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Abstract The role of feature correlations in semantic
memory is a central issue in conceptual representation. In
two versions of the feature verification task, participants
were faster to verify that a feature (<is juicy >) is part of a
concept {grapefruit) if it is strongly rather than weakly
intercorrelated with the other features of that concept.
Contrasting interactions between feature correlations and
SOA were found when the concept versus the feature was
presented first. An attractor network model of word
meaning that naturally learns and uses feature correlations
predicted those interactions. This research provides further
evidence that semantic memory includes implicitly learned
statistical knowledge of feature relationships, in contrast to
theories such as spreading activation networks, in which
feature correlations play no role.

Our environment is highly structured. In the domain of
language processing, for instance, there are numerous
sources of structure to which people are sensitive. Some
words occur together more often than chance within
sentences, as do some letters and phonemes within words. In
this article, we focus on the fact that some semantic features
tend to co-occur across objects and entities. For example,
things in the world that <have wings> also tend to <have
beaks> and <have feathers>." Almost 25 years ago, Rosch
and her colleagues noted that this environmental structure
could be conceptualized in terms of co-occurring clusters of
features (Rosch, 1978; Rosch & Mervis, 1975), an observa-
tion upon which the present research builds.

Although it is uncontroversial that people learn and use
statistical relationships between a concept and its features
(e.g., between robin and <has wings>; Smith & Medin,
1981), many researchers claim that semantic memory does
not include knowledge of statistically based feature correla-
tions (Murphy & Wisniewski, 1989). In contrast, some

Throughout the article, concept names and examples of stimuli are
italicized, whereas feature names are presented in <angled brack-
ets>.

research on incidental concept learning (Billman & Knutson,
1996) and the computation of word meaning (McRae, de Sa,
& Seidenberg, 1997, hereafter Mdss) has found that people
do indeed learn feature correlations. The primary goal of
this article is to add to this debate by presenting further
evidence for the role of feature correlations in lexically based
semantic tasks. The secondary goal is to use an attractor
network to elucidate the principles that we feel are impor-
tant for understanding the role of feature correlations in
lexical processing, namely, implicit and incremental learning
through experience with the environment, in conjunction
with distributed semantic representations.

ARGUMENTS AGAINST FEATURE CORRELATIONS

We begin by noting that in this article, a “feature correla-
tion” refers to a pair of features that tend to appear together
in basic-level concepts. For example, the features <has
feathers> and <has a beak> are correlated because they
co-occur in things like robins, sparrows, and hawks. The
theoretical arguments that have led researchers to claim that
people do not learn these correlations are based primarily on
spreading activation networks and prototype models. From
the standpoint of a spreading activation network, encoding
feature correlations requires linking every feature with every
other feature, weighted by the degree of correlation (Smith
& Medin, 1981). Similarly, if a prototype is taken as a list of
features, feature correlations could be instantiated as direct
links between them. However, the process of linking
features is considered problematic. Because there are a huge
number of possible feature pairs to consider in the world,
the task of constructing links between each correlated pair
is viewed as computationally intractable. Some researchers
have dealt with this problem by claiming that such a link is
constructed only if the correlation is explicitly noticed
(Murphy & Wisniewski, 1989), and that a relationship
between two features would be noticed only if a person
previously possessed an underlying theory for why the
features might co-occur, for example, that wings are used for
flying (Murphy & Medin, 1985). This suggests that the

encoding of a feature correlation is an explicit and
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rare event.

Empirically, two studies have failed to find robust effects
of feature correlations (Malt & Smith, 1984; Murphy &
Wisniewski, 1989). Using an intentional category learning
task, Murphy and Wisniewski found no evidence that
participants based categorization decisions or typicality
judgements on statistical relations among features that they
would not have expected a priori to be correlated (e.g.,
<blue> and < machine washable >). They concluded that
“the pre-existing connection of features appears to be a
necessary requirement for noticing correlations (with these
types of categories and procedures, at least)” (Murphy &
Wisniewski, 1989, p. 40). These arguments and empirical
results have led to the claim that “interproperty relation-
ships are outside the boundary conditions of almost all
current categorization models (including prototype, exem-
plar, and rule-based models). Therefore, these models
currently have limited generality, and this limitation is most
evident where one might most want to generalize — mean-
ingful stimuli” (Medin & Coley, 1998, p. 417).

INCIDENTAL LEARNING OF FEATURE CORRELATIONS

The null effects of feature correlations appear to be caused
by the confluence of a number of factors, including the
amount of experience a person has with exemplars, the
amount of structure in the domain being learned, and
whether learning occurs incidentally or intentionally. In
category learning experiments that have found null effects
such as Murphy and Wisniewski (1989), participants were
given relatively little experience with the exemplars from
which this information had to be extracted. In contrast, the
present experiments tapped knowledge that accrued over
approximately 20 years of experience with objects and
entities from various basic-level categories. Second, experi-
ments showing null effects have used impoverished stimuli
both in terms of the number of training exemplars and their
complexity, whereas natural concept learning takes place in
a complex world with rich structure. The empirical and
modeling work of Billman and her colleagues has shown
that complexity assists rather than impairs learning, in that
a correlation between two features is easier to learn if it is
part of a coherent system of correlations (Billman, 1989;
Billman & Heit, 1988; Billman & Knutson, 1996). Finally,
effects of feature correlations tend to show themselves in
concept learning tasks that promote incidental rather than
intentional learning (Wattenmaker, 1991). In a typical
intentional learning categorization experiment, participants
are presented with a series of exemplars, one at a time, and
are asked to place each in one of two categories. Participants
receive immediate feedback (even on the first trial), with this
cycle continuing until performance reaches a predetermined
criterion. However, these experiments bear little resem-
blance to natural concept learning, which is better character-
ized as incidental or observational learning. We learn by
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observing things, using them, and interacting with them in
varied contexts. These experiences provide rich feedback
that focuses the learner on more diverse and integrative
aspects of the stimuli than does a task in which someone 1s
asked to find the cue that enables distinguishing between
two categories.

A number of incidental learning studies are consistent
with this claim (Billman & Knutson, 1996; Clapper &
Bower, 1991; Kaiser & Proffitt, 1984; Reber, 1989;
Wattenmaker, 1993). For example, experiments using
habituation paradigms have demonstrated that 10-month-old
infants are sensitive to correlations among the visual features
of objects and pictures, and that these correlations appear to
play an important role in categorization and concept
learning (Younger, 1990; Younger & Cohen, 1983, 1986).
Thus, it may be the case that the environment’s structure is
captured by an incremental, implicit learning mechanism
(Holyoak & Spellman, 1993).

Attractor networks are useful as examples of learning
models that encode and use this type of covariation informa-
tion, and can be applied to semantic processing. Attractor
networks can be viewed as instantiations and extensions of
prototype models. These networks are interactive, parallel
processing models in which distributed representations are
used for constructing stable states in a multidimensional
state space. Word meaning can be represented as patterns of
activation across a set of semantic feature units, so that
concepts are not accessed directly from separate memory
locations as discrete, local units, but are computed online as
unique patterns of activation. Such models are particularly
well-suited for learning the structure in a set of training
patterns. For example, pairs of features that co-occur in
concepts on which a model is trained will have the weight
between their units strengthened, and this will influence the
trajectory that the model follows through state space as it
settles to an attractor state representing the meaning of a

word (Mdss).

ONLINE LEXICAL PROCESSING

Mdss conducted the first study of the role of feature correla-
tions in computing word meaning. They used semantic
feature production norms to construct representations for
190 living and nonliving thing concepts in terms of individ-
ual and correlated features. Mdss showed that priming effects
for pairs of living things (e.g., eagle — hawk) were predicted
by similarity in terms of correlated feature pairs, but not in
terms of individual features. In contrast, priming effects for
nonliving thing pairs (e.g., truck — van) were predicted by
similarity in terms of individual features, whereas correlated
feature pairs did not predict residual variation. This differ-
ence was attributed to the fact that nonliving thing concepts
possess, on average, relatively fewer correlated features than
do living things (Keil, 1989), thus providing less opportunity
to observe their influence. Mdss also conducted a feature
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verification task (“Is this feature reasonably true of this
concept?”) in which they found that the degree to which a
specific feature was correlated with the other features of a
concept was the best predictor of verification latencies. A
Hopfield (1982, 1984) attractor network provided mechanis-
tic accounts of both experiments.

The purpose of the present research is to provide further
evidence for the role of feature correlations in the computa-
tion of word meaning. Experiment 1 is an extension of the
Mdss feature verification task that includes two important
changes. First, it involves more thorough equating of
possible confounding variables. Second, an SOA manipula-
tion is used to test the influence of feature correlations over
an extended time-course. In Experiment 2, the feature name
was presented prior to the concept name, thus demanding a
different view of the underlying computations, and leading
to different model predictions and human results. In fact,
the simulations predict contrasting interactions between SOA
and the influence of feature correlations, and the human
data bear these out.

The Model. In this section, we describe the essentials of the
model used to derive predictions for the experiments. Note
that we used the identical model as in Mdss, so the full set of
details can be found in their Appendix B. Figure 1 shows the
model’s architecture, which consists of word-form represen-
tations of basic-level concepts as input, and their semantic
feature representations as output. There were 84 concepts:
10 birds, 10 mammals, 8 fruits, 10 vegetables, 8 articles of
clothing, 6 types of furniture, 8 kitchen items, 8 tools, 8
vehicles, and 8 weapons. Word form was represented by
including one unit for each of the 379 letter triples that
occurred in those words, with spaces at the beginning and
end of a word treated as characters. The resulting sparse
distributed representation roughly preserved orthographic
similarity and did not introduce artificial systematicity into
the form to meaning mapping. Each output unit corre-
sponded to a binary semantic feature (0 = absent,
1 = present). Thus, each concept was a distributed pattern
of activation across the feature units, and all features of a
concept were equally salient. In addition, all words were
trained with equal frequency. The semantic representations
were derived from the feature norms of Mdss Experiment 1.
Only 84 of the 190 normed concepts were included in the
model because Hopfield networks have limited storage
capacity due to the simplicity of the learning rule (Hertz,
Krogh, & Palmer, 1991; Hopfield, 1982, 1984).

The network was trained to settle on a word’s semantic
representation given its word form. The word-form units
were fully unidirectionally connected to the semantic units,
but were not interconnected. The semantic units were fully
bidirectionally interconnected. For the present purposes, it

is important to note that because the weights were learned
via the Hopfield (1982, 1984) learning rule (slightly modified
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646 Semantic
Feature Units

379 Word Form
Units

Figure 1. Architecture of the attractor network. Not all units are shown.

for sparse patterns, see Mdss), a weight connecting a pair of
feature units essentially encodes the correlation between
them. Thus, the model embodied two principles key to the
present article: it naturally learned how features co-occur in
the concepts on which it was trained, and it used this
knowledge to drive the system to a stable state, that is, to
compute word meaning from word form.

Experiment 1: Concept-Feature Verification
Investigating the influence of feature correlations requires a
measure of the correlation between pairs of features. Mdss
computed the Pearson product moment correlation between
feature pairs by treating each feature as a 190-unit vector,
where each unit in the feature vector corresponded to the
number of participants who listed that feature for that
concept in the norms (i.e., its production frequency).
Features occurring in fewer than three concepts were
excluded to avoid spurious correlations.

For their Experiment 3, MdsS selected a set of target
features (e.g., <hunted by people >) and paired each with
two concepts (e.g., deer and duck), as depicted in Figure 2.
The target feature was strongly intercorrelated with the
other features of one of the concepts, but weakly
intercorrelated with the features of the second.
Intercorrelational strength was measured by summing the
shared percentage of variance between the target feature and
each of the features of the concept with which it was
significantly correlated. For example, according to the
norms, <hunted by people> is strongly correlated with the
features of deer (intercorrelational strength = 326), but
weakly intercorrelated with the features of duck
(intercorrelational strength = 61).

Experiment 1 extends Experiment 3a of MdSS in two
ways. First, the materials are better suited to an ANOVA
design because additional variables were controlled. In Mdss
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Target Feature = <hunted by people>

deer duck

<is herbivorous>
<has antlers>
<lives in the woods>
<lives in the wild>
<a mammal>

<an animal>

<is brown>

<has hooves>
<has four legs>
<has fur>

<has legs>

<an animal>
<lives in water>
<migrates>
<swims>

orrelated with
Target Feature

Intercorrelational Strength = 61

Correlated with
Target Feature

Intercorrelational Strength = 326

Figure 2. Example of an item from Experiment 1. The target feature
< hunted by people> was more strongly correlated with features of deer
(strong group) than of duck (weak).

Experiment 3, this was not crucial because they emphasized
regression analyses rather than group differences. In con-
trast, in both Experiments 1 and 2 herein, we focus on
group differences and extensive equating of the stimuli. The
second extension was to investigate the time course of the
influence of correlated features by manipulating SOA (the
time between the onset of the presentation of the concept
and feature names).

SIMULATION 1

Predictions for Experiment 1 were taken directly from the
Mdss simulation of their Experiment 3 (p. 119). Fourteen
items from that experiment were used that differed in terms
of the strength with which the target feature was correlated
with other features of the concept, and had characteristics
similar to those of our Experiment 1. Note that the feature
correlation measures were similar when calculated using
only the 84 concepts included in the model, as opposed to
all 190 concepts from the norms. For the simulation, the
word form of each concept (e.g., deer or duck) was clamped
(each of its word-form units was activated to 1) and the
network was allowed to settle for 10 iterations. Activation
of the target feature (e.g., <hunted by people>) was
recorded at each iteration. We assume that the activation of
a target feature is monotonically related to the time required
to verify that it is part of the concept. Five runs with
independent, random starting configurations were used.
Figure 3 shows that strongly intercorrelated features were
more highly activated than were weakly intercorrelated
features across the time course of the computation of the
semantic representation of the concept. The simulation data
was analysed using a two-way repeated measures ANOVA
with target feature activation as the dependent variable and
intercorrelational strength (strong vs. weak) and iteration (1
to 10) as the independent variables. Collapsed across the 10
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Figure 3. Simulation 1. Predictions for Experiment 1. Mean activation of
the strongly and weakly intercorrelated feature units.

iterations, feature correlations influenced target feature
activation, A(1, 13) = 10.28.2 Furthermore, intercorrelational
strength and iteration interacted, F(9, 117) = 5.07. One
reason for the interaction was that target feature activation
for the two groups was identical after the first iteration.
Because activation in the feature units was random prior to
the first iteration, the network’s knowledge of feature
correlations that was encoded in the weights between
features had not yet influenced processing. In addition, the
effect of intercorrelational strength changed over further
iterations; planned comparisons showed that strongly
intercorrelated target features were significantly more
activated for iterations 2 to 5, whereas they were marginally
more activated for iterations 6 to 10 (.06 < p < .1). Thus,
the model predicts that feature correlations will influence
speeded feature verification.

The predictions for the SOA manipulation are less clear
because of the uncertainty in mapping iterations in the
simulation onto SOA in the human experiment, so it is
probably best to take the simulation as providing a rough
prediction. If earlier iterations are viewed as corresponding
to a short SOA such as 300 ms and later iterations as corre-
sponding to a long SOA such as 2,000 ms, the simulation
predicts a somewhat larger effect of correlated features at the
short SOA. Note that when a second ANOVA was conducted
in which the feature activation for the first iteration was
omitted, the interaction between intercorrelational strength
and iteration remained, A(8, 104) = 3.98. This interaction
was due primarily to ceiling effects at the later iterations.
Finally, these predictions directly contrast with the view
that feature correlations are not encoded in semantic
memory and therefore should have no influence in Exper:-
ment 1 (Murphy & Wisniewski, 1989).

METHOD
Participants. Sixty-five University of Western Ontario

2 In all analyses reported in this article, p < .05 unless otherwise noted.
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TABLE 1

Manipulated and Equated Variables for Experiment 1

McRae, Cree, Westmacott, and de Sa

Factor Strong Weak 1(94) ?
Intercorrelational Strength 161 (54) 32 (23) 15.25 <.001
Production Frequency 12 (6) 12 ) -0.28 >7
Ranked Production Frequency 8 ) 8 6] -0.07 > 9
Cue Validity 02 (0.1) 02 (0.1 0.6 > 5
Concept Familiarity 5 (1) 5 1) -0.44 > 6
Concept Typicality 6 ) 6 ) -0.45 > .6
# Features/Concept 17 3 17 3) 0.51 > 6
# Features Listed/Concept 297 (28) 297 (29) 0.04 >.9
# Letters/Concept Name 6 V)] 6 V)] 0.50 > .6
Frequency of Concept Name 19 (26) 22 (45) -0.35 >7

Note: Standard errors in parentheses.

undergraduate students participated for course credit, 16 per
list. All participants were native speakers of English and had
either normal or corrected-to-normal vision. The data for
one participant was discarded because their error rate
calculated over the practice, filler, and target trials was
greater than 20%.

Materials. The stimuli consisted of 48 target features, each
paired with 2 concepts (see Appendix A). The features of
one concept were strongly intercorrelated with the target
feature, whereas the features of the other were not {see Table
1 for intercorrelational strength’.

Nine other variables that have previously been shown to
influence feature verification latencies, or logically could
influence them, were equated across the two groups (see
Table 1). First, production frequency (the number of
participants in the norming study of Mdss who listed the
feature for the concept) was equated because Ashcraft (1978)
and Mdss found that it predicted verification latencies.
Second, ranked production frequency, the rank of the
feature’s production frequency in relation to the other
features of the concept, was also equated because Mdss found
that it predicted verification latencies. Third, cue validity of
the feature (the production frequency of the feature with
respect to the concept divided by the sum of the production
frequencies of the feature over the concepts in which it was
included) was equated across groups. Fourth, concept
familiarity was equated because Mdss found that it predicted
verification latencies. The familiarity measure was taken
from Mdss, who asked 20 participants to judge the familiar-
ity of the “thing that the word refers to” on a 7-point scale
on which 7 corresponded to extremely familiar. Fifth,
concept typicality was equated because Ashcraft found that
it predicted verification latencies. The typicality measure
was also taken from Mdss, who asked 20 participants to
judge the typicality of the concepts with respect to the
superordinates bird, mammal, fruit, vegetable, clothing,
kitchen item, tool, vehicle, or weapon on a 7-point scale on

* All t-tests reported in this article are 2-tailed.

which 7 corresponded to extremely typical. Sixth, the
number of features listed by at least 5 of 30 participants in
the MdSS norms was equated under the assumption that a
concept might be activated more quickly if it contains more
features. Seventh, Ashcraft found that the total number of
features produced for a concept in a norming task predicted
verification latency, presumably because it reflects the ease
with which a concept’s features can be accessed in general.
Eighth, the number of letters in the concept name was
equated across the strong and weak groups because word
length affects reading time (Landauer & Streeter, 1973).
Ninth, frequency of the concept name (Kucera & Francis,
1967) was equated because it influences reading time (Rayner
& Duffy, 1986). Finally, because each feature served as a
target for both groups, all variables associated with the
feature itself were held constant. In summary, the strongly
and weakly intercorrelated groups differed with respect to
intercorrelational strength, but were equated in terms of
nine potentially confounding variables, in addition to all
variables associated with the features themselves.

Two lists were constructed, each containing 48 experi-
mental concept-feature pairs, such that if a feature occurred
with its strongly intercorrelated concept in List 1 (e.g., deer
<hunted by people>), then it occurred with its weakly
intercorrelated concept in List 2 (e.g., duck <hunted by
people>), and vice versa. Thus, each list contained 24
strongly intercorrelated items and 24 weakly intercorrelated
items. Each list also included 48 filler items for which the
feature was not reasonably true of the concept (e.g., buffalo
<eats seeds>). Because these items required a “no” re-
sponse, they balanced the 48 experimental stimuli that
required a “yes” response. The filler and experimental items
were equated in two ways to avoid cueing participants to the
response. First, the features were equated with respect to
feature type as established by Wu and Barsalou’s (1999)
taxonomy. Second, the concepts for the filler trials were
taken from the same superordinate categories as were the
experimental concepts. The same filler items appeared in
both lists. A separate set of 40 concept-feature pairs (20
requiring “yes” responses and 20 requiring “no” responses)
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was constructed for the practice session. Across the practice,
filler, and experimental items, no participant encountered a
concept or feature name more than once.

Procedure. Participants were tested individually using
PsyScope experimental software (Cohen, MacWhinney,
Flatt, & Provost, 1993) on a Macintosh LC630 with a 14-
inch colour Sony Trinitron monitor. They responded by
pressing one of two buttons on a CMU button box that
provided ms accuracy. The participants’ index finger of their
dominant hand was used for a “yes” response, and the index
finger of their nondominant hand was used for a “no”
response. Participants were randomly assigned to one of the
two lists within one of the two SOA conditions (300 ms or
2,000 ms). Each trial in the 300-ms SOA condition began
with a fixation point (*) in the middle of the screen for 500
ms, a blank screen for 100 ms, and then a concept name for
300 ms. After the 300-ms SOA, the feature name was pre-
sented directly below the concept name. Both the concept
and feature remained on the screen until the participant
responded. The ITI was 1,500 ms. The 2,000-ms SOA condi-
tion was identical except that the feature was presented
2,000 ms after the onset of the concept.

Participants were instructed to read both the concept and
feature names silently, and then to indicate, as quickly and
accurately as possible, whether or not the feature was
reasonably true of the concept. Participants completed the
40 practice trials and then the 96 experimental trials. Trials
were presented in random order. Verification latency was
recorded as the time between the onset of the feature name
and the participant’s response. The experiment took
approximately 25 minutes.

Design. ANOVAs were conducted to investigate the effects of
intercorrelational strength (strong vs. weak) and SOA (300
ms vs. 2,000 ms) on verification latency and square root of
the number of errors (Myers, 1979). Intercorrelational
strength was within participants (F,) and items (£,), whereas
SOA was between participants but within items. List was
included as a between-participants dummy variable and item
rotation group as a between-items dummy variable to
stabilize variance that may result from rotating participants
and items across lists (Pollatsek & Well, 1995).

RESULTS
Mean verification latency and percent errors for each
condition are presented in Table 2.

Verification latencies. Trials on which an error occurred were
excluded. Decision latencies greater than three standard
deviations above the grand mean were replaced by the cut-
off value (2%). As in Simulation 1, intercorrelational
strength interacted with SOA because its influence was more
pronounced for the short SOa, F(l, 60) = 6.56,
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TABLE 2
Mean Feature Verification Latency (ms) and Percent Errors for
Experiment 1

300-ms SOA 2,000-ms SOA

Decision Latencies

Weak 912 (35) 913 (28)

Strong 829 (33) 876 (28)

Difference 83 * 37
Percent Errors

Weak 9.4 (1) 12.8 .7)

Strong 4.8 (1.0) 5.1 (0.7)

Difference 4.6* 7.7

Note: * indicates significant by participants and items. Standard error
in parentheses.

Fx(1,46) = 3.79, p < .06. Planned comparisons showed that
with a 300-ms SOA, participants were faster to verify that a
feature was part of a concept when it was strongly rather
than weakly intercorrelated with the other features of the
concept: 300 ms, (1, 60) = 41.65, F(1, 46) = 38.30. This
effect was less than half the magnitude, but still reliable, for
the 2,000 ms, F,(1, 60) = 8.28, Fy(1, 46) = 11.89. Collapsed
across SOA, decision latencies were 59 ms faster when the
feature was strongly intercorrelated with the other features
of the concept (M = 853 ms, SE = 22 ms) than when it was
weakly intercorrelated (M 912 ms, SE = 23 ms),
F(l, 60) = 43.23, F(1, 46) = 11.73. Finally, the 25-ms
advantage for the 300-ms SOA (4 = 870 ms, SE = 24 ms)
versus the 2,000-ms SOA (¥ = 895 ms, SE = 20 ms) was
significant by items, F,(1, 46) = 5.39, but not by partict-
pants, F;<1.

Error rates. Intercorrelational strength and SOA did not
interact, F<1 in both analyses. Collapsed across SOA,
participants made 4.1% fewer errors when the feature was
strongly intercorrelated (M = 4.9%, SE = 0.6%) than when
it was weakly intercorrelated (M = 11.1%, SE = 1.0%),
F(1, 60) = 34.79, F\(1, 46) = 13.27. Planned comparisons
showed that participants made fewer errors for strongly
intercorrelated features when the SOA was 300 ms,
F(l, 60) = 1590, (1, 46) = 1557, and 2,000 ms,
F(1, 60) = 18.98, F,(1, 46) = 25.35. Finally, error rates were
nonsignificantly 1.8% lower when the SOA was 300 ms
(M = 7.1%, SE = 0.8%) versus 2,000 ms M = 8.9%,
SE = 1.0%), Fy(1, 60) = 2.77,p > .1, E(1,46) = 179,p > .1.

DISCUSSION

Experiment 1 provides additional evidence that feature
correlations are encoded in semantic memory and influence
performance in on-line tasks. It adds to the feature verifica-
tion study of Mdss because a greater number of potentially
confounding variables (including concept typicality) were
equated between groups, and robust effects of feature
correlations were obtained at both a short and long SOA.
These results are consistent with theories of semantic
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memory and concept learning that incorporate a role for
statistically based feature-feature relationships, such as
attractor networks and the model of Billman and Heit
(1988). Furthermore, assuming that the mapping from
iterations in Simulation 1 to SOA in Experiment 1 is valid,
the model predicted the interaction between
intercorrelational strength and SOA. Note, however, that the
attractor network predictions for the long SOA were not
entirely accurate. The difference between the activation of
the strongly and weakly intercorrelated features at later
processing iterations was marginally significant, whereas the
long SOA effect in the human data was robust. Nevertheless,
the attractor network predictions and the Experiment 1
results directly contrast with the claim that feature correla-
tions are not instantiated in semantic memory, and hence
should not influence feature verification (Murphy &
Wisniewski, 1989).

It is interesting to note that the long SOA results do not
demand the notion of explicit expectancy generation. The
idea that participants generate expectancies when allotted
sufficient time between two stimuli is a key part of a
number of theories of tasks of this sort, most notably
semantic priming (Becker, 1980; Neely, 1977). However, the
production frequency measures suggest that it is unlikely
that participants generated the target features from either the
strongly or weakly intercorrelated groups with any regular-
ity. The average production frequency for the Experiment
1 target features was 12 of 30, indicating that they were
produced for the concept by only 40% of the participants in
the norming task of Mdss, even though participants pro-
duced almost 10 features per concept on average. Perhaps
even more informative is the rank of the features in terms of
production frequency. On average, the target features were
only the eighth most likely to be generated given the
concept. Finally, recall that both of these variables were
equated between groups.

Experiment 2: Feature-Concept Verification

In Experiment 2, rather than pairing two concepts with one
feature and presenting the concept first on each trial, two
features (e.g., <is juicy> versus <is nutritious>) were
paired with one concept (grapefruit) and the feature was
presented first. In this example, the features of grapefruit are
more strongly intercorrelated with <is juicy>
(intercorrelational strength = 279) than with <is nutri-
tious> (intercorrelational strength = 17).

SIMULATION 2

The order of presentation has direct implications for
simulating the experiment and produces different predic-
tions. Experiment 2 was simulated using the items from
Simulation 1. Although these pairs were used originally to
simulate a feature verification task in which the concept is
presented prior to the feature (i.e., each feature is paired
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with two concepts), they sufficed for present purposes. Each
simulated trial began by disabling the input units because the
network was not trained on word-form representations
corresponding to specific features. To simulate computing
the feature’s meaning, its corresponding unit was activated
(e.g., the unit corresponding to <is juicy>). Given that
each feature was represented as a single unit, activation
greater than 1.0 was necessary for one of 646 feature units to
significantly affect the dynamics of the system. Therefore,
three independent runs were used that differed only in the
degree to which the feature unit was activated (5, 10, or 15),
and the results were averaged over these runs. The network
was allowed to iterate five times (arbitrary). The feature unit
was reactivated for each iteration because its name remained
on screen during Experiment 2.

The activation levels of the other semantic features
possessed by the target concept were measured at each
iteration to assess how the intercorrelational strength of a
single feature influences the ensuing computation of a
concept containing it, and how this influence changes over
time. We assumed that feature-concept verification latency
is determined partly by the amount of time required for the
semantic system to move from the state resulting from
activating a single feature to the state representing the
concept. Therefore, we assumed that verification latency in
Experiment 2 is monotonically related to the number of the
target concept’s features that are pre-activated. Figure 4
presents the mean number of the target concept’s feature
units that were correctly activated for each iteration (i.e.,
activation > 0.5 on a 0-1 scale). A two-way repeated-
measures ANOVA was conducted with the number of the
target concept’s feature units correctly turned on as the
dependent variable and intercorrelational strength (strong
vs. weak) and iteration (1 to 5) as the independent variables.
Intercorrelational strength and iteration interacted in that
the influence of feature correlations became more pro-
nounced as processing progressed, (4, 52) = 18.72. Further-
more, planned comparisons showed that although the effect
grew over time, a significantly greater number of the target
concept’s feature units were correctly activated at each
iteration when the initial feature was strongly, as opposed to
weakly, intercorrelated with the other features of the
concept. In addition, there were main effects of
intercorrelational strength, A1, 13) = 34.36, and iteration,
4, 52) = 44.66.

Feature correlations influenced the simulation results
because of the pattern completion properties of this type of
network. That is, a feature activates other features in
accordance with the feature-feature weights that are deter-
mined by the correlations. Therefore, a feature such as <is
juicy > that is strongly intercorrelated with the other
features of a concept, such as grapefruit, activated a greater
number of the features of grapefruit than did a weakly
intercorrelated feature such as <is nutritious>. Through
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Figure 4. Simulation 2. Predictions for Experiment 2. Mean number of
units correctly turned on for the strongly and weakly intercorrelated
concepts.

this process of semantic pattern completion, a strongly
intercorrelated feature facilitates the computation of a
concept to a greater degree than does a weakly
intercorrelated feature.

Predictions regarding SOA are again somewhat tenuous.
Each simulated trial began by activating a semantic feature
node, which corresponds to a situation in which the feature
name has already been recognized. Therefore, the number
of iterations in Simulation 2 is not directly comparable to
Simulation 1 in which the input was a concept’s word form.
The general prediction that can be taken from Simulation 2,
however, is that intercorrelational strength should interact
with SOA in that its influence should be greater for the long
SOA. The interaction occurred in Simulation 2 because the
strongly intercorrelated features tend to activate a set of
correlated features (a number of which are part of the target
concept), and these features keep each other active over
time. In contrast, the weakly intercorrelated features do not
tend to be part of a cohort of this sort, so that although they
initially activate other features of the target concept (because
they do occur together in that concept), activation tends to
spread somewhat diffusely through the network over time.
Finally, the prediction of an influence of feature correlations
is in direct opposition to models in which this variable plays
no role.

METHOD
Participants. Sixty-four University of Western Ontario

undergraduate students participated for course credit, 16 per -

list. All participants were native speakers of English and had
either normal or corrected-to-normal vision. The data for
four participants (one from each list) were discarded because
their error rates calculated over the practice, filler, and target
trials were greater than 20%.

367

Materials. Each of 36 basic-level concepts was paired with
one feature that was strongly intercorrelated with its other
features, and a second feature that was weakly
intercorrelated (see Appendix B for the items, and Table 3
for intercorrelational strength statistics).

Eight variables were equated across groups (see Table 3).
As in Experiment 1, first, production frequency and second,
ranked production frequency were equated. Third, the
number of concepts in which the feature appeared in the
norms was equated because it may influence the degree to
which a concept is activated by a feature, or predicted from
it. In addition, recall that features appearing in fewer than
three concepts were not included. Fourth, cue validity of the
feature was again equated. Fifth, the number of words and
sixth, letters per feature were equated because they influence
reading time. Seventh, although we could not equate feature
name frequency (Kucera & Francis, 1967), the difference
favoured the weak group. Eighth, the two features paired
with a concept were matched closely, but not exactly, with
respect to feature type as established by Wu and Barsalou’s
(1999) taxonomy (see Appendix B). Finally, because each
concept served as a target in both groups, all variables
associated with the concept itself were held constant. In
summary, the strong and weakly intercorrelated groups
differed with respect to intercorrelational strength, but were
equated in terms of eight potentially confounding variables,
in addition to all variables associated with the concepts
themselves.

Two lists were constructed, each containing 36 experi-
mental feature-concept pairs. If a concept occurred with its
strongly intercorrelated feature in List 1 (e.g., <is juicy >
grapefruit), then it occurred with its weakly intercorrelated
feature in List 2 (e.g., <is nutritious> grapefruit), and vice
versa. Thus, each list contained 18 strongly intercorrelated
items and 18 weakly intercorrelated items. Each list also
included 36 filler items, for which the feature was not
reasonably true of the concept, to balance the 36 experimen-
tal stimuli that required a “yes” response. As in Experiment
1, the filler and experimental items were equated in two
ways to avoid cueing participants to the response: the
features were equated on feature type as established by Wu
and Barsalou’s (1999) taxonomy; the concepts for the filler
trials were taken from the same superordinate categories as
were the experimental concepts. The same filler items
appeared in both lists. A separate set of 40 feature-concept
pairs (20 requiring “yes” responses and 20 requiring “no”
responses) was constructed for the practice session. Across
the practice, filler, and experimental items, no participant
encountered a concept or feature name more than once.

Procedure. All aspects of the procedure were identical to
Experiment 1, except that the feature name was presented
prior to the concept name during each trial. Participants
were instructed to read both the feature and concept names
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TABLE 3

Manipulated and Equated Variables for Experiment 2

McRae, Cree, Westmacott, and de Sa

Factor Strong Weak 1(70) ?
Intercorrelational Strength 225 (76) 26 (26) 14.89 < .001
Production Frequency 11 (6) 12 @) -0.18 > 8
Ranked Production Frequency 8 (5) 8 ) -0.15 > 8

# Concepts/Feature 10 6 9 © 077 > 4
Cue Validity 02 (1 02 (1) 0.17 > 8
# Words/Feature 2 (1) 2 1) 0.21 > 8
# Letters/Feature 9 (3) 9 3 1.19 > 2
Summed Frequency of Feature 25 (24) 98  (134) -3.22 < .05

Note: Standard errors in parentheses.

silently, and then to indicate, as quickly and accurately as
possible, whether or not the feature was reasonably true of
the concept. Participants completed the 40 practice trials and
then the 72 experimental trials. Verification latency was
recorded as the time between the onset of the concept name
and the participant’s response. The experiment took
approximately 20 minutes.

Design. The design was identical to Experiment 1.

RESULTS
Mean verification latency and percent errors for each
condition are presented in Table 4.

Verification latencies. As in Experiment 1, trials on which an
error occurred were excluded, and decision latencies greater
than three standard deviations above the grand mean were
replaced by the cut-off value (1%). As in Simulation 2,
intercorrelational strength interacted with SOA because its
influence was more pronounced with a long SOA, F(1,
56) = 3.99; F(1, 34) = 6.96. With a 300-ms SOA, participants
were faster to verify that a feature was part of a concept
when it was strongly intercorrelated with the other features
of the concept, £ (1, 56) = 6.58, (1, 34) = 7.19. This effect
more than doubled with a 2,000-ms SOA, F(1, 56) = 29.31,
F(1, 34) = 41.12. Overall, decision latencies were 56 ms
faster when intercorrelational strength was strong (M = 748
ms, SE = 20 ms) than when it was weak (¥ = 804 ms,
SE = 22 ms), F(1, 56) = 31.96, F,(1, 34) = 9.91. Finally,
verification latencies were 78 ms shorter when the SOA was
300 ms (M = 737 ms, SE = 17 ms) than when it was 2,000 ms
(M = 815 ms, SE = 24 ms), F(1, 56) = 4.15, £,(1, 34) = 54.89.

Error rates. Intercorrelational strength and soA did not
interact, F<1 in both analyses. Collapsed across SOA,
participants made 4.5% fewer errors when the feature was
strongly intercorrelated (M = 7.4%, SE = 0.9%) than when
it was weakly intercorrelated (M = 11.9%, SE = 1.0%), F(1,
56) = 20.05, F,(1, 34) = 5.19. Planned comparisons showed
that, with a 300-ms SOA, participants made fewer errors for
strongly intercorrelated features, F (1, 56) = 8.51,
F(1, 34) = 10.67. The effect was similar with a 2,000-ms

SOA, Fy(1, 56) = 11.68, F\(1, 34) = 6.23. Finally, error rates
were marginally greater (2.7%) when the SOA was 300 ms
(M = 11.0%, SE = 1.0%) versus 2,000-ms (M = 8.3%, SE =
1.0%), £,(1, 56) = 3.81, p < .06, (1, 34) = 4.05,p < .06.

DISCUSSION
Experiment 2 provided further evidence that feature correla-
tions are encoded in semantic memory. Furthermore, a
model incorporating this principle predicted the human
results, and provided insight in terms of a feasible mechanis-
tic explanation of the source of the effects. Specifically, the
influence of intercorrelational strength arose from the
pattern completion properties of this type of network. The
notion of semantic pattern completion is highly plausible
because this type of semantic generalization is common;
people easily answer questions such as, “If something has a
blade, what other features might it have?” (Sloman, 1993).
As in Experiment 1, accounting for the long SOA results
does not require the notion of participants explicitly
generating expectancies in the form of possible concepts
given a feature name. One indication that expectancy
generation played no role comes from the number of
concepts in which each feature is included. On average, each
strongly intercorrelated feature was part of ten concepts, and
each weakly intercorrelated feature was part of nine.
Therefore, it is unlikely that participants generated either
the strongly or weakly intercorrelated concepts, and, if
anything, they would be more likely to generate the weakly
intercorrelated ones. In addition, the features did not tend
to be highly associated with the concepts in that they were
produced by an average of only 40% of the participants in
the norming study of Mdss in which participants listed an
average of 10 features per concept. In terms of ranked
production frequency, the features were only the eighth
most likely to be listed. Finally, the simulation mimicked
the SOA by strength interaction without recourse to a
mechanism by which specific concepts were explicitly
generated.

General Discussion
The experiments and associated simulations provide further
evidence that semantic memory includes, and perhaps
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TABLE 4
Mean Feature Verification Latency (ms) and Percent Errors for
Experiment 2

300-ms SOA 2000-ms SOA

Decision Latencies

Weak 756 @2) 853 (36)

Strong 719 (26) 777 (31)

Difference 37+ 76 %
Percent Errors

Weak 13.1 (1.4) 10.7 (1.5)

Strong 89 (1.4) 5.9 (1.2)

Difference 42* 48*

Note: * indicates significant by participants and items. Standard error
in parentheses.

depends upon, statistical knowledge of feature correlations
that is learned through experience with objects and entities
in the everyday world. These experiments add to the list of
studies demonstrating that people can learn this type of
information, and provide additional evidence for theories of
concept learning that include a mechanism for encoding it.
The most compelling aspect of the simulations is that,
assuming that the mappings from iterations to SOA are valid,
the network predicted the contrasting interactions between
intercorrelational strength and SOA. A greater influence of
feature correlations at the short SOA was predicted and
obtained when the concept name was presented first,
whereas a greater influence at the long SOA was predicted
and obtained when the feature name was presented first.

SPREADING ACTIVATION THEORY

Although we believe that an attractor model is the most
parsimonious means of accounting for the results of Experi-
ments 1 and 2, there are two possible ways in which spread-
ing activation theory might account for them. The first does
not rely on the notion of feature correlations. Although the
extensive norming procedures of Mdss enabled equating for
a large number of potentially confounding variables, there
was one variable that we were not able to equate. This is
what MdSs termed “feature superordinate typicality,”
measured as the number of concepts within a superordinate
category that contain a specific feature. For example, deer
< hunted by people> has a feature superordinate typicality
score of five because five mammal concepts include
<hunted by people>. In Experiment 1, the strongly
intercorrelated concept-feature pairs had a higher average
feature superordinate typicality ( = 6.4, SE = 4.2) than did
the weakly intercorrelated pairs (M = 3.4, SE = 2.9),
t(94) = 4.06. A similar pattern occurred in Experiment 2:
strong (M = 8.8, SE = 5.2); weak (M = 2.9, SE = 1.6);
#(70) = 6.53.

It is possible that this variable might influence processing
in a semantic network without relying on the notion of
feature correlations. Consider Collins and Loftus’ (1975)
model in which concept nodes are connected to other
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concept nodes, and to their feature nodes. When the concept
name is presented first as in Experiment 1, activation might
spread to the nodes representing its features, as well as to the
nodes representing the other concepts that are within its
superordinate category (and perhaps its superordinate
category node as well). If activation spreads from each of the
concept’s category coordinate nodes to their feature nodes,
and this activation significantly alters the state of the target
feature node, then the target feature with the higher feature
superordinate typicality would be more highly activated,
thus accounting for the verification results. When the
feature name is presented first as in Experiment 2, activation
should spread from that feature node to all of the nodes that
represent a concept of which it is a part. Thus, the feature
with the higher superordinate typicality would activate a
greater number of concept nodes from within the target
concept’s category, and they in turn would pass activation
to the target concept. If activation spreads across the
requisite links to pre-activate the target concept sufficiently,
the concept from the strongly intercorrelated group would
be facilitated to a greater degree.

The major problem with this account, however, is that
with regards to direct concept-concept priming, research by
McRae and Boisvert (1998), Moss, Ostrin, Tyler, and
Marslen-Wilson (1995), and Shelton and Martin (1992) have
shown that concepts must be highly similar to prime one
another. Furthermore, Cree, McRae, and McNorgan (1999)
and Lupker (1984) found that category coordinates do not
prime one another unless they are highly similar, again using
direct priming between concepts. Therefore, it is unlikely
that indirect, mediated priming of the type described above
accounts for the present results.

A second spreading activation account relies on the
notion of feature correlations. Semantic network theory
could be modified to include feature-feature connections,
with the strength of a connection being determined by the
magnitude of the correlation. This modification enables a
straightforward account of our results in a spreading
activation network. However, it is incumbent upon re-
searchers from this view to propose a theory of how this
knowledge is learned in this framework without resorting to
the idea that these relationships must be explicitly noticed.
We suspect that any spreading activation theory that
incorporates these revisions would resemble an attractor
model.

Finally, it is worth noting that this research does not
undermine work on the knowledge-based aspects of concep-
tual processing (Medin, 1989; Murphy & Medin, 1985);
rather, it should be regarded as complementary. A complete
understanding of the various types of conceptually based
tasks and the representations and computations underlying
them necessitates synthesizing implicit statistically based and
explicit theory-based knowledge. The work of Sloman,
Love, and Ahn (1998) is an excellent example of bridging
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lower-level feature theories and higher-level knowledge-
based theories.

Conclusions
Recent research in language development has taught us is
that children are exceptionally good at extracting the
structure that exists in their environment. This includes, for
example, early awareness of the prosodic structure of the
language (Jusczyk, Cutler, & Redanz, 1993) and phonotactic
regularities (Saffran, Aslin, & Newport, 1996). Thus,
language learning and use appears to hinge critically on the
mind’s ability to encode various sources of structure and
integrate them during online comprehension and produc-
tion. From this perspective, it may not be surprising that the
semantic structure of objects and entities plays a key role in
the computation of word meaning,
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Appendix A
Stimuli for Experiment 1

Feature

Concept — Strong

Concept — Weak

found in kitchens toaster

has a long tail rat

has a seat tricycle
has eyes fawn

has leaves lettuce

has legs pony

has teeth lion

has wheels bus
hunted by people deer

is breakable bottle

is dangerous rifle

is electrical microwave
is grey rock

is hand held pistol

is nutritious cauliflower
is round cherry

is sharp spear

sink

pony
chair

hawk
pineapple
stork

rat

cannon
duck
crayon
motorcycle
drill

mouse
screwdriver
grapefruit
peas

fork
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lives in herds caribou sheep

migrates duck caribou

used for juice grapefruit grape

worn by women dress nylons

made of leather boots belt

is colourful budgie carpet

used for storage closet shelves

has an engine dunebuggy yacht

has a handle axe cup

has doors cupboard car

has drawers dresser desk

has patterns plate mug

has seeds orange cucumber

is brown moose coconut

used for transportation van horse

is comfortable cushion slippers

is crunchy radish apple

is edible cauliflower chicken

is green cucumber lime

is juicy lime beets

is orange tangerine carrot

is pointed spear screws

is rectangular freezer dresser

is transparent jar nylons

s tropical coconut parakeet

worn for warmth boots shirt

made of plastic cup fork

made of steel knife pliers

used for protection pistol dog

used in circuses lion cannon

used for war gun sword

Appendix B
Stimuli for Experiment 2, Along with Feature Type According to Taxonomy of Wu and
Barsalou (1999)

Concept Feature — Strong Type Feature — Weak Type
beans is nutritious e sys is yellow ese
blouse made of cotton made of is soft ese
bottle hasalid e ce has a neck ece
buzzard has wings ece is black ese
cabbage grows in gardens location is round ese
canary chirps eb has 2 legs eq
car has 4 wheels eq is expensive e sys
caribou 1s herbivoraus superordinate migrates eb
carrot is crunchy esi is orange ese
chair has armrests ece has a seat e ce
cherry is sweet esi is red e se
couch used for relaxing function made of leather made of
crow flies eb is loud eb
cup made of china made of made of glass made of
dagger is sharp e se is pointed ese
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grapefruit is juicy esi is Qutritious € sys

gun is dangerous e sys is black ese
missile used for killing function used by the army participant
moose has hooves e ce has hair ece
motorcycle has an engine ect is dangerous e sys
mouse has a tail ece is grey e se
ostrich has feathers ece has legs ece
parakeet has a beak ece is tropical e sys

pig has 4 legs eq is dirty ese
pineapple 1s juicy esi is yellow ese
pumpkin has seeds ecl is orange e se

rat has whiskers ece has teeth ect
sandals has soles ece has straps e ce
slingshot used for shooting function used by children participant
spear is sharp ese is thin e se

stone is smooth ese is cold ese

stork flies eb is white e se
tricycle has wheels ece used by children participant
trousers has pockets € ce is comfortable evaluation
van has wheels ece has doors ece
vulture has wings ece has claws ece

Legend: e ce = entity external component; € ci = entity internal component; e se = entity
external surface property; e si = entity internal surface property; e b = entity behaviour;e q =
entity quantity; e sys = entity systemic property (includes “abstract properties” of an object

as a whole)
Sommaire
Le rble des corrélations de caractéristiques dans la mémoire (SOA) ont été découvertes quand le concept était présenté
sémantique est un probléme central dans la représentation avant la caractéristique. Un modéle de réseau attracteur sur
conceptuelle. Dans deux versions de la vérification des la signification des mots, qui apprend et utilise naturellement
caractéristiques, les sujets ont vérifié plus rapidement qu’une les corrélations entre les caractéristiques, a prédit ces
corrélation (<est juteux>) fait partie d’un concept interasctions. La présente recherche prouve davantage que la
(pamplemousse) si elle est plutét fortement que faiblement mémoire sémantique comprend une connaissance statistique
corrélée a d’autres caractéristiques de ce concept. Des implicitement acquise des futures relations, en contraste avec
interactions contrastantes entre les corrélations de des théories comme la propagation des réseaux d’activation,

caractéristiques et des apparitions-stimulus asynchrones ou les corrélations des caractéristiques ne jouent aucun role.
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