Logic Seminar, Winter 2015: Formal Semantics of Natural Language

1/13/15

Organizational

- 1. Seminar leaders: Solomon Feferman (<u>feferman@stanford.edu</u>) and Ivano Caponigro (<u>ivano@ling.ucsd.edu</u>)
- 2. Course Works W15-PHIL-391-01 (or W15-MATH-391-01)
- 3. Seminar website <u>http://idiom.ucsd.edu/~ivano/LogicSeminar_15W/</u> (see for schedule, planned readings, background readings, and books on reserve)
- 4. *Call for Volunteers* !!
- 5. Special lecture: Barbara Partee, Tues. Feb. 24
- 6. Spring seminar: Quantifiers in natural language

Part I. The logical background to Montague's work (Feferman)

Montague's development

- 1. Richard Montague (1930-1971); PhD Philosophy UCB 1957 under the direction of Alfred Tarski; on UCLA faculty 1955-1971
- 2. (From Tarski) Style: extremely precise, Methodology: mathematical
- 3. Montague's work in logic, philosophy and formal semantics
- 4. The impact of Montague grammar (esp. PTQ)

The materials that Montague drew upon from mathematical logic

- 1. Syntax of formal languages (Frege, Russell & Whitehead, Hilbert)
- 2. Categorial syntax of natural language (Ajdukiewicz)
- 3. Models, satisfaction and truth in a model (Skolem, Tarski)
- 4. Typed λ -calculus (Church)
- 5. Intensionality, possible world semantics, modal logic (Frege, Carnap, Kripke)
- 6. Temporal logic (Prior)
- 7. Generalized quantifiers (Mostowski, Lindström)

Syntax of the predicate calculus with equality

- 1. Variables, constant symbols, function symbols; terms α , β , ...
- 2. Predicate and relation symbols; atomic formulas $\alpha = \beta$, R(α ,...)
- 3. Formulas ϕ , ψ , ...
- 4. Propositional operations, $\neg \phi$, $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$
- 5. Quantifiers $\nabla x \phi$ (or $\exists x \phi$), $\wedge x \phi$ (or $\forall x \phi$)
- 6. Sentences (= closed formulas)
- 7. Extension to many-sorted and higher type languages.

Models, satisfaction and truth

- 1. Structures $\mathfrak{M} = (A, R, ..., f, ..., c, ...)$
- 2. Assignments g: Var \rightarrow A
- 3. Evaluation of terms, $\alpha^{\otimes g}$ defined inductively
- 4. Compositionality: satisfaction of formulas (a), $g \models \phi$ defined inductively; Montague writes $\phi^{\otimes,g} = 1$ just in case that holds, and = 0 otherwise
- 5. A sentence is true in no just in case it is satisfied by some g (equivalently, all g).
- Modifications for intensional and temporal logic: index structures by a set I, _{\$\overline{m}i\$} = (A, R_i,...,f_i,...,c_i,...), and time by a set J. Thus write α^{\$\overline{m}i,j,g\$} for i ∈ I and j ∈J, similarly for satisfaction of formulas

Functions, not sets! Function application and λ -abstraction

- 1. Motivated by functional view of categorial grammar
- 2. Given domains X and Y, Y^X is the set of all functions f: $X \rightarrow Y$, i.e., for any x, if $x \in X$ then $f(x) \in Y$
- 3. Subsets of a domain X are identified with characteristic functions in $\{0, 1\}^X$.
- 4. If $\alpha(x)$ is a term denoting elements of Y for each $x \in X$ then $\lambda x \alpha(x)$ denotes the function $f \in Y^X$ such that $f(x) = \alpha(x)$ for all x.
- 5. Example: Let X = Y = N, $\alpha(x) = x^2 + 3$; then $(\lambda x \alpha(x))(2) = 7$ and $(\lambda x \alpha(x))(3) = 12$

An aside: the untyped λ -calculus

- 1. Imagine a universe V of "all" things; then any $f: V \rightarrow V$ belongs to V
- 2. Let n be the function such that for any x, n(x) = 1 if x(x) = 0, and n(x) = 0 otherwise; n can be written as $\lambda x \alpha(x)$ for suitable α
- 3. Then n(n) = 1 iff n(n) = 0, a contradiction (assuming 0, 1 are distinct)
- 4. But a formal version of untyped λ -calculus without n is consistent

The typed λ -calculus

- 1. Basic types e, t
- 2. If a, b are types then $\langle a, b \rangle$ is a type
- 3. Intended interpretation: for each type a, associate a domain D_a of objects of type a
- 4. Take $D_e = A$, $D_t = \{0, 1\}$
- 5. Take $D_{(a, b)}$ to be the set of all functions f: $D_a \rightarrow D_b$
- 6. To deal with intensionality, Montague adds for each type a the type (s, a) or ^a with suitable interpretation D_(s, a); NB, there is no type s by itself
- 7. The set ME_a of meaningful expressions of type a is defined inductively
- 8. Then $\alpha^{(1),g}$ is defined inductively for α in ME.

Part II. The study of meaning in natural languages before Montague's work (Caponigro)

Within linguistics¹

Little interest, little knowledge ...

- 1. <u>European linguists</u> were mainly philologists who were mainly interested in historical and comparative investigation.
- 2. <u>American linguistics</u> came from anthropology and was mainly interested in field work.
- 3. The <u>behaviorists</u> viewed meaning as an unobservable aspect of language, not fit for scientific study, which influenced the <u>American structuralists</u>.
- 4. <u>Quine had strong skepticism about the concept of meaning, and had some influence on Chomsky</u>.
- 5. The great progress in semantics in logic and philosophy of language was relatively unknown to most linguists, who were at most familiar with first-order logic
- 6. In 1954, <u>Yehoshua Bar-Hillel</u> wrote an article in *Language* inviting cooperation between linguists and logicians.
- 7. <u>Chomsky</u> (1955) rebuffed Bar-Hillel's invitation.
- <u>Katz and Fodor</u> (1963) and <u>Katz and Postal</u> (1964):
 understanding a sentence is an ability to derive readings (ambiguity: more than one reading; anomaly: no reading; synonymy: same reading)
 semantics is built out of dictionary of <u>semantic markers</u> and <u>rules of composition</u>
- 9. But <u>David Lewis</u> ("General semantics", 1970): "Semantic interpretation by means of [semantic markers] amounts merely to a translation algorithm from the object language to an auxiliary language [called] Markerese. [...]Semantics with no treatment of truth conditions is not semantics."
- 10. <u>Generative Semanticists</u>, who were in part concerned with the interpretation of quantified sentences and the problems they created for Chomsky's notion of "Deep Structure", adopted a notion of "logical form" based on first-order logic.

¹ For more details see Partee, On the history of the question of whether natural language is "illogical"; link available on the seminar webpage, under "Readings - 1/13".

Within philosophy and logic

Natural language and logic are inherently different:

- 1. Much progress in the semantics of formal languages (see Part I of this handout)
- 2. Logic and natural language are different:
 - a. "<u>Formalists</u>": natural language is vague and ambiguous, unsuitable for the foundations of science
 - b. "<u>Informalists</u>": natural language can be used to do much more than conveying scientific truth
- 3. Paul Grice, Logic and conversation, 1967:

"I wish [...] to maintain that the common assumption [...] that the divergences [between logic operators and their counterparts in natural language] do in fact exist is (broadly speaking) a common mistake, and that the mistake arises from inadequate attention to the nature and importance of the conditions governing conversation."

4. Richard Montague, Universal Grammar, 1970:

"There is in my opinion no important theoretical difference between natural language and the artificial languages of logicians; indeed, I consider it possible to comprehend the syntax and semantics of both kinds of languages within a single natural and mathematically precise theory. [...] No adequate and comprehensive semantical theory has yet been constructed and arguable that no comprehensive and semantically significant syntactical theory yet exists."