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A New Lewis Algebra?
Old.  For every topological space X, the powerset 

P(X) is a cBa, and the lattice of open subsets 
Op(X) is a cHa and a subframe. 

Note: These examples include the Kripke models.

New (?).  For the standard probability space 
Borel([0, 1]) with Lebesgue measure, 

the measure algebra Borel([0, 1])/Null is a cBa (old), 
     

and the quotient Op([0, 1])/Null is a cHa
that is a proper subframe (new?).

Note: Call this cLa M. For p ∈ M write 

| p | for the measure of p.



Proof of Completeness
Theorem. The measure algebra M is a cBa. 

Theorem. The family G is a subframe of M.

Proof:   Let  X⊆M and let Y be the ideal generated by X.  These
two sets have the same upper bounds.  (Why?)  By Zorn’s 
Lemma, let Z be a maximal family of non-zero, pairwise- 
disjoint elements of Y. Owing to the measure, Z is countable.  
(Why?)  It then follows that the sup of Z exists and so

∨Z = ∨Y = ∨X.  (Why?)

Proof:   Let  X⊆G and let Y be the set of elements  u = U/Null 

Then Y is countable and ∨Y = ∨X ∈ G.  (Why?) 
where U is a rational interval and u ≤ v for some  v ∈ X.

Of course, G is closed under finite meets. (Why?)



Structure of the Measure Algebra

Note: Using the measure-algebra semantics, every modal logical 
formula has a probability.  Owing to the continuous 

automorphisms of M, it turns out every pure statement without 
free variables has truth value either 0 or 1.

                         Gδ = M = Fσ  measurable 

   □p=p      G open          F closed             ◊p=p

    □◊p=p    □F reg. open  ◊G reg. closed   ◊□p=p

   □p=◊p=p   G∩F = C clopen    Boolean but uncountable     

         |p| ∈ ℚ                Q rational     not Boolean

            G = Bσ          B basic     countable Boolean from
intervals with rational ends



Proving M ≠ G ≠ □F
Theorem. There is a construction similar to that of the Cantor 
Discontinuum where U ∪ K = [0, 1] with U dense, open, K closed,
nowhere dense, and of positive measure, and U ∩ K = ∅.

Corollary 1. Let   k = K/Null.   Then  k ∈ M and k ∉ G.  

Corollary 2. Let   u = U/Null.   Then  u ∈ G and u ∉ □F.  

Proof: Suppose k ∈ G.  Let V be an open set, V/Null = K/Null,
giving V - K ∈ Null.  But, this difference is open and so is ∅.
So V ⊆ K, which implies V = ∅.  But, K - V ∈ Null and  K ∉ Null.

Proof: Suppose u ∈ □F.  Then u  = □◊u.  But U is dense, so  
◊u = 1 and hence u = 1.  This implies k = 0, which is false.



Proof of the 0-1 Law

Lemma. If a,b ∈ B, | a | = | b |, then there is a τ ∈ Γ with τ(a) =  b .

Theorem. There is no 0 < p < 1 invariant under the group Γ 

of all continuous, measure-preserving automorphisms of M.

• Find g ∈ G with p ≤ g < 1, and so 1-g > 0.
• Find b ∈ B with b ≤ g,  b ∧ p > 0, and | b | ≤ |1- g |.
• Find h ∈ G with 1- g ≤ h, and | h ∧ g | < | b ∧ p |.
• Find a ∈ B with a ≤ h, and | a | = | b |.

Now a ∧ p ≤ h ∧ g, and so | a ∧ p | < | b ∧ p |.  

But let τ(a) =  b and so τ(a ∧ p) =  b ∧ p.  Contradiction!

Proof of the Theorem (new?):



Dorothy Maharam’s Theorem
Theorem (1942). All separable, atomless, 
strictly positive, probability measure algebras 

are isomorphic and isometric.

Comments: It needs to be checked that this classical 
theorem also includes the topological isomorphism between 
Borel([0, 1])/Null and Borel([0, 1]I)/Null  for every countable 
power I using the usual product measures and topologies.  

Other good spaces to investigate are Borel({0, 1}N)/Null and 
Borel(Sn)/Null for the n-dimensional spheres Sn.

Such representations of the cLa M also indicate the
richness of the automorphism group Γ.



John Oxtoby’s Theorem

Theorem (1970). Any two topologically complete 
separable metric spaces with non-atomic Borel 

probability measures contain homeomorphic Gδ sets 
of measure one where the homeomorphism is 

measure preserving.

Reference: John C. Oxtoby, Homeomorphic Measures in 
Metric Spaces, Proceedings of the American Mathematical Society, 
vol. 24 (1970), pp. 419-423.



Extension vs. Intension

∃y [x = y ∧ Φ(y)] vs. □Φ(x)

    σ = τ ∧ Φ(σ) → Φ(τ)
                  vs.  

□[σ = τ ] ∧ Φ(σ) → Φ(τ)

Different principles hold in different contexts:

The prime example of an intensional mapping:

 □⟦Φ ↔ Ψ⟧ ≤ ⟦□Φ ↔ □Ψ⟧ 



What is an M-Set?
Definition.  An M-set is a set A equipped with an 
M-valued equality ⟦x = y⟧, where, for all x,y,z ∈ A,

⟦x = x⟧ = 1 ;
⟦x = y⟧ = ⟦y = x⟧;  and

  ⟦x = y⟧ ∧ ⟦y = z⟧ ≤ ⟦x = z⟧.

A is reduced provided ⟦x = y⟧ = 1 always implies x = y.

Note: There is a useful notion of complete M-set 
and a process of completion.

Note: Mappings between M-sets can be either
extensional or intensional.



Singletons & Completeness
Definition:  A singleton on an M-set A is a map 
s: A→ M where ∨x∈A s(x) = 1, and for all x,y∈A,

Definition:  An M-set A is complete iff 
for every singleton s: A→ M there is a unique 
element a∈A where s(x) = ⟦x = a⟧ for all x∈A.

s(x) ∧ ⟦x = y⟧ ≤ s(y), and  s(x) ∧ s(y) ≤ ⟦x = y⟧.

Theorem:  The singletons on a reduced M-set A 
form a complete M-set expanding A, where 

⟦s = t ⟧ = ∨x∈A s(x) ∧ t(x).



Categories of M-Sets

Definition:  Write f: A→B for an (extensional) 
mapping of complete M-sets as a function from 

A to B where for all x,y∈A we have

Question: What are good axioms for 
this kind of “double” category?

 ⟦x = y⟧ ≤ ⟦f(x) = f(y)⟧.

Definition:  Write f: A  B for an (intensional) 
mapping of complete M-sets as a function from 

A to B where for all x,y∈A we have
 □⟦x = y⟧ ≤ ⟦f(x) = f(y)⟧.



M Itself as an M-Set
Definition.  Make M into an M-set by defining the
     

M-valued equality as ⟦p = q⟧ = p ↔q for all p,q ∈ M.

Questions: (1) Are there other interesting 

intensional mappings on M other than □ and ◊?
(2) Can they be used for modeling other known 

modal logics ?

Theorem.  M as an M-set is complete.

Theorem.  M with □⟦p = q⟧ is not complete.



Completeness and non-Completeness

 M with □⟦p = q⟧:

 M with ⟦p = q⟧: Let s: M→ M be a singleton.  We find
s(p) ≤ p ↔s(1), and because s(p) ∧ (p ↔s(1)) ≤ s(s(1)),
we have s(p) ≤ s(s(1)).  It follows that s(s(1)) = 1.  But 
then p ↔s(1) ≤ s(p) holds.  Whence, s(p) = p ↔s(1).

 Let s: M→ M be a singleton with this
new equality.  If s(p) = □⟦p = q⟧ for all p ∈ M, then also
s(p) = □ s(p) for all p ∈ M.  Take an r ∈ M with 0 < r < 1
where □r = r and □¬r = 0.  Define an s by setting
s(p) = (r ∧ □p) ∨ (¬r ∧ □¬p).  It is easy to prove that s

is a singleton.  But, we find s(0) = ¬r.



M as a Complete G-Set
Let s: M→ G be a G-singleton.  Define

Whence, s(p) ≤ □(a ↔ p). Since s(p) ∧ □(a ↔ p) ≤ s(a),

s(a) ∧ □(a ↔ p) ≤ s(p), and thus s(p) = □(a ↔ p). 

M with □⟦p = q⟧:
a = ∧q∈M(s(q)  q).  Therefore, a ≤ s(p)  p, and so
s(p) ∧ a ≤ p.  Thus, s(p) ≤ a  p, and s(p) ≤ □(a  p).
Now s(p) ∧ s(q) ≤ p  q, and so  s(p) ∧ p ≤ s(q)  q.
Thus, s(p) ∧ p ≤ a, and s(p) ≤ p  a, so s(p) ≤ □(p  a).

we have s(p) ≤ s(a).  Therefore, s(a) = 1.  But also

Note: In G-valued logic we will be able to show 
that M is a cBa. Question: What does this buy us?



Boolean-valued Integers
Theorem.  The set NM = {θ |θ : P(N) →frm M} can be

made into a complete M-set by defining equality as
⟦θ = η⟧ = ∨n(θ({n}) ∧ η({n})).

can be defined by: 

⟦θ•η = ζ ⟧ = ∨n,m(θ({n}) ∧ η({m})∧ ζ({n•m})), 

and the set NG will also be closed under them.

Theorem.  Equality on NG = {θ |θ : P(N) →frm G} ⊆ NM 
satisfies: ⟦θ = η⟧ = □⟦θ = η⟧ = ◊⟦θ = η⟧. 

Theorem. All the arithmetic operations •:NM xNM →NM

Corollary.  NM is the completion of N.



Extensional vs. Intensional
Induction

[Φ(0) ∧ ∀x[Φ(x)→Φ(x+1)]]→ ∀x ∃y [x = y ∧ Φ(y)] 
(Ext) In NM we have as valid: 

(Int) In NG we have as valid: 
[Φ(0) ∧ ∀x[Φ(x)→Φ(x+1)]]→ ∀x. Φ(x) 

Question: Why is this interesting or useful? 



Automorphisms of Structures
Theorem. The group Γ of all continuous, measure-preserving 

automorphisms of M induces automorphisms of NM leaving 

NG and all the arithmetic operations invariant.  

Theorem. The only elements of NM invariant under all 

transformations in Γ are the standard integers of N.  The 

only invariant extensional operations on NM are those 

coming from standard arithmetic operations on N.

Theorem. For modal arithmetic formulae Φ(a,b,c,...), we have  

τ(⟦Φ(a,b,c,...)⟧) = ⟦Φ(τ(a),τ(b),τ(c),...)⟧, for a,b,c,...∈NM, τ∈Γ.



Boolean-valued Baire Space
Theorem.  The set BM = {θ |θ : Op(NN) →frm M} can be

made into a complete M-set by defining equality as
⟦θ = η⟧ = ∧U∈Op(NN)(θ(U) ↔ η(U)).

Hint: The opens of NN are generated by the sets {f |f(n) = m}.

Theorem.  We can identify BM up to an M-isomorphism 

with the space {   φ/Null   | φ:  [0, 1] →meas NN }, where we 

have ⟦φ/Null = ψ/Null ⟧ = { t ∈ [0, 1] | φ(t) = ψ(t) }/Null. 

Theorem.  The space BM is M-isomorphic to the M-valued 
function space  NMNM.



Boolean-valued Reals
Theorem.  The set RM = {α | α : Op(R) →frm M} can be

made into a complete M-set by defining equality as
⟦α = β⟧ = ∧U∈Op(R)(α(U) ↔ β(U)).

for α,β :  Op(R)→frm M we have (α,β) :  Op(RxR)→frm M, and so 

we can define (α+β) = (α,β)◦(+) :  Op(R) →frm M. 

Theorem.Using +:RxR→R and (+):Op(R)→frm Op(Rx R), then

Note: Other continuous functions can be handled in the same 
way.  Many laws of algebra then follow automatically.

Theorem. Op(RxR) is the frame-coproduct of Op(R) with itself.

Note: We can also define:  ⟦α ≤ β⟧ = ∧r∈Q(α((r,∞)) → β((r,∞))).



Random Variables as Reals
Theorem.  For the measure algebra M we can identify

     

RM = {   f/Null   | f :  [0, 1] →meas R }
as the M-valued reals, where we have 

 ⟦ f/Null = g/Null ⟧ = { t ∈ [0, 1] | f(t) = g(t) }/Null;

  ⟦ f/Null ≤ g/Null ⟧ = { t ∈ [0, 1] | f(t) ≤ g(t) }/Null;

and
    

f/Null + g/Null = (f + g)/Null.

Note:  We can similarly treat all other measurable 
operations on the M-valued reals.



Automorphisms of Reals
Theorem. The group Γ of all continuous, measure-

preserving automorphisms of M induces automorphisms

of RM leaving RG and all the standard, continuous 
     

operations invariant.  

Theorem. The only elements of RM invariant under all 

transformations in Γ are the standard reals of R.  The 

only invariant internal open subsets RM are those 

coming from standard opens of R.



Do we have Random Numbers?
— building on ideas of Robert Solovay and Alex Simpson —

Definition.  RandM = the set of elements of RM  avoiding 

all the standard closed subsets of  RM of measure zero.

 Theorem. Random reals exist!  

Program of Research. Investigate how this notion of 
randomness extends to structures built from the real and 

complex numbers (e.g. vector spaces and Clifford algebras).



Extensional Powersets
Definition:  Given a complete M-set A the extensional 

powerset of A is the  collection of P: A→ M where, 

Note: A Principle of Comprehension follows for
extensional predicates.

for all x,y ∈ A,  we have P(x) ∧ ⟦x = y⟧ ≤ P(y).
And we can use the definition:

⟦P = Q⟧ =  ∧
x∈A

(P(x) ↔ Q(x))

Theorem:  The extensional powerset of A is a complete M-set.

Theorem:  RM together with its extensional powerset 
satisfies the Dedekind Completeness Axiom.



Intensional Powersets
Definition:  Given a complete M-set A the intensional 
powerset of A is the  collection of P: A→ M where, for 

Note: A Principle of Comprehension follows.

all x,y ∈ A,  we have P(x) ∧ □⟦x = y⟧ ≤ P(y).
And we use the definition

⟦P = Q⟧ =  ∧
x∈A

(P(x) ↔ Q(x))

Theorem:  The intensional powerset of A is a complete M-set.

Question: Should we be able to iterate this 
notion of powerset? The topic for Seminar III. 




