Seminar I Boolean and Modal Algebras

Dana S. Scott

University Professor Emeritus

Carnegie Mellon University

Visiting Scholar

University of California, Berkeley

Visiting Fellow

Magdalen College, Oxford

Oxford, Tuesday 25 May, 2010 Edinburgh, Wednesday 30 June, 2010

A Very Brief Potted History

Gödel gave us two translations: **(1)** classical into intuitionistic using not-not, and **(2)** intuitionistic into S4-modal logic.

Tarski and **McKinsey** reviewed all this algebraically in propositional logic, proving completeness of **(2)**.

Mostowski suggested the algebraic interpretation of quantifiers.

Rasiowa and Sikorski went further with first-order logic, giving many completeness proofs (pace Kanger, Hintikka and Kripke).

Montague applied higher-order modal logic to linguistics.

Solovay and **Scott** showed how **Cohen's** forcing for ZFC can be considered under **(1)**. **Bell** wrote a book (now 3rd ed.).

Gallin studied a Boolean-valued version of Montague semantics.

Myhill, Goodman, Flagg and Scedrov made proposals about modal ZF.

Fitting studied modal ZF models and he and **Smullyan** worked out forcing results using both **(1)** and **(2)**.

What is a Lattice?

 $0 \le x \le 1$

Bounded

 $X \leq X$

Partially

 $x \le y \& y \le z \Rightarrow x \le z$

Ordered

Set

 $x \le y \& y \le x \Rightarrow x = y$

 $x \lor y \le z \Leftrightarrow x \le z \& y \le z$

With sups

&

 $Z \le X \land y \Leftrightarrow Z \le X \& Z \le y$

With infs

What is a Complete Lattice?

$$\bigvee_{i \in I} x_i \le y \Leftrightarrow (\forall i \in I) x_i \le y$$

$$y \le \bigwedge_{i \in I} x_i \Leftrightarrow (\forall i \in I) \ y \le x_i$$

Note:

$$\bigwedge_{i \in I} x_i = \bigvee \{y | (\forall i \in I) \ y \le x_i \}$$

What is a Heyting Algebra?

$$X \le y \to z \Leftrightarrow X \land y \le z$$

What is a Boolean Algebra?

$$X \le (y \rightarrow z) \lor W \Leftrightarrow X \land y \le z \lor W$$

Alternatively using Negation

$$X \le \neg y \lor Z \Leftrightarrow X \land y \le Z$$

Distributivity

Theorem: Every Heyting algebra is *distributive*:

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Theorem: Every complete Heyting algebra is (∧V)-distributive:

$$x \land \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \land y_i)$$

Note: The dual law does not follow for complete Heyting algebras.

Proof Outline

To show that

$$X \land (y \lor Z) \le (X \land y) \lor (X \land Z),$$

it is sufficient to show that

$$y \lor z \le x \rightarrow ((x \land y) \lor (x \land z)).$$

So, it is sufficient to show that

$$y \leq X \rightarrow ((X \land y) \lor (X \land Z)),$$

(and also for Z). But this last comes down to

$$X \wedge y \leq (X \wedge y) \vee (X \wedge Z).$$

Now reverse the argument. Q.E.D.

Note: The $(\land \lor)$ -law has a similar proof.

First-Order Algebraic Semantics

$$[aRb] = given$$

$$[\Phi \land \Psi] = [\Phi] \land [\Psi]$$

$$[\Phi \lor \Psi] = [\Phi] \lor [\Psi]$$

$$[\Phi \to \Psi] = [\Phi] \to [\Psi]$$

$$[\exists x.\Phi(x)] = \bigvee_{a \in A} [\Phi(a)]$$

$$[\forall x.\Phi(x)] = \bigwedge_{a \in A} [\Phi(a)]$$

Note: A number of details are being ignored here.

Semantical Completeness

A sentence Φ is provable in intuitionistic *first-order* logic if, and only if,

$$[\![\Phi]\!] = 1$$

whatever the interpretation in a complete Heyting algebra.

Note: The proof from left to right is obvious! And the result holds for classical and modal logic.

Generic Completeness

There is – relative to the choice of language – a *single* algebra such that

if $\llbracket \Phi \rrbracket = 1$ for this algebra,

then Φ is provable in intuitionistic (classical) (modal) first-order logic.

The proof goes through the Lindenbaum algebra and the MacNeille completion of lattices.

MacNeille Completion I.

The completion embeds a lattice into the lattice of those ideals that are equal to the lower bounds of all their upper bounds.

Hint: Think of Dedekind cuts.

The Good: The completion preserves all the *existing* sups and infs.

The Bad: The MacNeille completion of a distributive lattice is *not always* distributive!

MacNeille Completion II.

- There are many (equational) varieties between Heyting and Boolean algebras.
 - However, the completeness process only puts us in the same variety in the two extreme cases.
- But, it does work for the extension to modal S4 Heyting and Boolean algebras (to be explained next).

What Happened to Gödel?

The usual {0,1}-valued completeness theorem follows from the Boolean version for *countable languages via* the

Rasiowa-Sikorski Lemma: Ultrafilters can be found preserving any given *countable* list of sups and infs in a Boolean algebra.

Hence, the MacNeille completion is not needed for {0,1}-valued completeness.

What is a Lewis (S4) Algebra?

A complete Boolean algebra plus a "necessity" operator satisfying:

$$\Box \Box p = \Box p \leq p$$

$$\Box(p\land q)=\Box p\land \Box q$$

Note: The second two laws can be combined:

$$\Box p = \bigvee \{q | q = \Box q \le p\}.$$

"Possibility" is defined as $p = \neg \neg p$.

Some Abbreviations

Ha = Heyting Algebra
cHa = Complete Heyting Algebra
Ba = Boolean Algebra
cBa = Complete Boolean Algebra
La = Lewis Algebra
cLa = Complete Lewis Algebra

Note: For semantics don't forget to add:

$$\llbracket \Box \Phi \rrbracket = \Box \llbracket \Phi \rrbracket$$

What is a Frame?

Definition. A *frame* is any complete lattice which is $(\land \lor)$ -distributive.

Theorem. In a cLa, the □-stable elements form a *subframe*.

Theorem. In a cBa, *any* subframe creates a cLa.

Hint: We can define: $\Box p = \bigvee \{q \in H | q \leq p\}$, where H is the subframe. Such structures can be regarded as abstract topological spaces.

An Important Theorem

Theorem. *Every* frame can be made into a cHa.

Define:
$$q \rightarrow r = \bigvee \{p \mid p \land q \leq r\}$$
.

Corollary. In a cHa every subframe can be regarded as a cHa (but *not* with the same →).

Note:
$$\neg p = p \rightarrow 0$$
.

Boole vs. Heyting vs. Lewis

Theorem (old). For every cBa **B**, the cHa **H** of all ideals of **B** is such that $\mathbf{B} \cong \{\neg \neg p \mid p \in \mathbf{H}\}$.

Theorem (new?). For every cLa L, the cHa H of all ideals of L is such that $L \cong \{\neg \neg p \mid p \in H\}$ and $\Box p = \neg \neg \Box_H p$, where we define $\Box_H p = \{q \in L \mid \exists r \in p[q \leq \Box_L r]\}$.

Theorem (old). For every cHa **H**, there is a (non-canonical) cLa **L** such that

 $\mathbf{H} \cong \{ \Box \mathbf{p} | \mathbf{p} \in \mathbf{L} \}.$

Exercise

Question. What are Lewis (S5) algebras?

Answer. A cBa and a complete Boolean subalgebra.

Hint: The extra (S5) axiom amounts to

$$\Diamond p = \Box \Diamond p$$
.

By way of example, think of a powerset and the subalgebra of sets invariant under an equivalence relation.

A Very Brief Bibliography

Books

[AIL], Jaakko Hintikka and Patrick Suppes (eds.), Aspects of Inductive Logic, North-Holland 1966, vi + 320 pp.

[AOS] M.P. Fourman, C.J. Mulvey, and D.S. Scott (eds.), **Applications of Sheaves**, Springer-Verlag LNM, vol. 753 (1979), iv + 779 pp.

[BVA] A.G. Kusraev and S.S. Kutateladze, Boolean Valued Analysis, Kluwer 1999, xii + 322 pp.

[BVM] John L. Bell, Set Theory: Boolean-Valued Models and Independence Proofs, Third Edition, OUP 2005, xviii + 191 pp.

[IHO] Daniel Gallin, Intensional Higher-Order Modal Logic, North-Holland 1975, vii + 148 pp.

[IMA] Stewart Shapiro, Intensional Mathematics, North-Holland 1985, 230 pp.

[MFS] A. Ehrenfeucht, V.W. Marek, and M. Srebrny (eds.), **Andrzej Mostowski and Foundational Studies**, IOS Press 2008, xi + 447 pp.

[MOM] H. Rasiowa and R. Sikorski, **The Mathematics of Metamathematics**, Third Edition, PWN Warsaw 1970, 519 pp.

[STC] Rayond M. Smullyan and Melvin Fitting, Set Theory and the Continuum Problem, OUP 1996, xiii + 285 pp.

[STS] Peter T. Johnstone, Stone Spaces, CUP 1982, xxi + 370 pp.

[TIL] Vincent F. Hendricks and Jacek Malinowski (eds.), **Trends in Logic, 50 Years of Studia Logica**, Kluwer 2003, 392 pp.

[TTG] Melvin Fitting, Types, Tableaus, and Gödel's God, Kluwer 2002, xv + 196 pp.

Articles

Melvin Fitting, *Intensional Logic—Beyond First Order*, in: **[TIL]**, pp 87--108.

Robert C. Flagg, *Epistemic set theory is a conservative extension of intuitionistic set theory*, **Journal Symbolic Logic**, vol. 50 (1985), pp. 895-902.

Robert C. Flagg, *Integrating classical and intuitionistic type theory,* **Annals of Pure and Applied Logic**, vol. 32 (1986), pp. 27-51.

Robert C. Flagg and Harvey Friedman, *Epistemic and intuitionistic formal systems*, **Annals of Pure and Applied Logic**, vol. 32 (1986), pp. 53-60.

Michael P. Fourman, and Dana S. Scott, *Sheaves and logic*, In: [AOS], pp. 302–401.

Nicolas D. Goodman, *The knowing mathematician*, **Synthese**, vol. 60 (1984), pp. 21-38.

Nicolas D. Goodman, *Replacement and collection in intuitionistic set theory*, **Journal of Symbolic Logic**, vol. 50 (1985), pp. 344-348. Correction, ibid., vol. 51 (1986), p. 333.

Nicolas D. Goodman, A genuinely intensional set theory, in: [IMA], pp. 63-80.

Nicolas D. Goodman, Flagg realizability in arithmetic, Journal of Symbolic Logic, vol. 51 (1986), pp. 387-392.

Nicolas D. Goodman, *Intensions, Church's Thesis, and the formalization of mathematics*, **Notre Dame Journal of Formal Logic**, vol. 28 (1987), pp. 473-489.

Nicolas D. Goodman, *Topological models of epistemic set theory,* **Annals of Pure and Applied Logic**, vol. 46 (1990), pp. 119-126.

Nicolas D. Goodman, *Modernizing the philosophy of mathematics*, **Synthese**, vol. 88 (1991), pp. 21-38.

Robin J. Grayson, *Heyting-valued models for intuitionistic set theory*, In: **[AOS]**, pp. 402–414.

J. Harding, and G. Bezhanishvili, *MacNeille completions of Heyting algebras*, **Houston Journal of Mathematics**, vol. 30 (2004), pp. 937–952.

J. Harding, and G. Bezhanishvili, *MacNeille completions of modal algebras*, **Houston Journal of Mathematics**, vol. 33 (2007), pp. 355–384.

John Myhill, *Intensional set theory*, in: **[IMA]**, pp. 47-61.

Andrej Scedrov, Extending Gödel's modal interpretation to type theory and set theory, in: [IMA], pp. 11-46.

Andrej Scedrov, *Embedding sheaf models for set theory into Boolean-valued permutation models with an interior operator*, **Annals of Pure and Applied Logic**, vol, 32 (1986), pp. 103-109.

Dana Scott and Peter Krauss, Assigning probabilities to logical formulas, in: [AIL]. pp. 219-264.

Dana Scott and Michael Fourman, Sheaves and logic. in: [AOS], pp. 302–401.

Dana S. Scott, *Identity and existence in intuitionistic logic*, In: **[AOS]**, pp. 660–696.

Dana S. Scott, The Algebraic interpretation of quantifiers: intuitionistic and classical, in: [MFS], pp. 289-312.