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A New Lewis Algebra?

Old. For every topological space X, the powerset
P(X) is a cBa, and the /attice of open subsets
Op(X) is a cHa and a subframe.

Note: These examples include the Kripke models.

New (7). For the standard probability space
Borel([0, 1]) with Lebesgue measure,

the measure algebra Borel([0, 1])/Null is a cBa (old),

and the quotient Op([0, 1])/Null is a cHa
that is a proper subframe (new?).

Note: Call this cLa M. For p € M write

Ip| for the measure of p.




Proof of Completeness

Theorem. The measure algebra M is a cBa.

Proof: Let X&M and let Y be the ideal generated by X. These

two sets have the same upper bounds. (Why?) By Zorn's
Lemma, let Z be a maximal family of non-zero, pairwise-

disjoint elements of Y. Owing to the measure, Z is countable.
(Why?) It then follows that the sup of Z exists and so
VZ =VY =VX. (Why?)

Theorem. The family G is a subframe of M.

Proof: Let XSG and let Y be the set of elements u = U/Null
where Uis a rational interval and u < v for some v € X.

Then Y is countable and VY =VX € G. (Why?)

Of course, G is closed under finite meets. (Why?)




Structure of the Measure Algebra

Gs =M =F; measurable
Op=p G open F closed Op=p
O¢p=p OF reg. open 0G reg. closed ¢Op=p

Op=0p=p GNF =C clopen Boolean but uncountable

Iple@ Q rational not Boolean

G =B, B basic  countable Boolean from
intervals with rational ends

Note: Using the measure-algebra semantics, every modal logical
formula has a probability. Owing to the continuous
automorphisms of M, it turns out every pure statement without
free variables has truth value either O or 1.




Proving M = G = OF

Theorem. There is a construction similar to that of the Cantor
Discontinuum where UUK = [0, 1] with U dense, open, K closed,

nowhere dense, and of positive measure, and UnK = .

Corollary 1. Let k=K/Null. Then k € Mand k & G.

Proof: Suppose k € G. LetV be an open set, V/Null = K/Null,
giving V-KeNull. But, this difference is open and so is <.
So VcK, which implies V= &. But, K-V&Null and K& Null.

Corollary 2. Let u=U/Null. Thenu e Gandu ¢ OF.

Proof: Suppose u € OF. Then u=OQu. But U is dense, so
Qu=1 and hence u=1. This implies k=0, which is false.




Proof of the O0-1 Law

Theorem. There is no 0 <p < 1 invariant under the group [

of all continuous, measure-preserving automorphisms of M.

Lemma. If a,b € B, lal =1bl, thenthereisa te [ with t(a) = b.
Proof of the Theorem (new?):

e Find ge G withp = g<1,and so 1-g > 0.
eFindbeBwithb=<g, bAp>0, and Ibl < I1-gl.
e Find he G with 1-g < h, and IhAgl<IbApl.

e Find a€ B with a < h, and lal =IDbl.

Now aAp <hAgQg,and solaAnpl<lbApl.

But let 1(a) = b and so T(aAp) = bAp. Contradiction!




Dorothy Maharam’s Theorem

Theorem (1942). All separable, atomless,

strictly positive, probability measure algebras
are isomorphic and isometric.

Comments: It needs to be checked that this classical

theorem also includes the tfopological isomorphism between
Borel([0, 1])/Null and Borel([0, 1]')/Null for every countable

power I using the usual product measures and topologies.

Other good spaces to investigate are Borel({0, 1})/Null and
Borel(S")/Null for the n-dimensional spheres S".
Such representations of the cLa M also indicate the

richness of the automorphism group [




John Oxtoby's Theorem

Theorem (1970). Any two topologically complete

separable metric spaces with non-atomic Borel
probability measures contain homeomorphic Gs sets

of measure one where the homeomorphism is
measure preserving.

Reference: John C. Oxtoby, Homeomorphic Measures in

Metric Spaces, Proceedings of the American Mathematical Society,
vol. 24 (1970), pp. 419-423.




Extension vs. Intension

Jdy [x =y AD(y)] vs. OD(x)
Different principles hold in different contexts:
0=TA®D(0) = D(T)
VS.
O[o = T]A®(0) = O(T)
The prime example of an intensional mapping:

O[>V <[O0b<—0OW]




What is an M-Set?

Definition. An M-set is a set A equipped with an
M-valued equality [x = yI, where, for all x,y,z€ A,

[x=x1=1;
[x =yl =1y =x]; and
[X=VyIALy =2z] =[x =Zz].
Ais reduced provided [x = y] = 1 always implies x =y.
Note: There is a useful notion of complete M-set

and a process of completion.

Note: Mappings between M-sets can be either
extensional or intensional.




Singletons & Completeness

Definition: A singleton on an M-set A is a map
s:A— Mwhere V. s(x) =1, and for all x,y€eA,

xeA

s(x) A [x=y] =s(y), and s(x) A s(y) = [x =yI.

Definition: An M-set Ais complete iff
for every singleton s: A— M there is a unique
element acA where s(x) = [x = a] for all xeA.

Theorem: The singletons on a reduced M-set A
form a complete M-set expanding A, where

[s=t]=V __, s(x)At(x).




Categories of M-Sets

Definition: Write f: A—B for an (extensional)
mapping of complete M-sets as a function from
A to B where for all x,y€A we have

[x = y1 < [f(x) = f(y)1.

Definition: Write f: A B for an (intensional)
mapping of complete M-sets as a function from
A to B where for all x,y€A we have

O0x =yl = [f(x) = f(y)1.

Question: What are good axioms for
this kind of “double” category?




M Itself as an M-Set

Definition. Make M into an M-set by defining the
M-valued equality as [p = q] = p<q for all p,ge M.
Theorem. M as an M-set is complete.
Theorem. M with O[p = ql is not complete.

Questions: (1) Are there other interesting

intensional mappings on M other than O and ¢?

(2) Can they be used for modeling other known
modal logics ?




Completeness and non-Completeness

M with [p = gq]: Lets: M— M be a singleton. We find
s(p) < p<>s(1), and because s(p) A (p<>s(1)) < s(s(1)),
we have s(p) < s(s(1)). It follows that s(s(1))=1. But
then p<—s(1) = s(p) holds. Whence, s(p) = p<s(1).

M with O[p = ql: Let s: M— M be a singleton with this
new equality. If s(p)= Olp =ql for all p€ M, then also
s(p) = Os(p) for allpe M. Take anre MwithO<r<1
where Or=rand O-r=0. Define an s by setting

s(p) = (rAOp)V(-rAO-p). It is easy to prove that s

is a singleton. But, we find s(0) = -.




M as a Complete G-Set

M with O[p = q]: Let s: M— G be a G-singleton. Define
a= /\qu(s(q) - ). Therefore, a < s(p) > p, and so
s(p)Aa<p. Thus, s(p)<a-p, and s(p)< O(a-p).
Now s(p)As(q)<p—-4, and so s(p) Ap=<s(q) > Q.
Thus, s(p)Ap<a, and s(p)<p-a, so s(p)< O(p - a).
Whence, s(p) = O(a <> p). Since s(p) A O(a <> p) < s(a),
we have s(p) < s(a). Therefore, s(a)=1. But also
s(a)A O(a<>p) =s(p), and thus s(p) = O(a < p).

Note: In G-valued logic we will be able to show
that M is a cBa. Question: What does this buy us?




Boolean-valued Integers

Theorem. The set Nm = {6|0:P(N) —#m M} can be
made into a complete M-set by defining equality as

8 =n1=V_(6(nhAn{n}).
Corollary. N is the completion of .
Theorem. Equality on Ng = {8|0:P(N) —tm G} € Ny
satisfies: [0 =n] = O[6 =n] = ¢[6 =n]I.

Theorem. All the arithmetic operations ®:NNm XNy = Np
can be defined by:

[6en=21=V,__(O¢n)ANGMHAL{nem)),

and the set Ng will also be closed under them.




Extensional vs. Intensional
Induction

(Ext) In Nm we have as valid:
[®@(0) A VX[®(x) 2P (x+1)]] = Vx Ty [x =y AD(y)]

(Int) In Ng we have as valid:
[D(0) A VX[D(X) 2P (x+1)]] = VX. D(X)

Question: Why is this interesting or useful?




Automorphisms of Structures

Theorem. The group [ of all continuous, measure-preserving

automorphisms of M induces automorphisms of NNm leaving

Ng and all the arithmetic operations invariant.

Theorem. For modal arithmetic formulae ®(a,b,c,...), we have

T([®(a,b,c,...)]) = [®(T(a),T(b),T(c),...)], for a,b,c,..€Nnm, TEl.

Theorem. The only elements of INm invariant under all

transformations in [ are the standard integers of IN. The

only invariant extensional operations on N are those

coming from standard arithmetic operations on 1N.




Boolean-valued Baire Space

Theorem. The set Bm = {8]6:0p(INY) —#m M} can be
made into a complete M-set by defining equality as

[0 = NI = Aucop™(68(U) =1 (U)).
Theorem. We can identify Bm up to an M-isomorphism
with the space { ®/Null | $: [0, 1] = meas NN }, where we

have [&/Null = Q/Null T = {t € [0, 11 | d(t) = P(t) ¥Null.

Hint: The opens of WM are generated by the sets {f|f(n) = m}.

Theorem. The space Bmis M-isomorphic to the M-valued

function space Wy™m,




Boolean-valued Reals

Theorem. The set Rm = {a|a:Op(R) —#m M} can be
made into a complete M-set by defining equality as

[a = B1 = Aueopr)(@(U) < B(U)).
Theorem. Op(RXR) is the frame-coproduct of Op(R) with itself.
Theorem.Using +:RXIR =R and (+):0p(R)—m Op(RX R), then
for a,B : Op(R)—#m M we have (a,B) : Op(RXR)—#m M, and so
we can define (a+B) = (a,B)o(+) : Op(R) —#m M.

Note: Other continuous functions can be handled in the same
way. Many laws of algebra then follow automatically.

Note: We can also define: [a <1 = /weq(a((r,oc)) = B((r,o0))).




Random Variables as Reals

Theorem. For the measure algebra M we can identify
Rm = {f/Null |f: [0, 1] = meas R ]
as the M-valued reals, where we have
[ f/Null =g/Null 1 = {te [0, 1] | f(t) = g(t) }/Null;
[ f/Null =g/Null ] = {te[0,1] | f(t) < g(t) }/Null;

and
fINull + g/Null = (f + g)/Null.

Note: We can similarly treat all other measurable
operations on the M-valued reals.




Automorphisms of Reals

Theorem. The group [ of all continuous, measure-
preserving automorphisms of M induces automorphisms

of Rm leaving Rg and all the standard, continuous

operations invariant.

Theorem. The only elements of Rm invariant under all

transformations in [ are the standard reals of IR. The
only invariant internal open subsets Rm are those

coming from standard opens of R.




Do we have Random Numbers?

— building on ideas of Robert Solovay and Alex Simpson —

Definition. Randm = the set of elements of Rm avoiding

all the standard closed subsets of Rm of measure zero.

£ Theorem. Random reals exist! 3

Program of Research. Investigate how this notion of
randomness extends to structures built from the real and

complex numbers (e.g. vector spaces and Clifford algebras).




Extensional Powersets

Definition: Given a complete M-set A the extensional
powerset of Ais the collection of P: A= M where,

for all x,y€A, we have P(x) A [x =yl < P(y).
And we can use the definition:

P=Q1= /A _ (PKX) < QX))

Theorem: The extensional powerset of A is a complete M-set.

Note: A Principle of Comprehension follows for
extensional predicates.

Theorem: Rm together with its extensional powerset
satisfies the Dedekind Completeness Axiom.




Intensional Powersets

Definition: Given a complete M-set A the intensional
powerset of Ais the collection of P: A= M where, for

all x,yeA, we have P(x) A OIx =yl = P(y).
And we use the definition

P=Q1= /A _ (PKX) < QX))
Theorem: The intensional powerset of A is a complete M-set.

Note: A Principle of Comprehension follows.

Question: Should we be able to iterate this
notion of powerset? The topic for Seminar III.






