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Preprocessing and Meta-Classification for
Brain-Computer Interfaces

Paul S. Hammon* and Virginia R. de Sa

Abstract—A brain-computer interface (BCI) is a system which
allows direct translation of brain states into actions, bypassing the
usual muscular pathways. A BCI system works by extracting user
brain signals, applying machine learning algorithms to classify the
user’s brain state, and performing a computer-controlled action.
Our goal is to improve brain state classification. Perhaps the most
obvious way to improve classification performance is the selection
of an advanced learning algorithm. However, it is now well known
in the BCI community that careful selection of preprocessing steps
is crucial to the success of any classification scheme. Furthermore,
recent work indicates that combining the output of multiple classi-
fiers (meta-classification) leads to improved classification rates rel-
ative to single classifiers (Dornhege et al., 2004). In this paper, we
develop an automated approach which systematically analyzes the
relative contributions of different preprocessing and meta-classi-
fication approaches. We apply this procedure to three data sets
drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI
Competition III (Blankertz et al., 2006), each of which exhibit very
different characteristics. Our final classification results compare
favorably with those from past BCI competitions. Additionally, we
analyze the relative contributions of individual preprocessing and
meta-classification choices and discuss which types of BCI data
benefit most from specific algorithms.

Index Terms—Brain-computer interface (BCI), feature extrac-
tion, meta-classification, preprocessing.

I. INTRODUCTION

OVER the last two decades the field of brain-computer
interfaces (BCIs) has developed with the goal of pro-

viding a direct means of communicating internal brain states
to the external world [4]. The ultimate goal of BCI research is
to build a complete system which allows the user to directly
communicate with the external world through modulation
of his or her brain signals. A complete BCI system includes
acquisition of brain signals, processing and classification of the
acquired signals, feedback of the interpreted brain state, and
use of the classified signals to perform a task. Improvements of
BCI systems as a whole can be achieved by improving any of
these subsystems. This paper discusses an automated procedure
for analyzing which preprocessing and meta-classification
techniques are most effective for different types of BCI data.
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We apply this procedure to three different types of BCI data
and discuss the results. This paper grew out of a submission to
BCI Competition III [3], an international competition designed
to bring together researchers from signal processing, machine
learning, and brain sciences to identify and hopefully improve
the current state-of-the-art in BCI. We entered this competition
for data set I with an earlier version of the approach described
here and placed second out of a field of 27 different submis-
sions [3].

This paper is organized as follows. Section II describes
the characteristics of the three different data sets used in this
paper. Sections III–V describe the preprocessing, classifica-
tion, and meta-classification algorithms analyzed in this study.
Sections VI and VII analyze our results and discuss which
algorithms are most effective for different types of BCI data.

II. DATA SETS

Our analysis is performed on three different data sets from
BCI Competition 2003 [2] and BCI Competition III [3]. Each of
the three data sets are from somewhat different BCI paradigms
and have distinct characteristics, which are discussed in the re-
mainder of this section. Each data set includes a set of labeled
training examples and unlabeled test examples. For the purpose
of the competition, examination of the unlabeled test data was
allowed.

The main feature in BCI Competition 2003 Set Ia [5] is
slow cortical potentials (SCPs)—slow-building positivity or
negativity over the central midline (Cz). These data are from
a 3.5-s period during which the user received visual feedback
of the voltage at electrode Cz. Data are recorded from six
EEG electrodes and sampled at 256 Hz. There are 268 labeled
training examples from a mix of first- and second-day trials,
and 293 unlabeled test examples all drawn from second-day
trials. We will refer to this data set as EEG-SCP.

Two of the data sets used in our study are based on real
and imagined movement: data set I from BCI Competition III
[6], and data set IV from BCI Competition 2003 [7]. There are
two distinct types of features one would expect from electro-
corticograph (ECoG) or electroencephalograph (EEG) record-
ings of real or imagined movement: event-related desynchro-
nization (ERD) and movement-related potentials (MRP). The
ERD signal feature is manifested as a power reduction in the
mu (8–12 Hz) and beta (13–28 Hz) bands located above por-
tions of sensorimotor cortex during real or imagined movement
[8]. MRPs have been recorded prior to actual movement (and are
expected in imagined movement) and can be seen in EEG data
as an increasing negativity over motor cortex with peak negative
deflection slightly after movement onset [9].
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Competition 2003 set IV data is from an actual movement
task with two classes representing left versus right hand self-
paced typing. There are 500 ms of data sampled at 1 kHz
and ending 130 ms before key press. Thus, although the task
requires actual movement, the data used for classification are
recorded prior to movement onset. The data are recorded from
28 Ag/AgCl EEG electrodes and consist of 316 labeled training
examples and 100 unlabeled test examples. Average spectra
and time series of the two classes of training data reveal no
prominent ERD, but there is a small MRP signal. All of the
training and test data were recorded on the same day. We will
refer to this data set as EEG-MRP.

Competition III Set I is from the ECoG of an epileptic pa-
tient making cued imagined movements of either the tongue or
left small finger. Each trial is 3 s long beginning 500 ms after
the visual cue and is sampled at 1 kHz from an 8 8 grid of
platinum ECoG electrodes. The data set consists of 278 labeled
training examples and 100 unlabeled test examples. One of the
challenges of this data set is that the training set and test set
data were recorded in separate sessions about one week apart.
An analysis of the average temporal and spectral content of the
two classes shows a large ERD accompanied by a weaker MRP.
We will refer to this data set as ECoG-ERD.

III. CLASSIFICATION APPROACH

In this paper, we break brain signal classification down into
three distinct parts: combining preprocessing algorithms to ex-
tract feature vectors, training individual classifiers on the feature
vectors, and combining multiple classifiers using meta-classifi-
cation. Here we define a feature vector as a vectorized set of
processed data from a single trial which is ready for training
or testing by a learning algorithm. In this paper, we focus on
preprocessing and meta-classification for several reasons. First,
data from brain signals can be quite high-dimensional, and po-
tentially full of artifacts. Proper application of preprocessing
steps can reduce data dimensionality and emphasize portions
of the data with discriminative power, thereby reducing compu-
tation time and improving classification rates. Another reason
for concentrating on preprocessing and feature extraction—as
opposed to developing advanced learning algorithms—is that
there are a number of good, multi-purpose machine learning al-
gorithms available, making the choice of a machine learning al-
gorithm less critical to overall classification success. Further-
more, meta-classification approaches have been shown to be
successful on BCI data [1]. Our approach involves several steps.
First we combine different preprocessing techniques to gen-
erate a large number of feature vectors. Next individual classi-
fiers are trained on each feature vector, and then meta-classifica-
tion algorithms are trained using the most promising individual
classifiers.

When choosing a classifier to apply to the test data, it is im-
portant to avoid selecting one which generalizes poorly due to
overfitting [10]. To avoid this, we randomly select 50% of the
complete training data to form a reduced training set, while the
other 50% is set aside as a holdout set. All parameter selection is
done on the reduced training set: preprocessing parameter selec-
tion, individual classifier training, and meta-classifier training.

TABLE I
PREPROCESSING STAGES

Additionally, the individual classifiers used for meta-classifica-
tion are selected based on cross-validation performance on the
reduced training set. All trained classifiers are then tested on the
holdout set, and the classifier with the best performance on the
holdout set is selected for use with the test set. Before testing,
the winning classifier is re-trained on the complete (reduced +
holdout) training set. After determining the classification results
for the winning classifier, all other classifiers were tested on the
test set for later analysis (see Section VI).

IV. PREPROCESSING

We construct a feature vector by running several different
preprocessing algorithms on the raw data. We employ a total
of seven different preprocessing stages which are combined se-
quentially to generate a variety of different feature vectors. This
set includes: subsampling, frequency filtering, channel scaling,
channel selection, spatial filtering, frequency decomposition,
and postprocessing. Parameters for individual preprocessing al-
gorithms are selected individually for each data set using ten-
fold cross-validation on the reduced training set. To generate a
feature vector, we follow the stages from Table I in the order
listed. We test all combinations allowed in Table I, resulting in

different feature vectors.
The preprocessing stages were designed to minimize nonsen-
sical combinations of processing stages, but any poorly moti-
vated combinations that do arise will be weeded out due to poor
performance on the holdout set. Each preprocessing step is de-
scribed below.

A. Subsampling

The first preprocessing step is to reduce the dimensionality of
the data by subsampling ECoG-ERD and EEG-MRP to 250 Hz
(EEG-SCP data were recorded at 256 Hz and are not subsam-
pled). This step is taken solely to improve processing time and
memory overhead. It is not expected to result in any loss of im-
portant information, as the main frequencies of interest remain
well below the Nyquist rate of the subsampled data.

B. Frequency Filtering

We implemented high-pass and low-pass FIR filters to ad-
dress two different issues in the data sets. A high-pass filter
with a cutoff of 8 Hz is used to eliminate wandering direct
current levels of the individual channels. Alternating current
power pickup is attenuated by a low-pass filter with 45 Hz cutoff
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Fig. 1. This figure shows the motivation for high-pass filtering and channel
scaling with the ECoG-ERD data. The test data have a higher amplitude and
considerable offset compared to the training data. After high-pass filtering, the
test data still exhibit a higher variance than the training data. A final step of
scaling the filtered channel data fixes this.

(chosen below the 50 Hz frequency of European power). This
preprocessing stage includes high-pass, low-pass, both (band-
pass) or no filtering. The effect of high-pass filtering is illus-
trated in Fig. 1.

C. Channel Scaling

A preprocessing step inspired by examination of the (unla-
beled) test data from ECoG-ERD is scaling of the EEG or ECoG
channels to mean zero and standard deviation one. This prepro-
cessing step was added after noting that some of the channels
in the test data have considerably different variances than in the
training data, as shown in Fig. 1. This difference may be due to
increased resistance over the time that the electrodes are applied
(or implanted), resulting in increased voltage readings.

D. Channel Selection

We hand-selected a set of channels which seemed more dis-
criminative than average. This selection process was carried out
separately for the three data sets and involved looking at average
spectral and average time domain responses at each channel for
the two different classes. Channels were selected as “good” if
they visibly discriminated, on average, between the two classes
(see Fig. 2). In our analysis, we used the complete training set
for this step.1 It is worth noting that there are automated ap-
proaches available for channel selection [11], but this simple
procedure was sufficient for our purposes. We note that these
“good” channels tend to be spatially contiguous, and we be-
lieve that they likely lie over the motor cortex in ECoG-ERD
and EEG-MRP.

1In general, it is best to use only the reduced training set even for visual se-
lection of preprocessing parameters. In the case of our data, our approach likely
did little harm as randomly selected 50% splits of the training data from all three
data sets show average behavior that is similar to that of the complete training
data.

Fig. 2. This figure shows an example of how “good” channels are chosen for
the ECoG-ERD data. Channels are labeled as “good” if their time series average
or spectral average were visually discriminable. Note how the average spectra
and time series in the top panels (from a “good” channel) show some separation,
whereas the bottom panels (from a “bad” channel) show average signals with
large overlap.

E. Spatial Filtering

One type of preprocessing which is commonly used in BCI
systems is spatial filtering. The goal of this technique is to create
a new set of derived channels which enhance the separability of
the data.

One type of spatial filtering which we tested as a prepro-
cessing step is independent component analysis (ICA). The ICA
model posits a set of statistically independent signals (according
to some dependency metric) which are linearly mixed according
to , where the (mixed) data is represented as , the in-
dependent sources as , and the mixing matrix as . The goal
of ICA is to determine an estimate of the matrix and invert
it to estimate the underlying independent signals: ,
where .

The net electrical potential recorded at the scalp can be inter-
preted as the superposition of a number of different distributions
of scalp electrical potential, each of which results from the elec-
trical activity of a different brain source [12]. In this sense, EEG
and ECoG data satisfy the ICA assumption of linear mixing. By
applying ICA to the EEG or ECoG channel data, we get a new
set of ICA components which, in general, separate out some of
the different brain sources and artifacts.

There are a whole class of ICA algorithms which differ on
specific assumptions about the data and definitions of indepen-
dence. We use a MATLAB implementation [13] of fastICA [14],
which defines nongaussianity as its measure of independence.
As a preprocessing step to ICA we run principal components
analysis (PCA) to decorrelate and reduce the number of chan-
nels. In the case of noisy data, this preprocessing step often im-
proves the performance of ICA [14]. The number of PCA com-
ponents to use with fastICA was chosen individually for the
three different data sets using cross-validation on the reduced
training set.
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Common spatial patterns (CSP) is another type of spatial fil-
tering commonly used in BCI systems [15]. The goal of the CSP
algorithm is to generate spatial filters which maximally discrim-
inate between two classes. We want to construct a projection
matrix which when applied to the data creates a new mixture
which has the property that the variance in some channels is
maximal for class 1 and minimal for class 0, while a different set
of channels have maximal variance for class 0 and minimal vari-
ance for class 1. We retain the 2 CSPs that best discriminate
the two classes, using tenfold cross-validation on the reduced
training set to choose a value in the range through 10 (see
[15] for details). Because CSP takes the class labels into account
when determining the spatial filter, feature vectors which in-
clude this algorithm have the possibility of overfitting. Another
aspect worth considering when working with CSPs is that they
perform best on appropriately frequency-filtered data, which we
do not explicitly require (see Table I and Section VI-A). How-
ever, any feature vectors which perform poorly on the holdout
set due to either of these two issues will not be selected for use
on the test set, and should not have a detrimental effect on error
rates of the final selected classifiers.

F. Frequency Decomposition

The sensorimotor rhythms described in Section II have char-
acteristics which are especially pronounced in the frequency do-
main. Thus, one of the processing steps we include in our fea-
ture extraction is spectral estimation. One common approach to
spectral estimation is Welch’s method for power spectral density
estimation [16]. Welch’s method estimates the power spectra by
breaking the signal into overlapping segments, each of which is
windowed and then transformed using the fast Fourier transform
(FFT). The individual FFT responses are then averaged together
and scaled to yield the spectral estimate. We use MATLAB’s im-
plementation of Welch’s method, pwelch.m, with a Hamming
window on eight segments of 50% overlap. The power at each
point in the power spectrum is used as the feature vector.

An alternative approach to spectral estimation uses autore-
gressive (AR) modeling. An AR system is of the form

, where is a white-noise random
process and are the autoregressive coefficients. Thus, the
output of this system results from white noise being passed
through an all-pole filter. Due to the all-pole restriction, AR
models can give good approximations of signals which have
“peaky” spectra, such as that of the ECoG-ERD channel shown
in Fig. 2.

While there are a number of different approaches for esti-
mating the AR coefficients , we found the Burg Algorithm
[17] to yield estimates which worked well for classification. We
use MATLAB’s implementation of the algorithm, arburg.m. In-
stead of the AR-derived spectra, we use the AR coefficients for
classification. The AR model order was determined separately
for each data set using ten-fold cross-validation on the reduced
training set with a range of possible orders of 2 through 10.

One final frequency decomposition approach we consider is
the discrete wavelet transform (DWT). This transform repre-
sents the data in a format which retains some information from
both the frequency and the time domain. We run one-dimen-
sional DWTs on each channel of the data. The wavelet function

(Daubechies, or Symlets), order (2 through 8) and decompo-
sition level (1 through 6) are selected for each data set using
ten-fold cross-validation on the reduced training set.

G. Postprocessing

A final processing step often used with CSPs is to calculate
the fraction of total variance accounted for by each of the 2
retained CSPs, and then use the logarithm of this output as a
feature vector. The motivation for this processing step is that
the total fraction of the variance accounted for by each of the
different common spatial patterns should be very good features
for discriminating between the two classes. We chose to include
this as a processing option, but did not restrict its use to CSPs.

V. LEARNING ALGORITHMS

A. Support Vector Machines

We chose support vector machines (SVMs) [18] as a learning
algorithm because they have performed well as a classifier in
past BCI competitions (e.g., [19]), and because they generally
perform well on a variety of classification problems. Addition-
ally, SVMs allow for rapid classification from trained models
and are capable of handling very high-dimensional input vec-
tors. We used an SVM implementation called [18]
with a MATLAB wrapper [20]. SVM classifiers are created for
each feature vector by first selecting a kernel function and a
misclassification penalty using cross-validation. We test linear,
polynomial, and radial basis kernel functions, and misclassifi-
cation penalties of 0.01, 0.1, 1, 10, and 100.

B. -Regularized Logistic Regression

We chose to compare the classification accuracy of SVMs
with -regularized logistic regression because the latter has
a sample complexity (the number of examples needed to train
the classifier) which grows logarithmically in the number of ir-
relevant features, while the sample complexity of SVMs (and
other rotationally invariant learning algorithms) grows linearly
with the number of irrelevant features [21]. One of the con-
straints shared by all of the BCI data sets in this study is rel-
atively few training examples compared to the dimensionality
of the data. We expected that -regularized logistic regression
would out-perform SVMs if many of the dimensions in the fea-
ture vector were unrelated to the training labels.

Logistic regression is a binary classifier that models the prob-
ability of class 1 as

(1)

where is the data, is a binary class label, and is a parameter
vector.

Training the classifier involves computing a maximum-like-
lihood estimate of the parameter . First we form the log-likeli-
hood function

(2)
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where indexes over the individual training samples of the same
class. To find an estimate of , we maximize the regularized
log-likelihood

(3)

We implemented our own version of -regularized logistic re-
gression using batch gradient descent.

In order to choose a good value for
the regularization parameter , we test

and select
the value which gives the best cross-validation error on the
reduced training set. Our gradient descent algorithm uses an
initial learning rate of 0.001 with a constant annealing factor
of 0.99.

C. Meta-Classification

After training the two different learning algorithms on each
feature vector, we also perform meta-classification by com-
bining multiple classifiers of both types (SVM and logistic)
which performed well in cross-validation tests on the reduced
training set. We expect meta-classification to improve classifi-
cation accuracy on the test set by reducing the effects of noise
and overfitting and by combining information from independent
features. We compare five different types of meta-classifiers.

1) HIERARCHY: A group of individual classifiers is selected
from the complete set of 512 based on reduced training set
classification rates. Then the scaled outputs of this set of
classifiers are used as the input to train a hierarchical clas-
sifier of the same type (either SVM or logistic regression).

2) CONCAT: The feature vectors of a set of classifiers are
concatenated to form new feature vectors. These new fea-
ture vectors are then used to train a new classifier. Although
this method does not make use of multiple classifiers and
is, therefore, not a true meta-classification approach, we in-
clude it here for comparison.

3) PROD: The outputs of a set of classifiers are scaled to
be in the range of , interpreted as probabilities, mul-
tiplied together, and then re-normalized. Feature vectors
with probability greater than 0.5 are assigned to class 1,
and all others are assigned to class 0.

4) AVG: Similar to PROD, but in this case the individual prob-
abilities are simply averaged together. Feature vectors are
assigned to class 1 for average probability over 0.5 and
class 0 otherwise.

5) VOTE: Each classifier is given a single vote for class 1 or
class 0. The final class is determined by simple majority.

The classification schemes HIERARCHY and CONCAT are
described in [1]. We tested CONCAT with two different ap-
proaches: with individual scaling of all features to mean zero
and standard deviation one before concatenation, and without
any scaling of the features (“no scale”). From [1], we expect
HIERARCHY to out-perform CONCAT.

The two different probability-based classifiers, PROD and
AVG are discussed in [22]. PROD is expected to give good
classification results when the individual classifiers are mostly
independent and have well-calibrated probabilities, while AVG
works best when the different classifiers are highly correlated

and is more robust with respect to poorly calibrated probabil-
ities. Thus, we expect HIERARCHY or AVG to perform best
on the holdout and test sets. In order to compute probabilities
from the SVM scores, we use a simple scaling method: take the
raw SVM scores, which typically lie in the rough range ,
and scale them to the range by adding the minimum
score and then dividing by the new maximum score. More
advanced methods exist for producing probability estimates
from unbounded classifier output scores, such as Platt scaling
and isotonic regression [23]. These methods can improve
probability estimates, but they generally require more training
examples then were available in the reduced training set, and
they often have their own parameters which would take an
additional level of cross-validation to estimate. Thus, we chose
to use the simplest method.

When choosing the classifiers for meta-classification we first
create a sorted list of all individual classifiers (including both
logistic and SVM) based on their error rates on the reduced
training set. Using this list, we devised two different methods
for selecting individual classifiers for use in meta-classification.

1) TOPN: select the top performing individual classifiers,
where , 5, 7, or 9.

2) : select all individual classifiers with less than 25%
cross-validation error on the reduced training set (we do
not test this with CONCAT due to memory limitations).

VI. RESULTS

Although we eventually tested every classifier on the test set,
we first chose a classifier as our mock competition entry for each
data set. For EEG-SCP and ECoG-ERD, we simply selected the
classifiers with lowest error on the holdout set as our mock entry.
For EEG-MRP, we noted that the cross-validation error on the
reduced training set and the error on the holdout set were notice-
ably different, and we attributed this to especially noisy data.
We decided to re-train all individual classifiers on the complete
training set and use the average cross-validation error to select
classifiers for inclusion in meta-classification, hoping that the
additional training examples would have a more positive effect
than any overfitting possibly induced by this approach.

In the case of a tie while choosing the mock competition clas-
sifier, we selected the classifier which we expected would work
best on the test set. Specifically, we chose HIERARCHY and
AVG over PROD, and meta-classification using more classifiers
over fewer classifiers.

The classifiers we chose for our mock competition entries, as
well as where they would have placed in their respective compe-
titions, are listed in “mock” segment of Table II. After our mock
competition, we tested all of our classifiers on the test set. The
classifiers which had the best performance of all tested in this
study are listed in the “best” segment of Table II.

There are several interesting conclusions to draw from these
results. First of all, meta-classifiers typically perform better on
the test set than individual classifiers. This suggests that meta-
classification strategies will generally outperform single clas-
sifiers, which is also suggested in [1]. Furthermore, including
more classifiers in the meta-classification scheme will gener-
ally further increase performance. It is also worth noting that
the classifiers we selected for our mock entries into the data set
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TABLE II
TRAINING AND TEST ERROR RATES FOR BOTH MOCK COMPETITION ENTRIES

AND BEST OF ALL TESTED CLASSIFIERS

competitions ended up being the best overall classifiers for two
of the three data sets considered. This suggests that our auto-
mated method for selecting preprocessing and meta-classifica-
tion approaches is effective.

While the specific meta-classifier selected in our mock com-
petition for ECoG-ERD performed well on the test set, a more
in-depth analysis reveals that most classifiers from this data set
perform quite poorly on the test set. The difficulty with this data
set was due to the major statistical differences of the data in the
training and test sets, as shown in Fig. 1. In a sense, this data
set presents an ill-posed learning problem: train a classifier on
data drawn from one distribution such that it will perform well
on data from a second, unknown distribution. Restricting allow-
able preprocessing steps can improve performance on average
(see Section VI-A3).

A. Preprocessing Analysis for Individual Classifiers

We developed a simple approach for analyzing whether a
preprocessing step was associated with improved classification
error for individual classifiers (meta-classifiers are analyzed in
Section VI-B). We compute the average classification rate for
all classifiers including a given preprocessing step, and then we
subtract the average classification rate for all classifiers which
do not include that preprocessing step. The resulting number in-
dicates how much a preprocessing step improves classification
rates on average. We display the results graphically by mapping
the improvement in classification rate to a grayscale value, with
the largest increase mapping to white, the largest decrease to
black, and no change to gray. These results are shown in Fig. 3.

One overall result worth noting is that SVMs and logistic
regression perform about equally well, with neither algorithm
consistently outperforming the other. This was somewhat sur-
prising, as we expected -regularized logistic regression to
outperform SVMs because the high dimensionality of the fea-
ture vectors makes it more likely that some dimensions are un-
correlated with the labels. The fact that these two classifiers
perform similarly on the three data sets serves to highlight our
assertion that preprocessing and meta-classification are more
important in BCI data analysis than the classifier itself. Investi-
gating the fourth panel of Fig. 3 serves to further reinforce this
point: each of the three data sets studied benefited most from a
different set of preprocessing options. We discuss the individual
data sets in the following subsections.

One other item worth discussing is interactions among in-
dividual preprocessing steps. While we did not do this type

Fig. 3. This figure graphically represents which preprocessing steps lead to
successful classification for EEG-SCP, EEG-MRP, and ECoG-ERD. Lighter
shades indicate that including a preprocessing step improves classification ac-
curacy on average, darker shades indicate a reduction in accuracy, and gray indi-
cates no change. The top three cells allow for comparison between performance
on reduced training (cross-validation error), holdout, and test portions of each
data set, and the bottom cell allows for comparison between data sets.

Fig. 4. This figure graphically represents the interactions between ICA, CSP,
and frequency filtering preprocessing steps. HPF, LPF, and BPF stand for high-,
low-, and band-pass filters, respectively. Average results for all classifiers in-
cluding ICA and CSP are listed in the “all” column. Lighter shades indicate
that including a preprocessing step improves classification accuracy on average,
darker shades indicate a reduction in accuracy, and gray indicates no change.
Classification rates are shown for test sets only.

of analysis for most preprocessing steps, we did consider the
effects of frequency filtering on the success of ICA and CSP
preprocessing steps. It is generally recognized among BCI re-
searchers that the success of the CSP algorithm depends on fre-
quency filtering the data over an appropriate frequency range.
In Fig. 4, we compare the relative increase (lighter shades) and
decrease (darker shades) of classification accuracy when com-
bining frequency filtering (high-pass, low-pass, band-pass, or
none) and spatial filtering (ICA, CSP). Instead of breaking down
training, holdout, and test set classification rates as in Fig. 3,
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we only report the test set classification rates. The results of
this analysis indicate that frequency filtering within a frequency
range appropriate for the individual data sets improves classifi-
cation to a similar degree for both ICA and CSP. Specifically,
the classification for the EEG-SCP data set works best when ei-
ther no filtering or low-pass filtering is combined with ICA/CSP,
while the EEG-MRP and ECoG-ERD data sets have higher clas-
sification rates when combining high-pass or band-pass filtering
and ICA/CSP.

1) EEG-SCP: Fig. 3 reveals several interesting things about
this data set. First of all, no preprocessing steps show large
performance differences between training, holdout, and test
sets, indicating that the data are relatively classifiable and that
little overfitting is taking place. The prominent characteristic
in this data set is the slow cortical potential (SCP), a shift in
mean signal level which evolves over several seconds. Thus,
one would expect poor performance from preprocessing steps
which do not emphasize this aspect of the data. This is exactly
what we see, with AR and Welch frequency decomposition,
high-pass filtering, and the log-variance transform processing
steps performing especially poorly on this data set. Note that
high-pass filtering selectively removes slowly evolving signals
and performs particularly poorly.

2) EEG-MRP: The differences between training and holdout
error for this data set are evident in Fig. 3. For example, CSPs
overfit on the training data. Channel selection, ICA, and CSPs
appear to be good preprocessing steps. AR modeling performs
well on the test set, but does not appear as an especially good
choice on the training set. Welch’s method and low-pass filtering
are not good choices. Overall, this data set was relatively noisy,
making classification and analysis difficult.

3) ECoG-ERD: The differences between the training and test
portions of this data set are reflected in the changes in prepro-
cessing performance between the holdout and test sets. While
AR modeling and the log-variance transform perform especially
well on the training and holdout sets, their performance de-
creases on the test set. One of the best performers on the test set
is high-pass filtering, which helps to remove some of the level
shifts and drifting channels in the test set (see Fig. 1). ICA and
CSP also perform well on the test set.

An informal analysis of interactions among different pre-
processing steps revealed that many of the classifiers which
performed well on the training data but poorly on the test data
lacked either high-pass or low-pass filtering, or included channel
scaling. Re-running our meta-classification analysis with the
additional requirements of enforcing high-pass and low-pass
filtering and excluding channel scaling led to large performance
improvements in general. While the test set classification rate of
best-performing meta-classifiers did not change substantially,
average classification rates of the complete set of meta-classifiers
improved dramatically. Thus, when working with data sets that
exhibit session-to-session differences, our approach outlined in
this paper will be most effective when a priori knowledge is
used to restrict the allowable preprocessing choices.

B. Meta-Classification Analysis

We analyze the effectiveness of the different meta-classifi-
cation options using the same approach as described in Sec-

Fig. 5. This figure graphically represents which meta-classification approaches
lead to successful classification for EEG-SCP, EEG-MRP, and ECoG-ERD.
Lighter shades indicate that including a meta-classification approach improves
classification accuracy on average, darker shades indicate a reduction in
accuracy, and gray indicates no change. Classification rates are shown for test
sets only.

tion VI-A: meta-classification options which improve classifi-
cation rates on average are mapped to lighter shades, those that
decrease classification rates are mapped to darker shades, and
those with no change are mapped to gray. The results are shown
in Fig. 5. For brevity, we include only test set classification rates.

One trend worth noting is that meta-classification approaches
in general do well, even in the case when the individual classi-
fiers selected do somewhat poorly (as is the case with ECoG-
ERD). CONCAT in general performs poorly, and PROD per-
forms somewhat worse than AVG or VOTE. PROD may work
better with larger training sets or the addition of Platt scaling or
isotonic regression, which would allow better class probability
estimates. AVG and HIERARCHY perform well in all three
data sets, with VOTE performing well on all but ECoG-ERD.
Including more classifiers improves classification rates for all
three data sets, with the greatest improvements coming when
including all classifiers with less than 25% reduced training set
cross-validation error.

VII. CONCLUSION

We have compared preprocessing, machine learning, and
meta-classification approaches on three different types of BCI
data sets. This comparison reveals the merits of individual
preprocessing and meta-classification approaches for different
classes of data, and should be instructive when designing
new BCI systems. We have also demonstrated a general fea-
ture extraction and classification approach which should be
useful for designing classifiers tailored to specific subjects and
experiments.

Our approach works well when the training and test sets are
similar, and careful selection of preprocessing steps can make it
effective when training and test sets differ in a predictable way.
Most preprocessing steps considered were useful for at least one
of the data sets, though few algorithms were consistently bene-
ficial across all three data sets. Thus, it is important to carefully
select a set of preprocessing steps which are well-suited for a
specific BCI classification problem. Our classification method
suggests one way of doing this.

Meta-classifiers are clearly superior to single classifiers in
the BCI data sets that we studied. Meta-classification using the
VOTE, AVG, or HIERARCHY approaches all perform well.
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Including more individual classifiers in the meta-classification
scheme can dramatically improve overall performance.

We found no clear winner between SVMs and -regular-
ized logistic regression, though logistic regression may perform
somewhat better with noisy data. This supports our claim that
careful selection of preprocessing and meta-classification algo-
rithms is more important than the specific learning algorithm
used in a BCI system.
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