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Abstract

Various forms of the self-organizing map (SOM) have been proposed as models of cortical development [Choe Y., Miikkulainen R., (2004).
Contour integration and segmentation with self-organized lateral connections. Biological Cybernetics, 90, 75–88; Kohonen T., (2001). Self-
organizing maps (3rd ed.). Springer; Sirosh J., Miikkulainen R., (1997). Topographic receptive fields and patterned lateral interaction in a
self-organizing model of the primary visual cortex. Neural Computation, 9(3), 577–594]. Typically, these models use weight normalization to
contain the weight growth associated with Hebbian learning. A more plausible mechanism for controlling the Hebbian process has recently
emerged. Turrigiano and Nelson [Turrigiano G.G., Nelson S.B., (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews
Neuroscience, 5, 97–107] have shown that neurons in the cortex actively maintain an average firing rate by scaling their incoming weights. In
this work, it is shown that this type of homeostatic synaptic scaling can replace the common, but unsupported, standard weight normalization.
Organized maps still form and the output neurons are able to maintain an unsaturated firing rate, even in the face of large-scale cell proliferation
or die-off. In addition, it is shown that in some cases synaptic scaling leads to networks that more accurately reflect the probability distribution of
the input data.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The self-organizing map (SOM), in its various forms,
has been a useful model of cortical development (Choe &
Miikkulainen, 2004; Kohonen, 2001; Obermayer, Blasdel, &
Schulten, 1992; Sirosh & Miikkulainen, 1997). Sirosh and
Miikkulainen (1997) showed the simultaneous development of
receptive field properties and lateral interactions in a realistic
model. The usefulness of the developed lateral connections
was shown by Choe and Miikkulainen (2004) for contour
integration and segmentation. It is this lateral connectivity that
ensures the neighboring neurons come to respond to similar
stimuli and form a good map.

In these models, Hebbian learning is used to strengthen
associations between stimuli and winning neurons. This type
of associative learning has been well documented in the
experimental literature (Bi & Poo, 2001; Bliss & Lomo,
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1973), but our understanding has remained incomplete. It is
well known that the most straightforward implementations
of Hebbian learning lead to unconstrained weight growth.
To counteract this problem, typical SOM algorithms use
weight normalization: after each learning iteration all the
weights converging onto a neuron are divided by the sum
of the incoming weights (or the square root of the sum of
the squared weights). It has been argued that this type of
weight normalization is biologically plausible. For example, a
neuron might have a finite resource necessary for maintaining
incoming synapses. This might keep an upper limit on the
total summed size of the incoming synapses. While this sounds
within the realm of biological possibility, and is obviously
helpful in keeping Hebbian learning in check, little evidence
from the experimental literature is available for support.

More plausible mechanisms for controlling the Hebbian
process based on maintaining an average output firing rate
have recently emerged. Two different types of these internal
mechanisms have been found. One type controls the intrinsic
excitability of the neuron (reviewed by Zhang and Linden
(2003)). The molecular causes underlying this mechanism are
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still being investigated, but some of the behavior has been
documented. In a typical experiment, a neuron would be excited
repeatedly at high frequency. Then the output firing rate would
be measured when current is injected. The intrinsic excitability
(the ratio of firing rate to injected current) is higher after the
stimulation. This makes the neuron even more sensitive to its
inputs.

Two models have proposed that neurons modify their
excitability to maintain a high rate of information transfer. In
the first of these models (Stemmler & Koch, 1999), individual
neurons change their ion channel conductances in order to
match an input distribution. The neurons are able to maintain
high information rates in response to a variety of distributions.
The second model (Triesch, 2004) proposes that neurons adjust
their output nonlinearities to maximize information transfer.
There it is assumed that the neuron can keep track of its average
firing rate and average variance of firing rate. Given this limited
information, it does the best it can by adjusting the slope and
offset of an output sigmoid function.

In the second type of internal neuronal mechanism it was
shown (Maffei, Nelson, & Turrigiano, 2004; Turrigiano, Leslie,
Desai, Rutherford, & Nelson, 1998; Turrigiano & Nelson,
2004) that neurons in the cortex actively maintain an average
firing rate by scaling their incoming weights. The mechanism
has been examined in cultures and in other experiments
using in vivo visual deprivation. It has been shown that the
incoming synapses are altered by a multiplicative factor, which
presumably preserves the relative strengths of the synapses.
The underlying mechanisms are not yet known, but there
is ongoing research looking at intracellular chemical factors
such as calcium and brain-derived neurotrophic factor (BDNF)
(Turrigiano & Nelson, 2004). The levels of these factors are
related to firing rates, so integrating them over time could lead
to an estimate of average firing rate and produce a chemical
signal for synaptic change. Another interesting finding is that a
neuron with high average firing rate will decrease the strength
of incoming excitatory synapses, but increase the strength of
incoming inhibitory neurons (Maffei et al., 2004), thus altering
the excitatory/inhibitory balance.

Homeostatic mechanisms have been implemented in two
models. In one study, the molecular underpinnings of
homeostasis were explored (Yeung, Shouval, Blais, & Cooper,
2004). It was suggested that LTP, LTD, and synaptic
homeostatic scaling are all related through intracellular calcium
levels. The homeostatic mechanism may influence the level
of calcium, thereby changing under what conditions LTP and
LTD are induced (since calcium levels play a major role
in LTP and LTD). The other model concerns a particular
class of associative memories (Chechik, Meilijson, & Ruppin,
2001). It is shown that the storage capacity can be increased
if the neuron’s weights are controlled with either weight
normalization or homeostatic synaptic scaling.

There have also been attempts to change neuron thresholds
within neural networks. One network that was described (Horn
& Usher, 1989) was a Hopfield network with neurons that were
always producing one of two possible outputs (+1 or −1). The
neuronal thresholds for determining which state to be in, acting
on the total amount of input activation, was adjusted according
to the recent activation. They reported that interesting periodic
dynamics emerged. Another adjustable threshold network
(Gorchetchnikov, 2000) was a winner-take-all associative
memory. In that work, the thresholds on output sigmoid
functions were adjusted. It was shown that on problems like
XOR classification, the network would learn the appropriate
mapping faster than without an adjustable threshold. While
these approaches are computationally interesting, there is not
yet evidence that neurons adjust their threshold based on their
average firing rate.

It has previously been suggested that homeostatic synaptic
scaling might form a basis for keeping Hebbian learning
in check (Miller, 1996; Turrigiano & Nelson, 2004). This
possibility is explored here. It may very well be that this
mechanism is one of several that constrain synapse strength,
but it is examined here in isolation to get a better understanding
of its capability.

2. Architecture with homeostatic synaptic scaling

The SOM model is trained with a series of episodes in
which randomly selected input vectors are presented. At each
step, the input vector, Ex , is first multiplied by the feedforward
weights, WF F . In order to get the self-organizing map effect,
this feedforward activity is then multiplied by a set of lateral
connections, Wlat. The patterns of weights that the neurons send
out laterally are identical to a preset prototype, so multiplying
by Wlat is equivalent to taking a convolution with a kernel, g.

Ey f f = WF F Ex (1)

Ey = f [g ∗ Ey f f ]. (2)

Here f [a] = max(0, a) and g is preset to a Mexican hat shape.
These steps are similar to those proposed recently by Kohonen
(2005, 2006). In that case, though, g took on a different form, as
did the function f . Also, multiplying by a Mexican hat kernel
was explored by Kohonen (1982), but in that work the kernel
was applied iteratively until the neural activities were no longer
changing. This is a time-consuming process so is not pursued
here.

In this version the lateral connections are not updated with
learning, but after the output activity is set the feedforward
weights are updated with a Hebbian learning rule:

w̃t
i j = wt−1

i j + αx t
j yt

i (3)

α is the Hebbian learning rate, x j is the presynaptic activity
and yi is the postsynaptic activity. w̃i j is simply a weight value
after Hebbian learning, but before weight normalization. The
superscripts t and t−1 are added here to index the mathematical
processing steps in this discrete-time model. The superscript t
is used to indicate a current value, while t − 1 indicates that
the value is the result of calculations performed in the previous
time step.

It is this type of Hebbian learning rule that would normally
give problems. Since each update is positive, there is nothing
to limit the growth of the weights. Normally, a weight
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normalization is used that is based on the sum of the magnitudes
of the weights coming into each neuron. In our case, we will
normalize the weights with a value based on the recent activity
of the neuron:

wt
i j =

w̃t
i j

ActivityNormt
i

(4)

ActivityNormt
i = 1 + βN

(
At−1

avg,i − Atarget

Atarget

)
. (5)

Here, Atarget is the internally defined preferred activity level
for the neurons, Aavg,i is the average of recent activity for
neuron i , and βN is the homeostatic learning rate. This model
assumes that some intracellular chemical, something activated
by calcium for example, is integrated over the recent past
and is related to the average firing rate. If the target level of
this chemical is exceeded, the incoming synapse sizes will
be decreased multiplicatively. If the target is not achieved,
the synapses will be increased. Since the underlying relevant
chemicals and their dynamics are not yet known, we instead
use the average firing rate and firing rate target value directly in
computing ActivityNorm.

In the model, each neuron keeps track of its average output
firing rate, At

avg,i , with a running average over the recent past.

At
avg,i = βC yt

i + (1 − βC )At−1
avg,i . (6)

Here, βC controls the time window over which the neuron’s
firing rate is averaged.

This is a local computation, in the sense that each neuron
keeps track of its own average firing rate. If this average,
or difference from the target, is expressed as an internal
level of some chemical all the synapses would conceivably
have access to that information. Using the At

avg,i and Atarget
values directly avoids modelling the concentrations of unknown
chemicals, but as more details become available through
experiments, the model can become more explicit. It is
interesting to note that there are different degrees to the locality
of information. There is (1) information local to individual
synapses, (2) information local to individual neurons, and (3)
global information (information exchanged across neurons).
The standard weight normalization and the new homeostatic
mechanism both belong to the second class. One difference,
however, is the nature of the information exchange inside the
neuron. In the standard weight normalization case, a synapse
would communicate its magnitude to the soma, which would
in response change all the other synapse strengths. In the new
method the communication is one way: the soma decides, based
on the average firing rate, whether all the synapses should be
increased or decreased.

3. Simulation results

Self-organizing maps were simulated using the synaptic
scaling described with the previous equations. The input vectors
used in these simulations are specified by a 1-D Gaussian
shape (standard deviation σ of 15 units) and are presented
one per episode. For each episode, the input Gaussian is
centered on one of the input units selected at random. The
input locations are drawn from a uniform distribution for
the experiments described in Sections 3.1 and 3.2. Other
probability distributions are used in Section 3.3 as described.
A typical training session lasts for 100,000 episodes. At
each step Eqs. (1) and (2) are used to determine the neuron
activities using the randomly selected input vector, Ex . After
the neuron activities are determined the Hebbian weight update
of Eq. (3) is applied to every feedforward weight, as is the
synaptic scaling rule of Eq. (4). Also, during each episode the
ActivityNorm value and the Aavg value must be updated for each
neuron using Eqs. (5) and (6), respectively. In other work, we
show how to find the range of effective learning rate parameters
(Sullivan & de Sa, 2006), so only values in this range are used.
In all the simulations described here α = 8.3 × 10−4, βN =

3.3 × 10−4, βC = 3.3 × 10−5, and Atarget = 0.1 Hz.

3.1. Homeostasis and map formation

In order to verify proper formation of a map, a network
was created with 150 inputs and 15 outputs. Both the inputs
and outputs are arranged in a ring configuration to eliminate
edge effects. The input vectors are specified by a 1-D Gaussian
shape (standard deviation σ of 15 units). The input Gaussian
is centered on one of the input units, selected uniformly at
random. Plots of typical network behavior are shown in Fig. 1.
In the top left plot, the average firing rate of the output neurons
is shown. As the simulation progresses the average neuron
firing rate approaches Atarget. For each input, if we view the
most active output neuron as the winner, then we can keep track
of the neurons’ winning percentages. The top right plot shows
these winning percentages for all the output neurons. It can be
seen that they approach a roughly equal probability of winning.
The bottom plot shows an input–output map that has formed
after training has ended. To obtain this plot, every possible input
was presented to the network, one at a time. The winning output
neuron (the one with the highest output rate) was then recorded
for each input. The input number is shown on the x axis, and
the corresponding winning output is plotted. This is a good
map since similar inputs (inputs whose center is located on
neighboring input units) correspond to nearby winning output
units.

3.2. Synapse proliferation

Homeostatic mechanisms that maintain a steady output
firing rate may play a particularly important role during
development. As many neurons and synapses are added and
pruned away, the total amount of input drive to a neuron will
change dramatically. In order to avoid having a saturated firing
rate, neurons must regulate themselves. Additionally, during
normal functioning in a hierarchical system such as the visual
cortex, one area’s output is another’s input. For the benefit of
higher areas, it may be important for neurons to maintain a
consistent firing rate level.

In order to test the ability of homeostatic synaptic scaling to
withstand dramatic changes in network architecture, we created
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Fig. 1. Typical behavior. 150 inputs, 15 outputs, ring topology, α = 8.3×10−4, βN = 3.3×10−4, βC = 3.3×10−5, and Atarget = 0.1 Hz. (Top Left) The average
neuron activities are driven to the same value. A running average of the firing rate is shown. (Top Right) The winning percentages of each of the neurons are shown.
They converge to a roughly equal winning frequency. (Bottom) A smooth input–output map is formed. For each possible input, the output winner (the neuron with
the maximum firing rate) is plotted. Both the inputs and outputs are arranged in a ring configuration to eliminate edge effects (so Output 1 is next to Output 15, for
example).
a simulation in which the number of input neurons doubled after
learning had begun. The network started with 75 inputs and 15
output neurons. After the average neuron activities settled to a
constant value, 75 more inputs were added, as shown in the top
panel of Fig. 2. After the neuron activities settled again, the 75
added inputs were taken away. This is a simple example meant
to simulate the large scale neuron proliferation and die-off seen
during cortical development.

The effect on the average output activities is shown in
the bottom left panel of Fig. 2. When the number of inputs
was changed, the average firing rate of the output neurons
changed. The firing rates quickly returned to the target value
in the network with the homeostatic mechanism. Furthermore,
the continuity (smoothness) of the map was unaffected. The
network using standard weight normalization has its average
output firing rate permanently changed by the additional (or
subtracted) neurons. To understand how the new model keeps a
steady output while the standard model fails we can examine
the difference in input vector and the resulting difference
in neuron weights. The top of Fig. 3 shows a typical input
vector during the proliferation stage and one during the die-
off stage. In both cases, a Gaussian input pattern is used
with the same width and a norm of 1. The individual neuron
activities are smaller during proliferation because more neurons
contribute to make a total activity of 1. One neuron’s weight
vector was chosen from each network and the size of each
component of the vector is displayed during the proliferation
and die-off stages. In the standard weight normalization case
during proliferation (shown bottom, left), the individual weight
components become smaller because the norm of the weight
vector is stuck at a constant value (the value was chosen to
be 7 in this case in order for the output activities of the two
networks to be similar). The result is that the neuron activities
fall. The weight vector norms using homeostasis are not bound
like this (as shown bottom, right) and as a result the individual
components change as required to keep the average output
activity at the target value.

Theoretically, it is not difficult to see why the standard model
fails. The feedforward excitation into a neuron is produced by
a dot-product between the input vector, x , and the neuron’s
weight vector, w. We can write the dot-product in terms of the
magnitudes of these vectors:

x · w = ‖x‖2‖w‖2 cos θ ≤ ‖x‖2‖w‖2 ≤ ‖x‖1‖w‖1. (7)

We can see that the dot-product is bound by the norm of the
weight vector. Standard weight normalization sets the norm
of the weight vector to a constant value, thus bounding the
feedforward excitation. The homeostatic mechanism allows this
norm to adapt up or down as necessary.

To further illustrate the flexibility of the network using
homeostasis, a few more examples are given. If during the
proliferation stage the input vector norm is changed to 3
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Fig. 2. Addition of new inputs. (Top) Seventy-five additional inputs were added halfway through learning. (Bottom Left) The average neuron activity is disturbed
when new inputs are added or taken away, but the average quickly recovers if the homeostatic mechanism is used. (Bottom Right) For both cases, a smooth
input–output map is preserved after neuron proliferation and die-off.
Fig. 3. Adaptation of weight vectors. (Top) The norm of the input vectors is kept constant during proliferation and die-off. With the addition or deletion of input
components, the total of the norm is redistributed. (Bottom) An example weight vector into one neuron in the two networks. (Bottom Left) Standard Network. The
norm of the weight vector is set to a constant value, which results in a nonconstant output activation during proliferation and die-off. (Bottom Right) Homeostatic
Network. The norm of the weight vector is adjusted by the neuron to keep a constant average activation.
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Fig. 4. Two additional examples. (Top) During proliferation, the norm of the input vector is increased to 3 (instead of 1). The average neuron activation in the
standard network increases (instead of decreasing like before), but it remains fairly constant in the homeostatic network. (Bottom) During proliferation, the added
neurons have a constant activation of 0.0067. (Bottom Left) As before, the neuron activities in the homeostatic network remain fairly constant, while the activities in
the standard network change dramatically. (Bottom Right) As before, the norm of the weight vectors adapt to keep the average activity constant. An example weight
vector is shown here during proliferation and die-off.
instead of 1, the average output activation of the neurons in
the standard network increases as shown at the top of Fig. 4.
The activation of the homeostatic neurons is fairly constant.
A different situation in which the added inputs are useless,
constantly on at a certain level, was examined as well. The
value of the added inputs is a constant 0.0067 for all input
vectors (which makes the 75 inputs sum to 0.5, half of the
total input magnitude). A similar adaptation by the homeostatic
network and failure by the standard network is shown bottom,
left, in Fig. 4. An example weight vector from this homeostatic
network, shown bottom, right, shows the adaptation necessary
to keep the average firing rates of the neurons constant. Finally,
it should be noted that the homeostatic mechanism being used
is more general and can respond to more than just proliferation
and die-off of neurons. Suppose there is a situation in which all
the input vectors suddenly increase or decrease in magnitude
(at eye-opening perhaps). Without the homeostatic mechanism,
there is a potential for saturating neurons with too much or too
little input. To see a case like this, a simulation was performed
in which the magnitudes of the input vectors were suddenly
increased from 0.5 to 1.0. They were later decreased from 1.0
back to 0.5. Two example input vectors are shown on the left
of Fig. 5. Like in previous cases, the homeostatic network was
able to recover and keep its neuron activations near the target
value, while the standard network failed to do this. The plot on
the right of Fig. 5 illustrates this.

3.3. Probability representation

Computer simulations were run that compare networks
using homeostatic scaling with networks using standard
weight normalization. Networks of neurons that maintain
their own average firing rate avoid the problem of dead
units that do not respond to any input and overactive
neurons. Intuitively, it seems that networks of this type
might get more out of their neurons and thus increase their
information transfer. This thought is reminiscent of networks
that explicitly try to obtain maximum information, such as
the works of DeSieno (1988) using a Conscience mechanism
and Linsker (1989) using information maximization. In both
of these examples, though, global information is needed at
the synapses. Perhaps the homeostatic mechanism, or some
variant, can approximate information maximization within
a biologically realistic framework. This idea is tested here
by comparing network performance with inputs drawn from
several probability distributions.

Since our networks do not have a winner-take-all output,
there is no obvious winner for each input. For the sake of
comparison, we will define the winner as the neuron with the
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Fig. 5. Changing input magnitude. To simulate an event like eye-opening, the magnitude of the input vector was changed without any proliferation or die-off. (Left)
Example input vectors. The norm of the input vectors is changed from 0.5 to 1.0 and back again. (Right) As before, the average activations of the neurons in the
homeostatic network remain fairly constant, while the activations in the standard network do not.
Fig. 6. Performance Comparison on a 150×15 Map with Step Input Distribution. (Top Left) The centers of the input patterns were drawn from this step distribution
in which half of the potential inputs were three times more likely than the others. The input patterns were Gaussian shapes with a standard deviation width equal to
15 input units. (Top Right) For one simulation for each case (standard weight normalization (WN) and the homeostatic mechanism (HM)), the actual output winning
probabilities are shown. The weight normalization case has large errors at the steps in the input probability densities. (Bottom) Two measures of map quality are
used to compare performance of WN and HM. The Hebbian learning rate, αk , was varied over a wide range. Each point is the average of five separate computer
simulations. (Bottom Left) The number of discontinuities in a given input–output map (as in the bottom panels) were counted and subtracted from the number of
output units. A smooth map that utilizes all the outputs will have a Discontinuity Test score of 0. WN and HM have the same perfect performance. (Bottom Right)
For a large number of randomly chosen inputs, the output unit with the highest activation was called the winner. The entropy of the output unit winning probabilities
was computed and subtracted from the highest possible entropy (all winning an equal number of times). The best value is zero. The homeostatic mechanism had
entropy that was closer to maximum (and thus higher information content) in all cases.
highest output rate. In this way we can find the probability
of winning for each output neuron, and then calculate the
entropy of this vector of probabilities. For our network with
population-coded outputs, it may not be completely fair to
measure information in this way, but for a first approximation it
might be helpful.

The first example, whose results are shown in Fig. 6, uses
networks with 150 inputs and 15 outputs. The learning rates



T.J. Sullivan, V.R. de Sa / Neural Networks 19 (2006) 734–743 741
Fig. 7. Map Formation Comparison on a 150 × 15 Map with Step Input Distribution. For the simulation whose results are depicted, the final input–output maps
are shown with (Left) WN and (Right) HM. For reference, the cumulative distribution of the input is plotted with a dashed line. The network with the homeostatic
mechanism has learned a mapping that better matches this distribution, and thus increases the output entropy.
Fig. 8. Examples with Various Input Density Distributions. Each panel shows the results of simulations with the two networks (Standard Weight Normalization
(WN) and the Homeostatic Mechanism (HM)) using a different input distribution. Within each panel, a diagram shows the input distribution in the corner. The
probability of winning for each output neuron is plotted. The dark line represents HM, and the dashed line shows WN. A faint line gives the ideal output probability,
which is 1 divided by the number of output units. The two numbers presented at the bottom are the resulting entropy measures. These numbers are the difference
between the entropy of the output probabilities and the maximum entropy for this network, making zero the best possible value. In three of the four examples, HM
performs better than WN.
and target output rates were set the same as above. The inputs
are drawn from a step function with half the inputs being
unlikely, while the other half are more likely (as seen in the
top left panel). In this case, the network with homeostatic
scaling has consistently better performance as measured by
output entropy (see the bottom right panel). The top right panel
shows the probability of winning for each output neuron for one
simulation. This was obtained by testing the trained network on
a representative set of inputs. The difference in performance
between the two network types is due to the shape of the
input–output map that forms (Fig. 7).

Several more networks were tested using different input
distributions. For these simulations, networks of 750 inputs and
75 outputs were used. Typical results for each distribution are
shown in Fig. 8. In each plot, the input distribution is shown in
one corner, next to the legend. The plot shows the probability
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of winning for each output neuron. The dark line represents
the neurons in the network with the homeostatic mechanism,
and the dashed line gives the network with standard weight
normalization. A faint line gives the ideal output winning
probability, which is 1 divided by the number of output units.
At the bottom of each plot are the resulting entropy measures
for the two networks, standard weight normalization (WN)
and the homeostatic mechanism (HM). These numbers are the
difference between the entropy of the output probabilities and
the maximum entropy for this network, making zero the best
possible value.

In three out of four cases, the network with the homeostatic
mechanism had better performance. The network with standard
weight normalization was slightly better in the second case.
Interestingly, this ramp-like distribution caused the homeostatic
mechanism to converge to a state in which some neurons rarely
won (had the most activation). These output neurons received
enough activation from neighboring winners that their target
activity goal was achieved. In other words, all neurons had
similar average activities, but some neurons rarely ‘won’. Also
interesting were the results of the last distribution. This was
the same input step distribution as was used in the example
above. As the network size increased, performance gets worse
for both networks. This is again due to the algorithm optimizing
for average firing rate, not average winning percentage. The
discrepancy between these measures, especially in the regions
of low probability, should be interesting grounds for future
investigation.

We do not fully understand why the homeostatic network
performs better in these simulations. Our intuition leads us to
believe that in this network, neurons that are not responding
much can make themselves more useful by increasing their
average activations. This is not necessarily the same as
increasing a winning percentage, but it may be some sort of
approximation. We believe that this can be an interesting area
for further investigation and we would benefit by understanding
some theoretical aspects behind this performance.

4. Conclusions

In this work, we have proposed a way to go beyond the
standard weight normalization. This long-used measure has
worked to counteract the unconstrained growth of Hebbian
learning, but there is little evidence from experiments that
justifies its use. Homeostatic synaptic scaling, on the other
hand, has been seen recently in biological experiments. It has
been shown here that using homeostatic synaptic scaling in
place of standard weight normalization still leads to proper
organized map formation. In addition, the neurons are able
to maintain their average firing rates at a set point. This
helps them from becoming saturated as neurons are added
or taken away, as happens during development. Finally, it
was shown that synaptic scaling in some cases leads to
a better representation of the input probability distribution
compared with weight normalization. This observation suggests
the intriguing possibility that this homeostatic mechanism helps
drive the network to a state of increasing information transfer.
The output entropy was measured using the probability
of each output neuron having the highest activation. This
may not be the most natural way to measure information
transfer in this network, since a population code is used as
the output. Indeed, since the neurons’ goal is to maintain a
useful average firing rate, information transfer may not be
the most important measure of performance. These issues
will be addressed in future work. The algorithm will also
be tested more extensively with two-dimensional input and
output spaces. An interesting challenge is how to integrate this
mechanism into existing models of cortical development like
the LISSOM (Sirosh & Miikkulainen, 1997) and whether it will
lead to increased performance in practical applications (Choe,
Sirosh, & Miikkulainen, 1996). Additionally, a more thorough
investigation into various forms of homeostatic equations could
be interesting. For example, in other work a threshold on an
output sigmoid was changed according to a neuron’s output
activity (Gorchetchnikov, 2000; Horn & Usher, 1989). Without
further analysis, it is hard to compare, since their networks
were a Hopfield net and a winner-take-all associative memory,
respectively. It is possible, though, that a functionally similar
effect will result.
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