Seminar II The Measure Algebra & Higher-Order Logic

Dana S. Scott

University Professor Emeritus *Carnegie Mellon University* Visiting Scholar *University of California, Berkeley* Visiting Fellow *Magdalen College, Oxford*

Oxford, Tuesday 1 June, 2010 Edinburgh, Thursday 1 & 8 July, 2010

A New Lewis Algebra?

Old. For every topological space X, the *powerset*P(X) is a cBa, and the *lattice of open subsets*Op(X) is a cHa and a *subframe*.

Note: These examples include the Kripke models.

New (?). For the standard probability space Borel([0, 1]) with Lebesgue measure, the measure algebra Borel([0, 1])/Null is a cBa (old), and the quotient Op([0, 1])/Null is a cHa that is a proper subframe (new?).

Note: Call this cLa M. For $p \in M$ write

IpI for the measure of p.

Proof of Completeness

Theorem. The measure algebra **M** is a cBa.

Proof: Let X \subseteq M and let Y be the ideal generated by X. These two sets have the same upper bounds. (Why?) By Zorn's Lemma, let Z be a maximal family of non-zero, pairwisedisjoint elements of Y. Owing to the measure, Z is countable. (Why?) It then follows that the sup of Z exists and so $\lor Z = \lor Y = \lor X$. (Why?)

Theorem. The family **G** is a subframe of **M**.

Proof: Let $X \subseteq G$ and let Y be the set of elements u = U/Nullwhere \cup is a rational interval and $u \le v$ for some $v \in X$. Then Y is countable and $\forall Y = \forall X \in G$. (Why?) Of course, G is closed under finite meets. (Why?)

Structure of the Measure Algebra				
$\mathbf{G}_{\delta} = \mathbf{M} = \mathbf{F}_{\sigma}$ measurable				
□ p=p	G open	F clos	sed	⊘p=p
□ ◊p=p	□F reg. op	en ≬G re	g. closed	◊□p=p
□p=◊p=p G∩F = C clopen Boolean but uncountable				
lpl∈Q	Qr	ational	not Boole	ean
$\mathbf{G} = \mathbf{B}_{\sigma}$		B basic countable l intervals wit		oolean from n rational ends
Note: Using the measure-algebra semantics, every modal logical				
formula has a probability. Owing to the continuous				
automorphisms of M, it turns out every pure statement without				
free variables has truth value either 0 or 1.				

Proving $M \neq G \neq \Box F$

Theorem. There is a construction similar to that of the Cantor Discontinuum where $U \cup K = [0, 1]$ with U dense, open, K closed, nowhere dense, and of **positive measure**, and $U \cap K = \emptyset$.

Corollary 1. Let k = K/Null. Then $k \in M$ and $k \notin G$.

Proof: Suppose $k \in G$. Let V be an open set, V/Null = K/Null, giving V-K \in Null. But, this difference is open and so is \emptyset . So V \subseteq K, which implies V = \emptyset . But, K-V \in Null and K \notin Null.

Corollary 2. Let u = U/Null. Then $u \in G$ and $u \notin \Box F$.

Proof: Suppose $u \in \Box F$. Then $u = \Box \Diamond u$. But U is dense, so $\Diamond u = 1$ and hence u = 1. This implies k = 0, which is false.

Proof of the 0-1 Law

```
Theorem. There is no 0  invariant under the group <math>\Gamma
of all continuous, measure-preserving automorphisms of M.
Lemma. If a,b \in B, |a| = |b|, then there is a \tau \in \Gamma with \tau(a) = b.
Proof of the Theorem (new?):
• Find g \in G with p \le g < 1, and so 1 - g > 0.
```

- Find $b \in \mathbf{B}$ with $b \leq g$, $b \wedge p > 0$, and $|b| \leq |1-g|$.
- Find $h \in G$ with 1-g $\leq h$, and $|h \wedge g| < |b \wedge p|$.
- Find $a \in B$ with $a \le h$, and |a| = |b|.

Now $a \land p \leq h \land g$, and so $|a \land p| < |b \land p|$.

But let $\tau(a) = b$ and so $\tau(a \wedge p) = b \wedge p$. Contradiction!

Dorothy Maharam's Theorem

Theorem (1942). All separable, atomless, strictly positive, probability measure algebras are isomorphic and isometric.

Comments: It needs to be checked that this classical theorem also includes the **topological** isomorphism between Borel([0, 1])/Null and Borel([0, 1]^I)/Null for every countable power I using the usual **product measures and topologies**.

Other good spaces to investigate are Borel(**{0**, **1}**^N)/Null and Borel(**S**ⁿ)/Null for the n-dimensional spheres **S**ⁿ. Such representations of the cLa **M** also indicate the **richness** of the automorphism group Γ.

John Oxtoby's Theorem

Theorem (1970). Any two topologically complete separable metric spaces with non-atomic Borel probability measures contain homeomorphic G_{δ} sets of measure one where the homeomorphism is measure preserving.

Reference: John C. Oxtoby, **Homeomorphic Measures in Metric Spaces**, *Proceedings of the American Mathematical Society*, vol. 24 (1970), pp. 419-423.

What is an M-Set?

Definition. An **M**-set is a set A equipped with an **M**-valued equality [x = y], where, for all $x,y,z \in A$,

[x = x] = 1;[x = y] = [y = x]; and $[x = y] \land [y = z] \le [x = z].$

A is **reduced** provided [x = y] = 1 always implies x = y.

Note: There is a useful notion of complete M-set and a process of completion.

Note: Mappings between M-sets can be either extensional or intensional.

Singletons & Completeness

Definition: A *singleton* on an **M**-set A is a map s: A \rightarrow **M** where $\bigvee_{x \in A} s(x) = 1$, and for all $x, y \in A$, $s(x) \land [x = y] \leq s(y)$, and $s(x) \land s(y) \leq [x = y]$.

Definition: An **M**-set A is *complete* iff for every singleton s: $A \rightarrow M$ there is a *unique* element $a \in A$ where s(x) = [x = a] for all $x \in A$.

Theorem: The singletons on a reduced **M**-set A form a *complete M-set* expanding A, where $[s = t] = \bigvee_{x \in A} s(x) \land t(x).$

Categories of M-Sets

Definition: Write f: $A \rightarrow B$ for an *(extensional)* mapping of complete M-sets as a function from A to B where for all $x,y \in A$ we have $[x = y] \leq [[f(x) = f(y)]].$

Definition: Write f: A \rightarrow B for an *(intensional) mapping of complete M-sets* as a function from A to B where for all x,y \in A we have $\Box[x = y] \leq [f(x) = f(y)].$

Question: What are good axioms for this kind of "double" category?

M Itself as an M-Set

Definition. Make **M** into an **M**-set by defining the **M**-valued equality as $[p = q] = p \leftrightarrow q$ for all $p,q \in \mathbf{M}$. **Theorem.** M as an M-set is complete. **Theorem.** M with $\Box [p = q]$ is **not** complete. **Questions:** (1) Are there other interesting intensional mappings on M other than \Box and \Diamond ? (2) Can they be used for modeling other known modal logics?

Completeness and non-Completeness

M with [p = q]: Let s: M \rightarrow M be a singleton. We find $s(p) \le p \leftrightarrow s(1)$, and because $s(p) \land (p \leftrightarrow s(1)) \le s(s(1))$, we have $s(p) \le s(s(1))$. It follows that s(s(1))=1. But then $p \leftrightarrow s(1) \le s(p)$ holds. Whence, $s(p) = p \leftrightarrow s(1)$.

M with $\Box [p = q]$: Let s: M \rightarrow M be a singleton with this new equality. If $s(p) = \Box [p = q]$ for all $p \in M$, then also $s(p) = \Box s(p)$ for all $p \in M$. Take an $r \in M$ with 0 < r < 1where $\Box r = r$ and $\Box \neg r = 0$. Define an s by setting $s(p) = (r \land \Box p) \lor (\neg r \land \Box \neg p)$. It is easy to prove that s is a singleton. But, we find $s(0) = \neg r$.

M as a Complete G-Set

M with □[[p = q]]: Let s: M→ G be a G-singleton. Define $a = \bigwedge_{q \in M} (s(q) \rightarrow q)$. Therefore, $a \le s(p) \rightarrow p$, and so $s(p) \land a \le p$. Thus, $s(p) \le a \rightarrow p$, and $s(p) \le \Box (a \rightarrow p)$. Now $s(p) \land s(q) \le p \rightarrow q$, and so $s(p) \land p \le s(q) \rightarrow q$. Thus, $s(p) \land p \le a$, and $s(p) \le p \rightarrow a$, so $s(p) \le \Box (p \rightarrow a)$. Whence, $s(p) \le \Box (a \leftrightarrow p)$. Since $s(p) \land \Box (a \leftrightarrow p) \le s(a)$, we have $s(p) \le s(a)$. Therefore, s(a)=1. But also $s(a) \land \Box (a \leftrightarrow p) \le s(p)$, and thus $s(p) = \Box (a \leftrightarrow p)$.

Note: In G-valued logic we will be able to show that M is a cBa. Question: What does this buy us?

Boolean-valued Integers

Theorem. The set N_M = {θ | θ:P(N) →_{frm} M} can be made into a *complete* M-set by defining equality as [θ = η]] = V_n(θ({n})∧η({n})).
Corollary. N_M is the *completion* of N.
Theorem. Equality on N_G = {θ | θ:P(N) →_{frm} G} ⊆ N_M satisfies: [θ = η]] = □[[θ = η]] = ◊[[θ = η]].
Theorem. All the arithmetic operations •: N_M × N_M → N_M

can be defined by:

$$\llbracket \theta \bullet \eta = \zeta \rrbracket = \bigvee_{n,m} (\theta(\{n\}) \land \eta(\{m\}) \land \zeta(\{n \bullet m\})),$$

and the set $\mathbb{N}_{\mathbf{G}}$ will also be closed under them.

Extensional vs. Intensional Induction

(Ext) In \mathbb{N}_{M} we have as valid: $[\Phi(0) \land \forall x [\Phi(x) \rightarrow \Phi(x+1)]] \rightarrow \forall x \exists y [x = y \land \Phi(y)]$

> (Int) In \mathbb{N}_{G} we have as valid: $[\Phi(0) \land \forall x [\Phi(x) \rightarrow \Phi(x+1)]] \rightarrow \forall x. \Phi(x)$

Question: Why is this interesting or useful?

Automorphisms of Structures

Theorem. The group Γ of all continuous, measure-preserving automorphisms of \mathbf{M} induces *automorphisms* of $\mathbb{N}_{\mathbf{M}}$ leaving $\mathbb{N}_{\mathbf{G}}$ and all the arithmetic operations invariant.

Theorem. For modal arithmetic formulae $\Phi(a,b,c,...)$, we have $\tau(\llbracket \Phi(a,b,c,...) \rrbracket) = \llbracket \Phi(\tau(a),\tau(b),\tau(c),...) \rrbracket$, for $a,b,c,... \in \mathbb{N}_M$, $\tau \in \Gamma$.

Theorem. The only elements of \mathbb{N}_{M} *invariant* under all transformations in Γ are the *standard integers* of \mathbb{N} . The only *invariant extensional operations* on \mathbb{N}_{M} are those coming from *standard arithmetic operations* on \mathbb{N} .

Boolean-valued Baire Space

Theorem. The set $\mathbb{B}_{M} = \{\theta | \theta: Op(\mathbb{N}^{\mathbb{N}}) \rightarrow_{frm} M\}$ can be made into a *complete* M-set by defining equality as $\llbracket \theta = \eta \rrbracket = \Lambda_{U \in Op(\mathbb{N}^{\mathbb{N}})}(\theta(U) \leftrightarrow \eta(U)).$

Theorem. We can identify \mathbb{B}_{M} up to an **M**-isomorphism with the space { ϕ /Null | ϕ : [0, 1] $\rightarrow_{\text{meas}} \mathbb{N}^{\mathbb{N}}$ }, where we

have $\llbracket \phi/\text{Null} = \psi/\text{Null} \rrbracket = \{ t \in [0, 1] \mid \phi(t) = \psi(t) \}/\text{Null}.$

Hint: The opens of $\mathbb{N}^{\mathbb{N}}$ are **generated** by the sets $\{f|f(n) = m\}$.

Theorem. The space \mathbb{B}_{M} is **M**-isomorphic to the **M**-valued function space $\mathbb{N}_{M}^{\mathbb{N}_{M}}$.

Boolean-valued Reals

Theorem. The set $\mathbb{R}_{M} = \{\alpha \mid \alpha: Op(\mathbb{R}) \rightarrow_{frm} M\}$ can be made into a complete **M**-set by defining equality as $[\alpha = \beta] = \Lambda_{U \in Op(\mathbb{R})}(\alpha(U) \leftrightarrow \beta(U)).$

Theorem. Op($\mathbb{R} \times \mathbb{R}$) is the *frame-coproduct* of Op(\mathbb{R}) with itself.

Theorem.Using $+:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ and $(+):Op(\mathbb{R})\to_{frm} Op(\mathbb{R}\times\mathbb{R})$, then for $\alpha,\beta:Op(\mathbb{R})\to_{frm} \mathbf{M}$ we have $(\alpha,\beta):Op(\mathbb{R}\times\mathbb{R})\to_{frm} \mathbf{M}$, and so

we can define $(\alpha+\beta) = (\alpha,\beta)\circ(+)$: Op(\mathbb{R}) \rightarrow_{frm} **M**.

Note: Other continuous functions can be handled in the same way. Many laws of algebra then follow automatically.

Note: We can also define: $[\alpha \leq \beta] = \Lambda_{r \in \mathbb{Q}}(\alpha((r, \infty)) \rightarrow \beta((r, \infty))).$

Random Variables as Reals

Theorem. For the measure algebra **M** we can identify

 $\mathbb{R}_{M} = \{ f/\text{Null} \mid f : [0, 1] \rightarrow_{\text{meas}} \mathbb{R} \}$

as the M-valued reals, where we have

 $[f/Null = g/Null]] = \{ t \in [0, 1] | f(t) = g(t) \}/Null;$

 $\llbracket f/Null \le g/Null \rrbracket = \{ t \in [0, 1] | f(t) \le g(t) \}/Null;$

and

f/Null + g/Null = (f + g)/Null.

Note: We can similarly treat all other measurable operations on the M-valued reals.

Automorphisms of Reals

Theorem. The group Γ of all continuous, measurepreserving automorphisms of **M** induces *automorphisms* of \mathbb{R}_M leaving \mathbb{R}_G and all the standard, continuous operations invariant.

Theorem. The only elements of \mathbb{R}_{M} *invariant* under all transformations in Γ are the *standard reals* of \mathbb{R} . The only *invariant internal open subsets* \mathbb{R}_{M} are those coming from *standard opens* of \mathbb{R} .

Do we have Random Numbers?

— building on ideas of Robert Solovay and Alex Simpson —

Definition. Rand_M = the set of elements of \mathbb{R}_{M} avoiding

all the *standard closed* subsets of \mathbb{R}_{M} of *measure zero*.

Theorem. Random reals exist! **#**

Program of Research. Investigate how this notion of randomness extends to structures built from the real and complex numbers (e.g. vector spaces and Clifford algebras).

Extensional Powersets

Definition: Given a complete **M**-set A the *extensional powerset* of A is the collection of P: A \rightarrow **M** where, for all x,y \in A, we have P(x) $\land [x = y] \leq$ P(y). And we can use the definition:

$$\llbracket \mathsf{P} = \mathsf{Q} \rrbracket = \bigwedge_{x \in \mathsf{A}} (\mathsf{P}(x) \leftrightarrow \mathsf{Q}(x))$$

Theorem: The extensional powerset of A is a complete **M**-set.

Note: A Principle of Comprehension follows for extensional predicates.

Theorem: \mathbb{R}_{M} together with its extensional powerset satisfies the **Dedekind Completeness Axiom**.

Intensional Powersets

Definition: Given a complete **M**-set A the *intensional powerset* of A is the collection of P: $A \rightarrow M$ where, for

all $x, y \in A$, we have $P(x) \land \square [x = y] \le P(y)$.

And we use the definition

$$\llbracket \mathsf{P} = \mathsf{Q} \rrbracket = \bigwedge_{x \in \mathsf{A}} (\mathsf{P}(x) \leftrightarrow \mathsf{Q}(x))$$

Theorem: The intensional powerset of A is a complete M-set.
Note: A Principle of Comprehension follows.
Question: Should we be able to iterate this notion of powerset? The topic for Seminar III.