Phi \} \in u]$

Two Membership Relations? Extensional Membership $u \in v \leftrightarrow \exists y [u = y \land y \in v]$ **Extensional Comprehension** $\forall u \exists v \Box \forall x [x \in v \leftrightarrow x \in u \land \exists y [x = y \land \Phi(y)]]$ **Extensional Singleton** $\forall u \exists v \Box \forall x [x \in v \leftrightarrow x = u]$ Extensional Leibniz' Law $\forall x, y [x = y \leftrightarrow \forall u [x \in u \rightarrow y \in u]]$ **Intensional** Powerset $\forall v \exists w \Box \forall u [u \in w \leftrightarrow \Box [u \subseteq v]]$ **Extensional Powerset** $\forall v \exists w \Box \forall u [u \in w \leftrightarrow u \subseteq v]$

Foundation and Collection Scedrov's Modal Foundation $\Box \forall x [\Box \forall y \in x. \Phi(y) \rightarrow \Phi(x)] \rightarrow \forall x. \Phi(x)$ Foundation $\forall x [\forall y \in x. \Phi(y) \rightarrow \Phi(x)] \rightarrow \forall x. \Phi(x)$ Goodman's Modal Collection $\Box \forall y \exists z. \Phi(y, z) \rightarrow \forall x \exists w \Box \forall y \in x \exists z [\Box z \in w \land \Phi(y, z)]$ Collection $\forall y \exists z. \Phi(y, z) \rightarrow \forall x \exists w \forall y \in x \exists z \in w. \Phi(y, z)$ **Comment:** It seems plausible that stronger principles are valid and that the modalities can be generalized.

A Refutation

Theorem. In $V^{(M)}$ the following has truth value 0: $\forall u, v [u = v \leftrightarrow \forall x [x \in u \leftrightarrow x \in v]].$

Proof: Find $p \in M$ with $0 and <math>\Box p = 0$. (How?) Let $a = \{\emptyset\}$ and $b = \{\emptyset \mid p\}$, and $u = \{a \mid p\}$ and $v = \{b \mid p\}$. We have [a = b] = p, and $[a \in u] = p$ and $[a \in v] = 0$. It follows that $[[u = v]] = \neg p$. We also calculate that $[x \in u] = [x = a] \land p \text{ and } [x \in v] = [x = b] \land p.$ But then $[x \in v] = [x = a] \land p$ as well. From this we get: $\llbracket u = v \leftrightarrow \forall x [x \in u \leftrightarrow x \in v] \rrbracket = \llbracket u = v \rrbracket = \neg p.$ The conclusion of the theorem then follows by the 0-1 Law for M.

Using Russell's Paradox

Theorem. For each stage $V_{\alpha}^{(M)}$ of the universe it is possible to find an element a of the model such that [a = y] = 0 for all y in $V_{\alpha}^{(M)}$.

Proof: Apply the *Extensional Comprehension Principle* to have an element a where for all x in the model:

 $\llbracket \mathbf{x} \in \mathbf{a} \rrbracket = \llbracket \mathbf{x} \in \mathbf{V}_{\alpha} \rrbracket \land \llbracket \neg \mathbf{x} \in \mathbf{x} \rrbracket,$

where V_{α} is the constant function 1 on $V_{\alpha}^{(M)}$.

Putting a for x, we have $\llbracket a \in \mathbf{V}_{\alpha} \rrbracket = 0$.

The desired conclusion then follows.

Another Refutation

Theorem. In $V^{(M)}$ the following has truth value 0: $\exists v \forall u [u \in v \leftrightarrow u = \emptyset].$

Proof: Again, find $p \in M$ with $0 and <math>\Box p = 0$. Suppose we had v in the model where $\llbracket u \in v \rrbracket = \llbracket u = \varnothing \rrbracket$ for all u in the model. Now v is a function with dom $v \subseteq V_{\alpha}^{(M)}$ for some stage α . Find an a with $\llbracket a = y \rrbracket = 0$ for all y in $V_{\alpha}^{(M)}$. Take $u = \{a \mid \neg p\}$ which implies $\llbracket u = \varnothing \rrbracket = p$. We then have $p \leq \llbracket u \in \mathbf{V}_{\alpha} \rrbracket = \bigvee \{ \Box \llbracket u = w \rrbracket \mid w \in V_{\alpha}^{(M)} \}$. But we find $\Box \llbracket u = w \rrbracket = \Box (\neg p \rightarrow \llbracket a \in w \rrbracket) \land$ $\Box \land \{w(y) \rightarrow \llbracket y \in u \rrbracket \mid y \in \text{dom } w \} \leq \Box p$, But, this is impossible.

Note: We can also refute: $\forall \lor \exists w \forall u [u \in w \leftrightarrow u \subseteq v]$.

Pairs, Products, & Relations

Definitions: In $V^{(M)}$ the following are defined:

(i) $\{u\} = \{(u,1)\};$

(ii)
$$\{u, v\} = \{(u, 1), (v, 1)\};$$

(iii) $(u, v) = \{\{u\}, \{u, v\}\};$ and

(iv) $a \times b = \{((x, y), a(x) \land b(y)) \mid x \in \text{dom } a \land y \in \text{dom } b\}.$

Theorem: In $V^{(M)}$ we have:

(i) $\forall u, v [\{u\} = \{v\} \leftrightarrow \Box u = v];$

(ii) $\forall u,v,s,t [\{u,v\} = \{s,t\} \leftrightarrow \Box [u = s \land v = t] \lor \Box [u = t \land v = s]];$ (iii) $\forall u,v,s,t [(u,v) = (s,t) \leftrightarrow \Box [u = s \land v = t]];$ and

(iv) $\forall a,b,t [t \in (a \times b) \leftrightarrow \exists x,y [x \in a \land y \in b \land \Box t = (x,y)]].$

Relational Comprehension

 $\forall a, b \exists w \subseteq (a \times b) \Box \forall x \in a \forall y \in b [(x, y) \in w \leftrightarrow \Phi(x, y)]$

Embedding M-Sets

Theorem. Ordinary sets u in the two-valued universe V can be embedded into the modal universe $V^{(M)}$ by the following well-founded definition: $\underline{u} = \{(\underline{x}, 1) \mid x \in u\}$.

Definition. Given a reduced **M**-set A with equality [x = y], define maps $s_a: A \rightarrow M$ for all $a \in A$ by $s_a(\underline{x}) = [x = a]$ for all $x \in A$. Note that in $V^{(M)}$ we have $[s_a = s_b] = [a = b]$ for all $a, b \in A$. Then define $\mathcal{E}(A) = \{(s_a, 1) \mid a \in A\}$.

Theorem. In the modal universe $V^{(M)}$, the element $\mathcal{E}(\mathbb{R}_M)$ plays the rôle of the *real numbers* in the set theory.

Applying Ergodic Theory?

Recall: In the measure-algebra model of MZF, every continuous, measure-preserving automorphism of M induces an automorphism of the whole universe $V^{(M)}$. Γ is the group of all such automorphisms.

Furstenberg's Multiple Recurrence Theorem.

Let $\tau \in \Gamma$, and let $\llbracket \Phi(a) \rrbracket \neq 0$, where $\Phi(a)$ has no other parameters. Then for all **k** there exists an **n** such that $\llbracket \Phi(a) \land \Phi(\tau^{n}(a)) \land \Phi(\tau^{2n}(a)) \land \Phi(\tau^{3n}(a)) \land ... \land \Phi(\tau^{kn}(a)) \rrbracket \neq 0.$

Two Sub-Universes

$$U^{(M)} = \{v : \text{dom } v \to M \mid \text{dom } v \subseteq U^{(M)} \&$$

∀x,y ∈ dom v[v(x) ∧ □[x = y] ≤ □v(y)] }

$$\begin{split} W^{(\mathsf{M})} &= \{ v : \mathsf{dom} \; v \to \mathsf{M} \; | \; \mathsf{dom} \; v \subseteq \; W^{(\mathsf{M})} \; \& \\ & \forall x, y \in \mathsf{dom} \; v[\; v(x) \land \; [\![x = y]\!] \leq \; v(y) \;] \; \} \end{split}$$

Note: (i) The universe U^(M) models an inuitionistic G-valued set theory.
(ii) The universe W^(M) models the usual M-valued, extensional Boolean-valued set theory.
(iii) Both universes are definable in the modal universe V^(M).

Truth by Degrees?

Comment: There are many subframes of M. For example $D \subseteq G \subseteq M$, defined as $D = \{[0, r]/Null \mid r \in \mathbb{R}\}$, is closed (in M) under arbitrary sups and infs.

The modal operator Δ defined by $\Delta p = \bigvee \{ d \in \mathbf{D} \mid d \le p \}$

is, of course, stronger than $\hfill\square$ but not intensional.

Questions: But is △ at all interesting? Would propositions with values in D be interesting? Suggestions welcome!

Are You Ready for Multiverses?

Observation: Large cBa's usually have many subframes (= abstract topologies). Each one gives a model for MZF. And indeed one cBa may give rise to many of these. For example:

M measurable

G open

S cylindric (using higher dimensions)

D real-valued degrees

E broad degrees (small, medium, large)

T binary degrees (all or nothing, 0 or 1)

And we have both modal and intuitionistic versions.