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Two Problems

|.  Problem of Competition

2. Problem of Productivity



The Problem of
Competition

When multiple ways of expressing a
meaning exist, how do we decide
between them!



Competition

(e.g.,Aronoff, 1976; Plag, 2003; Rainer, 1988; van Marle, 1986)

® Examples
® Computed v. Stored
® goed v.went
® Computed v. Computed
® splinged v. splang (Albright & Hayes, 2003)

® Multi-way competition



Multi-way Competition

® Hierarchical and recursive structures often
give rise to multi-way competition between
different combinations of stored and
computed subexpression.
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Multi-way Competition

(Aronoff, 1976)

Xous Nominal Xity Xness
various . variety variousness
curious B curiosity curiousness
glorious glory *gloriosity gloriousness
furious fury *furiosity furiousness
specious i speciosity speciousness
precious price *preciosity preciousness
gracious grace *graciosity graciousness

spacious space *spaciosity spaciousness
tenacious B tenacity tenaciousness
fallacious fallacy *fallacity fallaciousness
acrimonious | acrimony | *acrimoniosity | acrimoniousness
impecunious ; impecuniosity | impecuniousness
laborious labor *laboriosity laboriousness
bilious bile *biliosity biliousness
pious B piety piousness



Competition Resolution

® Competition is resolved in general following the

elsewhere condition (subset principle, Panini’s principle,
blocking, pre-emption, etc.)

® “More specific’ way of expressing meaning is preferred to
“more general” way.
® Variability in strength of preferences
® goed v. went

® curiosity v. curiousness, depulsiveness v. depulsivity (Aronoff &
Schvaneveldt, 1978)

® tolerance v. toleration (i.e., doublets, e.g., Kiparsky, 1982a)

® More frequent items are more strongly preferred (e.g,
Marcus et al. 1992)



The Problem of
Productivity

Why can some potential
generalizations actually generalize
productively, while others remain

“inert” in existing expressions?



Productivity

Suffix

Productive (with Adjectives) -Ness
Context-Dependent -it)’
Unproductive -th




Productivity

Suffix

Productive (with Adjectives) -Ness

circuitousness, grandness, orderliness,

Existing: bretentiousness, cheapness, ...

Novel: pine-scented  pine-scentedness



Productivity

Suffix

Productive (with Adjectives) -Nness

N

/\
Adj -ness




Productivity

Suffix
Productive (with Adjectives) -Ness
Context-Dependent -it)’

verticality,tractability,severity,

Existing:
S seniority, inanity, electricity, ...

Novel: *pine-scentedity



Productivity

Suffix
Productive (with Adjectives) -Nness
Context-Dependent -it)’

-ile, -al, -able, -ic, -(i)an

subsequentiable subsequentiability




Productivity

Suffix
Productive (with Adjectives) -Nness
Context-Dependent -it)’
N
/\
Adj -1ty

N
V -able




Productivity

Suffix
Productive (with Adjectives) -Ness
Context-Dependent -it)’
Unproductive -th
Existing: warmth, width, truth, depth, ...

Novel: *coolth



Productivity

Suffix

Productive (with Adjectives) -Ness
Context-Dependent -it)’
Unproductive -th

Adj

warm

-th




Productivity and Reuse

Suffix
|. How can difference;
in producE?\%%S/PB‘éd”Ct"’e -NESs
represented!? | :
Less Productive -|ty

2. How can differences

be learnedeast Productive

-th




Unifying the Problems

® Fundamental problem: How to produce/
comprehend linguistic expressions under
uncertainty about how meaning is
conventionally encoded by combinations of
stored items and composed structures.

® Productivity and competition are often just
special cases of this general problem.



Approach

® Build a model of computation and storage
under uncertainty based on an inference which

optimizes a tradeoff between productivity
(computation) and reuse (storage).

® This implicitly explains many specific cases of
productivity and competition.



Case Studies

|. What distributional factors signal
productivity!?

® Explaining Baayen’s hapax-based measures.

2. How is competition resolved?

® Derives elsewhere condition.

3. Multi-way competition.

® Explains productivity and ordering generalization.

® Handles exceptional cases of paradoxical suffix
combinations.



Talk Outline

|. Introduction to productivity and reuse

with Fragment Grammars (with Noah
Goodman).

2. Case Studies on Productivity and
Competition.



Talk Outline

-

Introduction to productivity and reuse

with Fragment Grammars (with Noah
Goodman).

Case Studies on Productivity and
Competition.




The Framework:
Three ldeas

|. Model how expressions are built by
composing stored pieces.

2. Treat productivity (computation) and reuse
(storage) as properties which must be
determined on a case-by-case basis.

3. Infer correct patterns of storage and
computation by balancing ability to predict
input data against simplicity biases.



A Simple Formal Model:
Fragment Grammars

|.  Formalization of the hypothesis space.
® Arbitrary contiguous (sub)trees.
2. Formalization of the inference problem.

® Probabilistic conditioning to find good
balance between computation and
storage.



A Simple Formal Model:
Fragment Grammars

'I. Formalization of the hypothesis space.

® Arbitrary contiguous (sub)trees.

2. Formalization of the inference problem.

® Probabilistic conditioning to find good
balance between computation and
storage.



Underlying Computational
System

W — N

W — Vv

W —> Adj

W —> Adv

N — Adj -Ness

N —> Adj] -ty

N — celectro- N

N —> magnet

N —> dog

v — N -ify

VvV — Adj -1ze

vV — re- v

V —> agree

V —> count
Adj —> dis- Adj
Adj — V -able
Adj — N -1C
Adj — N -al
Adj — tall
Adv — Adj -ly
Adv —> today
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Underlying Computational

System

W — N N

W — Vv

W —> Adj

W —> Adv

N —> Adj -ness

N — Adj -ty

N — celectro- N . .
N —> magnet A d _ t
N —> dog J Z y
v — N -ify

VvV — Adj -1ze

V — re- V

V —> agree V _ b l

V —> count a/ 6

Adj —> dis- Adj

Adj — V -able

Adj — N -1C

Adj — N -al

Adj — tall

Adv — Adj -ly

Adv —> today
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Hypothesis Space

Any contiguous subtree can be stored in
memory and reused as if it were a single rule
from the starting grammar.



Hypothesis Space

N
/\
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Hypothesis Space

N
/\
Ad; -1y
T
V -able
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Hypothesis Space

\



Computation with
Stored items

N

TN

Ad -1ty

T
V ~able

agree



Computation with
Stored items

N N
Adj -1y Adj 14!,
P PN
V -able V -able

agree



Computation with
Stored items

N N
Adj -1y Adj 14!,
P PN
V -able V -able

agree agree



A Simple Formal Model:
Fragment Grammars

|.  Formalization of the hypothesis space.
® Arbitrary contiguous (sub)trees.

2. Formalization of the inference problem.

® Probabilistic conditioning to find good
balance between computation and
storage.




Inference Problem

Find and store the subcomputations
which best predict the distribution of
forms in the linguistic input taking into

account prior expectations for
simplicity.



Prior Expectations

Two Opposing Simplicity Biases

|. Fewer, more reusable stored items.
- Chinese Restaurant process prior on lexica.

2. Small amounts of computation.

- Geometric decrease in probability in number of
random choices.



N
/\
Ad; ity
/\
V ~able
|
agree

Example Input

N N
Adj -Nness Adj -1ty
P PN
V.  -able V -able

N
/\
Adj -1ty
TN
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|
agree



Storage of Minimal,
General Structures

N N N N
Adj ity Adj -NESS Adj it Ad] 1ty
N N T T
V able V able V _able V able



Computation per
Expression

N
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P( Adj/N\—ity )

Computation per
Expression

N

N

Ad ] -1ty

N
V ~able

agree



Computation per

Expression
P( i) :
sy oy )X /\
P A iy
/\
V -able

agree



Computation per
Expression

N

P( Ao(N\-z'ty ) X /\
" Ad ] -1ty
P N X
( V  -able /\
V -able

P( 1) |
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Sharing Across Expressions

N N N N
Ad] ity Adj -Ness Adj ity Ad] 1ty
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Sharing Across Expressions

N N N N
Adj ity Adj -NEess Adj ity Adj 1ty
N RN T PN
V able v able V _able V able



Storage of Maximal,
Specific Structures

N
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Computation per
Expression
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Computation per
Expression
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Sharing Across Expressions

N N N N
Ad] ity Adj -Ness Adj ity Ad] 1ty
N RN T PN
V able v able V _able V able



Sharing Across Expressions

N N N N
Adj -6ty Adj -ness  Adj ity Ad] -1ty
P P P P
V ~able v -able V ~able V -able

agree agree count agree



Storage of Intermediate

Structures
N N N N
Adj ity Adj -Nness Adj 1ty Adj 1ty
T T P\ TN
V able V able V . -able V able



Computation per
Expression
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Computation per
Expression

Ad 147,



Computation per

Expression
N
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Sharing Across Expressions

N N N N
Ad] ity Adj -Ness Adj ity Ad] 1ty
N RN T PN
V able v able V _able V able



Sharing Across Expressions

N N N N
Adj iy, Adj -ness  Adj] ity . Ad] 1ty
P P P P
V able v able V _able V able



Remarks on Inference
Tradeoff

® Nothing fancy here.

® The two simplicity biases are just Bayesian
prior and likelihood applied to computation
and storage problem.

® | exicon code length and data code length
given lexicon in (two part) MDL.

® Can be connected with many other
frameworks.



Inference as
Conditioning

* |nference Process: Probabilistic Conditioning.

* Define joint model.
P(Data, Fragments) =

P(Data | Fragments) * P(Fragments)

60



Inference as
Conditioning

* |nference Proces Likelihood
(derivation probabilities)

* Define joint model

P(Data, Fragmen

P(Data | Fragments) [* P(Fragments)
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Inference as
Conditioning

Prior

(lexicon probabilities)

P(Data, Fragments) =

P(Data | Fragments) *

62

P(Fragments)




Inference as
Conditioning

* |nference Process: Probabilistic Conditioning.

* Condition on particular dataset.
P(Fragments | Data) «

P(Data | Fragments) * P(Fragments)

63



Probabilistic
Conditioning

* [ntuition: two-step algorithm.

|. Throw away lexicons not consistent with
the data.

2. Renormalize remaining lexicons so that
they sum to one.

* Maximally conservative: Relative beliefs are
always conserved.

64



The Mathematical Model:
Fragment Grammars

® (Generalization of Adaptor Grammars (Johnson et
al., 2007).

® Allows storing of partial trees.

® Framework first proposed in MDL setting by
De Marcken, 1996.

® Related to work on probabilistic tree-

substitution grammars (e.g., Bod, 2003; Cohn, 2010;
Goodman, 2003; Zuidema, 2007; Post, 201 3).



Talk Outline

Introduction to productivity and reuse

with Fragment Grammars (with Noah
Goodman).

Case Studies on Productivity and
Competition.




Case Studies

® Other approaches to productivity and
reuse.

. What distributions signal productivity?
2. How is competition resolved?

3. Multi-way competition.
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representations.



Four Strategies for
Productivity and Reuse

® 5 Formal Models

® Capture historical proposals from the
literature.

® Minimally different.

® Same inputs, same underlying space of
representations.

® State-of-the-art probabilistic models.



b Full-Parsi ng
(MAP Multinomial-Dirichlet Context-
Free Grammars)

- All generalizations are
productive.

= Minimal abstract units.
- Johnson, et al. 2007a

- Estimated on token frequency.

N N N N
Adj -1ty /Ad] -NEeSS Ad ] -ty Ad] -1ty
P T T TN
V ~able V -able V _able V -able

agree agree count agree



[ [
Full-Parsing Adj ity Adj.  -ness Adj ity Adj -1ty -
T TN P Py
(FP) V -able -able -able -able
|

v v bl v
| | |
“”’ (MAP All-Adapted Adaptor
N Grammars)
Full-Listing
(FL) - Store whole form after first use

(recursively).
- Maximally specific units.

- Johnson, et al. 2007

- Base system estimated on type
frequencies.

= Formalization of classical lexical
redundancy rules.

. N N N

48 5% Adj -NESS Adj -1ty Adj -10Y
| pucs V _-able V  -agble V  -able
agree | | |

agree COUNT agree



N N N N

/\/\/\/\

Full-Parsing Adj ity Adj -ness.  JAdj ity Adj -1ty
P P Py Ay
(FP) V -able V -able v -able V -able
| | | |
agree agree count agree
* N N N
- Ad; ity ; TN y d./\_.t
Full-Listing Adj -nesss  /Adj -ty /J\ wy
/\ /\
(FL) \ll -able v -able V -able Vv -able
| | |
agreg agree S agree

Exemplar-Based

(EB)

Exemplar-Based

(Data-Oriented Parsing)

Store all generalizations
consistent with input.

Two Formalization: Data-Oriented
Parsing | (DOPI;Bod, 1998), Data-
Oriented Parsing: Equal-Node

Estimator (ENDOP; Goodman, 2003).

Argued to be exemplar model of
syntax.




N N N N

/\/\A/\

Full-Parsing Adj ity Adj -ness.  JAdj ity Adj -1ty

N N N TN
W' ST SL T Inference-base

|
ag‘ree ag‘ree coz‘mt agree
: : : : (Fragment Grammars)

) (mt N LN
Full-Listing > B Adj -ness /Adj -ity /AdJ\ -ity
(FL) [V ablel (5 Ty 7 el (7 able

| \ \ | - Store set of subcomputations
which best explains the data.

- Formalization: Fragment
Grammars (O’Donnell, et al. 2009)

- Inference depends on
distribution of tokens over types.

Exemplar-Based

(EB)

Inference-Based

(IB) = Only model which infers
variables.
N N N N
Adj -1y Adj -NEeSS Adj -2ty Ad ] -1ty
N T T TN
V -able V -able / V _able V -able

agree agree CO’U/nt agree



Empirical Domains

Past Tense
(Inflectional)

Derivational
Morphology

Productive

+ed (walked)

+ness (goodness)

Context-Dependent

[ 2= (sang)

+ity (ability)

Unproductive

suppletion
(go/went)

+th (width)




Case Studies

® Other approaches to productivity and
reuse.

|.  What distributions signal productivity?
2. How is competition resolved?

3. Multi-way competition.



Empirical Evaluations

Past Tense

s

Derivational
Morphology

~

Productive

+ed (walked)

+ness (goodness)

Context-Dependent I 2& (sang) +ity (ability)
Unproductive suppletion +th (width)
P (go/went)




What (Distributional) Cues
Signal Productivity!?

® Many proposals in the literature:
® Type frequency.

® Joken frequency (combined with
something else, e.g., entropy).

® Heterogeneity of context (generalized
type frequency).



Top 5 Most Productive Suffixes

Full-Parsing (MDPCFG) Full-Listing (MAG)
Suffix Example Suffix Example
1on:V>N Tegression ly:Adj>Adv quickly
l[y:Adj>Adv quickly 10n:V>N Teqgression
ate:BND>V segregate er:-V>N talker
ment:V>N  development I n fer €n Ce-B as ed (FG) ly:V>Adv bitingly
er:V>N tatker Suffix Example y:N>Ad ] mousey
ly:Adj>Adv  quickly
er:-V>N talker

Exemplar (porly | nessAdj>N  tallness | Exemplar (ENDOP)
y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Teqgression : 10n:V>N Tegression
er:V>N talker ly:Adj>Adv quickly
ment:NG>N  development ment:VN>N  development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate
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Top 5 Most Productive Suffixes

Full-Parsing (MDPCFG) Full-Listing (MAG)
Suffix Example Suffix Example
son:V>N reqression ly:Adj>Adv quickly
l[y:Adj>Adv quickly 10n:V>N reqression
ate:BND>V segregate er:-V>N talker
ment:V>N  development I n fer en Ce-B as ed (FG) ly:V>Adv bitingly
er:V>N tatker Suffix Example y:N>Ad ] mousey
ly:Adj>Adv  quickly
er:-V>N talker

Exemplar (popi) | ness:Adj>N  taliness | Exemplar (GDMN)
y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N TeGresSsion : 1on:V>N Tegression
er:-V>N talker ly:Adj>Adv quickly
ment:NG>N  development ment:VN>N  development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate




VWhat Evidences
Productivity?

® Crucial evidence of productivity: Use of a
lexical item (morpheme, rule, etc.) to
generate new forms.

® Distributional consequence: Large
proportion of low frequency forms.



Probability
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Top 5 Most Productive Suffixes

Full-Parsing (MDPCFG)

Suffix Example
1on:V>N TeGTesSsion
ly:Adj>Adv quickly
ate:BND>V segregate
ment:N>N  development
er:V>N talker

Exemplar pori)

High Proportion of Low
Frequency Types

Suffix Example
1on:V>N Tegression
er:V>N talker
ment:N>N  development
ate:BND>V segregate
[y:Adj>Adv quickly

ly:Adj>Ag quickly

er:V talker
ness:Adj>N  tallness
y:N>Ad]j mousey
er:N>N PrisSoner

Sting (MAG)

Example
quickly
Teqgression
talker
bitingly

y:N>Adj mousey

Exemplar (GDMN)

Suffix Example
1on:V>N Teqgression
ly:Adj>Adv quickly
ment:N>N  development
er:V>N talker
ate:BND>V segregate




Top 5 Most Productive Suffi

Full-Parsing

High Token

High Type
%, Frequency

Suffix - ample
jon:V>N Freq uency lyAdj>pdv  quickly
ly:Adj>Adv 1on:V>N Teqression

ate:BND>V Seqgreqare
ment:NG>N  development Inference-Based (FG)
erV>N talke Suffix Example High Token
: dj>Adv  quickly Frequenc
High Token SN talker 1 /
Exemtb Frequency Adj>N  tallness (GDMN)
:N>Adj
Suffix J mf)us °Y Example
: : er:-N>N prisoner .
10n: V>N Tegression ; regression
er:-V>N talker ly:Adj>Adv quickly
ment:N>N  development ment:N>N  development
ate:BND>V segregate er:V>N talker
[y:Adj>Adv quickly ate:BND>V segregate




Baayen’s Hapax-Based
Measures

® Baayen’s P/P” (e.g.,Baayen, 1992)

® Estimators of productivity based on the
proportion of frequency-1 words in an input
COrpus.

® Various derivations.
® Rate of vocabulary change in urn model.
® Good-Turing estimation.
® Fundamentally, a rule-of-thumb.

® Only defined for single affix estimation.



Productivity Correlations

(P/P*values from Hay & Baayen, 2002)

Measure FG MDPCFG MAG DOPI ENDOP

(Inference) (Full-parsing) (Full-listing) (Exemplar-based) (Exemplar-based)

P 10907 -0.0003 0.692 0.346 0.143
P*10.662 0480 0568 0.402 0.500




Fragment Grammars
and Hapaxes

For the case of single affixes, Fragments
Grammars behave approximately as if they
were using hapaxes.

Not an explicit assumption of the model

Model is about how words are built. Given the
fact that some new words are built, behavior
arises automatically.

Generalizes to multi-way competition.



Case Studies

® Other approaches to productivity and
reuse.

|.__VVhat distributions signal productivity?
2. How is competition resolved?

3. Multi-way competition.



Empirical Domains

Past Tense

Derivational
Morphology

Productive

+ed (walked)

+Nness (goodness)

Context-Dependent

[ 2= (sang)

+ity (ability)

Unproductive

suppletion
(go/went)

+th (width)




Crucial Facts

® Defaultness: Regular rule applies when all
else fails.

® Blocking: Existence of irregular blocks
regular rule.

® |n this domain preferences are sharp.



How can Correct Inflection be

Represented!?
Irregulars Regulars
v V
Stem Inflection Stem Inflection
SING /1/ — /e/ PAST WALK -+/d/ PAST
v v
Stem Inflection Stem Inflection

/\
/1/ — Je/ PAST +/d/ Past



How can Correct Inflection be
Represented!?

Irregulars Regulars

V

RN

Stem Inflection

|
SING /1/ — /&/ PAST

Stem Inflection

N
+/d/ Past




Correct Inflection

Log Odds Correct

Irregular

—

Regular Unattested

— N —

98

Ep Full-Parsing
(Multinomial-Dirichlet CFG)

FL Full-Listing

(Adaptor Grammars)

E1 Exemplar
(Data-Oriented Parsing [)

E2 Exemplar

(DOP: ENDOP)
g | Inference-Based

(Fragment Grammars)




Preference
for
Correct
Past Form

Correct Inflection

Log Odds Correct

Irregular

—

Regular Unattested

— N —
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Ep Full-Parsing
(Multinomial-Dirichlet CFG)

FL Full-Listing

(Adaptor Grammars)

E1 Exemplar
(Data-Oriented Parsing [)

E2 Exemplar

(DOP: ENDOP)
g | Inference-Based

(Fragment Grammars)




Preference
for
Incorrect
Past Form

Correct Inflection

Log Odds Correct

Irregular Regular Unattested

— T ——
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Ep Full-Parsing
(Multinomial-Dirichlet CFG)

FL Full-Listing

(Adaptor Grammars)

E1 Exemplar
(Data-Oriented Parsing [)

E2 Exemplar

(DOP: ENDOP)
g | Inference-Based

(Fragment Grammars)




Correct Inflection

Log Odds Correct

Irregular

—

FL EIB

Regular

— N —

FPFLE1E2 IB

Irregulars in Training

101

Unattested

FPFLE1E2 IB

Ep Full-Parsing
(Multinomial-Dirichlet CFG)

FL Full-Listing

(Adaptor Grammars)

E1 Exemplar
(Data-Oriented Parsing [)

E2 Exemplar

(DOP: ENDOP)
g | Inference-Based

(Fragment Grammars)




Correct Inflection

Log Odds Correct

FPigh EIB

Irregular
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VWhy Does Blocking
Occur!

® Consequence of two principles.

® | aw of Conservation of Belief:
Hypotheses that predict a greater variety
of observed datasets place less probability
on each.

® Conservativity of Conditioning: Posterior
distributions have same relative probability
as prior distributions.
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Law of Conservation of
Belief
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Law of Conservation of

Belief
Evidence
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Law of Conservation of
Belief

' Evidence
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Observation

}Evidence

P(DIH l)
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Conservativity

}Evidence

k OCP(H1|D)P(H1)
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Elsewhere

(Kiparsky, 1973; Anderson, 1969; Kiparsky, 1982a; Andrews, 1982)

® Don’t need elsewhere condition as independent
stipulation (cf. subset principle, premption, etc.).

® When a choice must be made between two analyses/
derivations, prefer the one with highest P(form |
meaning) more “tightly.”

® More general than original statement.
® Any factor influencing P(form | meaning)
® input conditions on rules, frequency, etc.

® Stored-stored, stored-computed, computed-
computed, etc.



Case Studies

® Other approaches to productivity and
reuse.

. What distributions signal productivity?
2. How is competition resolved?

3. Multi-way competition.



Empirical Domains

Past Tense

s

Derivational
Morphology

~

Productive

+ed (walked)

+ness (goodness)

Context-Dependent I 2& (sang) +ity (ability)
Unproductive suppletion +th (width)
P (go/went)




Hierarchical Structure

® Derivational morphology hierarchical and
recursive.

® Multiple suffixes can appear in a word.

N
W Sty V/\
V -able
|

agree aﬁfifrm



Many Hypotheses
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Empirical Problem:
Suffix Ordering

® Many combinations of suffixes do not
appear in words.

® Fabb (1988).
= 43 suffixes.

- 663 possible pairs (taking into account
selectional restrictions)

- Only 50 exist.



Empirical Problem:
Suffix Ordering

® Many theories

® | evel-ordering (e.g., Siegel, 1974)
® Selectional-restriction based (e.g., Plag, 2003)
® Complexity-based ordering (Hay, 2004)

® Focus on two phenomena

® Productivity and ordering generalization

® Paradoxical suffix combinations



Productivity and Ordering

Generalization
(Hay, 2004)

On average, more productive suffixes
appear after less productive suffixes
(Hay, 2002; Hay and Plag, 2004; Plag et al, 2009).



Productivity and Ordering

Generalization
(Hay, 2004)

® |mplicit in many earlier theories (e.g., Level-
Ordering Generalization of Siegel 1974).

® Hay’s argues for processing-based view
(Complexity-Based Ordering)

® But: Follows as a logically necessary
consequence of pattern of storage and
computation.



Productivity and Ordering
Generalization

® |ntuition:

® [ ess productive suffixes stored as part of

words.
N

/\
Adj  -th

warm

® More productive suffixes can attach to
anything, including morphologically-complex
stored formes.



But: Paradoxical Suffix
Combinations

® Combinations of suffixes which violate the
Productivity and Ordering Generalization
(as well as predictions of other earlier
theories).

® -_ability, -ation, -istic, -mental



Multi-way Competition:
-Ity V. -ness

® |n general, -ness more productive than -ity.
® -ity more productive after:

-ile, -able, -(i)an, -ic.

(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)



Two Frequent Combinations:

-ivity v. -bility

® -jve + -ity: -ivity (e.g., selectivity).

® S’Eeaker refer to use -ness with novel words
(Aronoff & Schvaneveldt, 1978).

® depulsiveness > depulsivity.

® -ble + -ity: -bility (e.g., sensibility).

° SKeaI<ers prefer to use -ity with novel words
(Anshen & Aronoff, 1981).

® remortibility > remortibleness.



-ivity v. -bility

B -ive
- -ble Predicted

-NESS

ble

-ty



-ivity v. -bility
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- -ble Predicted

-ness Preference for -ness
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-ivity v. -bility
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-ivity v. -bility

B -ive
- -ble Predicted
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~ Preceding suffix -ive

ble
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-ivity v. -bility

B -ive
- _ble Predicted

-NESS

ble

o - Preceding suffix -ble

-ty



Full-Parsing

(Multinomial-Dirichlet Context-Free Grammar)

ll -ive ;
- -ble Predicted éFuII-Parsmg

(MDPCFG)

-NESS

ble . ble ive

T . N

-ty



Full-Listing
(Adaptor Grammars)

- -ive . .
- -ble PredictedéFuII—Parsingf Full-Listing
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Exemplar-Based

(Data-Oriented Parsing |)
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Exemplar-Based

(Data-Oriented Parsing: Goodman Estimator)
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Inference-Based

(Fragment Grammars)
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Multi-way Competition

® Explains productivity and ordering
generalization.

® Explains difficult cases of competition
involving paradoxical suffix
combinations.



Global Summary

® |nference based on distribution of tokens over
types.

® Derives Baayen’s hapax-based theory.

® View the choice of whether to retrieve or
compute as an inference.

® Derives elsewhere condition.

® Storage of arbitrary structures explains ordering
generalizations.

® Explains Productivity and Ordering Generalization.

® Also accounts for paradoxical suffix combinations such as -ability



Conclusion

® Model the problem of deriving word
forms using a mixture of computation
and storage as a tradeoff using standard
inferential tools.

® Automatically solves many problems of
productivity and competition
resolution.



Thanks!



