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Abstract

One of the key ideas in both robotics and neuroscience is that complex behaviour can arise from the
interaction of many cooperating simple agents or modules. In this paper we suggest that this idea can be
extended; just as combining simple agents may be important for complex behaviour, combining tasks is
important for learning the parts themselves. In particular we show that combining classifications across
different modalities can help solve the teaching signal dilemma and allow the development of task relevant
classifications without external supervision. We recap some psychophysical and neurobiological data
supporting the idea that information from different modalities can assist (or interfere) with classification
in another modality and describe a neural network algorithm that is able to take advantage of the
structure between the pattern distributions to different sensory modalities to eliminate the need for a
teaching signal during training of each network. The algorithm is demonstrated on the problem of learning
to recognize speech both acoustically and visually. Simultaneous presentation of moving mouth images
and emanating sound waves allows the development of lip-reading and acoustic speech classifiers. The
resulting classifiers approach the performance of supervised classifiers without requiring hand-labeling of
the training patterns.

One of the key ideas in both robotics and neuroscience (and emphasized in this volume) is that complex
behaviour can arise from the interaction of many cooperating simple agents or modules. However, while
intelligent behaviour is thought to be obtained from combining modules, it has been common practice to
study the development of individual modules or systems in isolation. In this paper we argue that combining
modules during learning can help solve the teaching signal dilemma and allow the system to learn without
an external teaching signal.

Learning appropriate boundaries in different spaces for classifying objects is a ubiquitous and non-trivial
task. While an informative boundary may exist within a modality (or set of related dimensions), learning
this boundary from unsupervised pattern presentations may be difficult or impossible. For modeling or
designing intelligent behaviour, often an external teaching or labeling signal is required to learn the desired
mapping. Various arguments are given to justify providing the required teaching signal. Often in Artificial
Intelligence(AI) projects, assumptions are made that other tasks have been solved when constructing algo-
rithms or solutions for the particular task of interest. This becomes especially circular when the referenced
solutions have assumed that the first task, or some task dependent on the first, was already solved.

Similarly cognitive models frequently fall prey to the same traps. Thus providing a ‘cow’ label with
cow images in a model learning to recognize animals may be justified with the statement that “an infant
is told ‘cow’ when shown a cow.” This of course ignores the point that the spoken word ‘cow’ is not a
useful teaching signal until the auditory system has learned to correctly parse and classify speech signals.
(This is immediately apparent to those who have tried to build a machine speech recognition system or even
observed sound spectrograms of spoken words.) Similarly, as computer vision researchers are well aware, the
cow picture is not a useful teaching signal for the ‘cow’ acoustic signal until the visual system has correctly
learned to recognize cows.

In order to more fully understand development as well as to produce autonomous learning agents, it is
necessary to study learning without assuming that other learning tasks have been previously learned — to
look at learning in the whole integrated system. We argue that rather than making the problem bigger and
more difficult, the greater information available from looking at two or more problems together enables task-
relevant solutions without requiring explicit labels during training. Experience is naturally multi-sensory
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and we propose that its multi-modal nature is important not only for dealing with cross-modal integration
but for developing single modality abilities.

In this paper we concentrate on the problem of learning to classify signals from two or more sensory
modalities. We have developed a simple algorithm that takes advantage of the global structure present in
the environment in order to improve classification in the individual sensory modalities. The algorithm uses
the structure between signals from two or more modalities to assist in the development of a piecewise-linear
classifier within each modality. The structure in natural environments leads to signals that are correlated
between the different sensory modalities. For example, hearing “mooing” and seeing cows tend to occur
together. So, although the sight of a cow does not come with an internal prescient “cow” label, it does co-
occur with an instance of a “moo”. The key is to process the “moo” sound to obtain a self-supervised label
for the network processing the visual image of the cow and vice-versa. This idea is schematized in Figure
1. Note that this is fundamentally different than running two separate supervised learning systems. The
networks actually develop together. Before they have developed into good classifiers, they cannot provide
good labels to each other. This algorithm is also different from that in [BH92] as the resulting rule is
specifically designed for classification, seems to perform significantly better in this area [dS94c¢, LSF94][Steeg
and de Sa, unpublished data], and does not require backwards propagation of high dimensional vectors (the
only feedback information is the output class from the other network).
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Figure 1: The idea behind the self-supervised algorithm.

Most of the paper will deal with the neural network algorithm simulation results, but we start with some
biological motivation behind the idea of using the cross-modal structure.

1 Cross-Modal Learning in Humans

1.1 Psychophysics

While we have not been able to find psychophysical experiments that specifically address the issue of cross-
modal information changing classification boundaries in the individual modalities, there is a lot of evidence
that it is used in ongoing classification decisions. People are very sensitive to correlations between the inputs
to different modalities and changing input to one modality has a powerful effect on the classification decisions
in another.

One example of cross-modal integration 1s the improved speech recognition performance when a speaker’s
face (particularly the lips) is visible [SP54]. The visual signal from the motion of the lips, jaw and tongue
help the auditory system to understand the speech. This is particularly useful in noisy rooms where the
acoustic information alone is deficient.



The effect of lip movement on speech recognition is even more prominent when the stimuli are experimen-
tally manipulated so that the visual and acoustic signals are discordant. In the experiments of [MM76, MM78]
subjects are presented with acoustic stimuli of various consonant-vowel pairs and simultaneously shown im-
ages of faces speaking a different consonant with the vowel. Thus for example when presented acoustically
with a /ba/ syllable and visually with a face speaking /ga/, 98% of adult subjects hear /da/ [MM76]. The
result is very striking and not subject to conscious control. It shows that visual and auditory stimuli are
able to interact to produce a unified percept, different from the stimuli actually given to either modality.

By four and a half months of age infants are able to recognize that particular lip motions go with particular
sounds. Kuhl and Meltzoff showed that infants looked significantly longer [KM84] at the matching face when
presented with the sound /a/ or /i/. Their preference was specific to the actual speech information as they did
not show this effect when the speech signals were replaced with tones that followed the duration, amplitude
envelope and onset/offset timing of the original speech sounds [KM84]. Furthermore it seems that the ability
of visual signals to influence acoustic classification is at least partially learned. Pre-school and school children
show significantly less of the McGurk effect than do adults [MMT76].

Probably the best example of the type of cross-modal learning discussed below is demonstrated in a novel
experiment in [Dur95]. Durgin shows that consistently pairing different tones with different density patterns
results in differences in perceived density in the presence of the two tones. The experiment involved repeated
brief presentations of random dot patterns in two rectangular areas of a screen. On each presentation, one
of the two areas received 25 dots/deg? and the other 2 dots/deg?. The visual presentations were paired with
auditory tone stimuli such that the pitch of the tone was perfectly correlated with the side of the denser dot
pattern. After 180 flashed presentations, a staircase procedure was used to determine the perceived density
equivalence (for test patterns with dot densities between the two trained densities) between the two areas
when presented with each of the two tones. The experiment showed that there was a significant effect of
the tone on the perceived density relationship between the patterns in the two areas. The simultaneous
presentation of the tone associated with a denser texture in one area during training, lead to an impression
of greater dot density in that area during testing. To match a constant density, the difference between the
density required in the presence of the high pitch and that with a low pitch was 10% [Dur95].

1.2 Neurobiology

The previous section examined results showing that information from different sensory modalitiesis combined
in determining our perception. Often, as for the McGurk effect mentioned above, the combination is not
subject to conscious control. Tt is as if the results are not simply being combined at a high-level output
stage but are able to influence each other in the individual processing stages. This is corroborated by
neurophysiological studies which have found responses of cortical cells in primary sensory areas that respond
to features from other sensory modalities. For example [SSB68] found sound frequency specificity in cells in
primary visual cortex of the cat and [FM73] found that these bimodal cells tend to be clustered together. As
support for the unified percept observed in psychophysical studies, the stimuli are able to affect the same cell.
In fact acoustic responses in a single cell could be inhibited by inhibitory visual stimuli [Mor72]. As there
are no direct afferent (feed-forward) connections from one input modality to another, the information from
other modalities could either be coming bottom-up from shared subcortical structures such as the superior
colliculus or alternatively top-down from the multi-sensory integration areas such as entorhinal cortex and
other limbic polymodal areas. This idea is suggested in [Rol89] and seems to be supported by the evidence
from visual cortex. As stated by [SSB68]

non-visual stimuli affect the activity of ganglion cells only minutely [SPW65, SW66, Spi67]; they
affect that of the geniculate cells to a greater extent [MCBS65] and very markedly affect cortical
cells [MCyR65]. Even more interaction appears to be present in prestriate cortex [BB59].

2 The Classifier

Motivated by the data presented in the last section, we hypothesize that one way in which animals may
compensate for a lack of teaching signals is through using information in other modalities to assist in
learning to classify within another modality. Following the anatomical evidence and under the assumption



that it is infeasible to have neurons receiving input from the sensory transducers of all modalities; we propose
an architecture such as that shown in Figure 1 in which each modality has its own processing stream (or
classification network) but access to each other’s output at a high level. This information can reach the
lower levels within each processing stream through feedback within each stream. This feedback, as described
below, is simply the output of the other network and does not require implausible propagation of information
backwards along connections as is required in algorithms using back-propagation [RHW86] learning.

Each modality is modeled as a piecewise linear classifier and objects are represented as n-dimensional
pattern vectors. The piecewise linear classifier is defined in terms of codebook vectors which are also vectors
in the space of the input patterns. Besides a position in the input space, each codebook vector also has a
class associated with it. Patterns are classified as belonging to the class (given by the label) of the closest
codebook vector—the classification boundaries are given by the segments of the Voronoi tessellation between
codebook vectors of different classes. The learning problem thus is to determine appropriate positions for
the codebook vectors so that they define good classification boundaries.

Figure 2: A Piecewise-Linear Classifier. The circles represent data samples. The filled circles denote data
from one class and the open circles those from another. The X’s represent the weight vectors of competitive
neurons. The input space is divided between the weight vectors such that data points are assigned to the
closest weight vector. The boundaries drawn in this way correspond to the Voronoi tessellation of the weight
vectors.

Unsupervised methods of moving the codebook vectors are the Competitive learning and related Kohonen
feature mapping algorithms [Gro76, Koh82, RZ86]. In Competitive learning the codebook vectors move to
minimize the distance from every input pattern to their closest codebook vector. This tends to move the
codebook vectors to the centres of clusters. Kohonen feature mapping is similar except that the codebook
vectors have specified positional relationships and nearby ones move similarly. These algorithms work well
for clustering and cheaply encoding data but are not optimal for forming classification boundaries.

If the class labels are given with the training patterns, a supervised algorithm can be used to move the
codebook vectors to give more appropriate borders for classification. It can be shown [dSB93] that (a slight
variant of) Kohonen’s supervised LVQ2.1 [Koh90] algorithm minimizes the number of misclassifications
in the resultant classifier. However for autonomous robotic applications and models of human learning,
a learning algorithm that learns without a supervisory signal is required. The Minimizing-Disagreement
(M-D) algorithm [dS94b, dS94a, dS94c]allows the benefit of a task-related labeling signal without requiring
an external labeler or backwards propagation of detailed error signals.

The algorithm learns from paired presentations to the two modality nets. Patterns from the same class
are presented to each network. For example presentation of a cow image to a visual network would co-occur
with a presentation of a moo sound to an auditory network. The outputs from the two modalities provide
label signals to each other. This allows the whole system to bootstrap itself.

The initial codebook vectors are randomly picked from the respective input spaces. The algorithm then
consists of two stages (which correspond to the two properties of codebook vectors—labels and positions).
In the first stage the initial codebook vectors are given labels. This initial labeling stage essentially runs a
competitive learning algorithm on the vectors over the codebook vector layer. Codebook vectors that tend to
be activated together will increase their connections to the same output neuron. After several iterations the



codebook vectors are given the arbitrary label of the output neuron to which they have the strongest weight.
The second and most important stage of the algorithm is moving the codebook vector positions in order to
form better classification boundaries (The labels are also updated as required in this stage). As we can’t
directly monitor the number of misclassified patterns we can’t minimize this measure directly as we can in
a supervised algorithm. Instead the algorithm monitors the number of disagreements between the outputs
of the two networks. The mathematical derivation in [dS94b, dS94a, dS94c] shows that the Minimizing-
Disagreement (M-D) algorithm performs the (modified) LVQ2.1 algorithm except instead of using externally
provided labels each network uses the label given by the other network (for the co-occurring pattern). The
supervision has been replaced by the co-occurrence of patterns from the same class to the two modalities.

3 Algorithm Simulations

As an example of the idea and algorithm we used the algorithm to learn to recognize consonant-vowel
utterances both visually and acoustically. We show that by learning both together with no external labels
during training, we can do almost as well as supervised trained networks that receive labels with each pattern
presentation.

3.1 The Dataset

Data were collected from 5 male English speakers as they spoke 26 iterations ? of /ba/ /va/ /da/ /ga/ [wa/.
Each set of 10 utterances (twice through the set) was preceded by a clap using a clapboard arrangement
similar to that used in commercial movie production for matching the visual and auditory signals. The
camera recorded 30 frames a second and was positioned to view the tip of the nose through chin of the
speaker. The audio was recorded through a cardioid microphone positioned approximately 5 inches from the
speaker’s mouth.

The acoustic data were low-pass filtered and segmented automatically (using time-domain wave magni-
tude) using the ESPS software from Entropic Research Laboratory, Inc. Each utterance was taken from
50msec before the automatically detected utterance start to 50msec after3. These utterances were then
encoded using a 24 channel mel code? over 20msec windows overlapped by 10msec. This gave a (24*9 =
216) dimension auditory code for each utterance.

The visual data was processed using software designed and written by Ramprasad Polana [Pol94]. The
visual frames were digitized as 64 x 64 8 bit gray-level images using the Datacube MaxVideo system. The
video and auditory tracks were aligned using the clapboard arrangement. Visual detection of the clap was
performed manually which allowed alignment to within 1 video frame (1/30 second). (For an example of a
video sequence showing a clap frame see Figure 3). The frame of the clap was matched to the time of the
acoustically detected clap allowing the automatic segmentation obtained from the acoustic signal to be used
to segment the video. The segments were taken as 6 frames before the acoustically determined utterance
onset and 4 after. The normal flow was computed using differential techniques between successive frames.
Each pair of frames was then averaged resulting in 5 frames of motion over the 64 x 64 pixel grid. The frames
were then divided into 25 equal areas (5 x b) and the motion magnitudes within each frame were averaged
within each area. This gave a final visual feature vector of dimension (5 frames * 25 areas)= 125.

RE™

Figure 3: Example frames showing the clap detection. The clap is in the centre frame.

2 A few speakers spoke more iterations.
3This was to ensure that all the consonantal information was retained.
4linear spacing below 1000Hz and logarithmic above 1000Hz



Figure 4: Example /ba/ utterance.
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Figure 5: Example /va/ utterance.

3.2 Experimental Results

The data for one speaker were unusable due to a problem with the video tape. The training set was made
up of each of the other speakers’ first 20 cycles through the utterances (minus a few cycles that could not
be used due to lost frames during digitization). The test set was made up of the next 6 cycles °.

We first benchmarked the dataset by running the supervised LVQ2.1 algorithm. Using 30 codebook
vectors for the auditory patterns we achieved an accuracy of 99% on the training set and 97% on the test
set. Using 60 codebook vectors for the visual patterns the performance was 83% on the training set and 60%
on the test set.

Note that the unsupervised competitive learning (or Kohonen feature mapping) algorithm does not give
codebook labels but in order to compare the appropriateness of the placement of the codebook vectors for
classification we can determine the optimal labels for the codebook vector positions and measure performance
of the resulting classifier. This can be considered a hybrid unsupervised-supervised algorithm and reveals
the best that one can do given codebook vectors positioned using no external labels. The hybrid algorithm
gave accuracies of 84% and 55% on the two training sets.

Ideally we would like to test the M-D algorithm by presenting to the auditory and visual networks only
the pairs of patterns that occurred together. However, to get a good covering of the spaces, many utterances
need to be collected. Due to the time involved in the current method of synchronizing the audio and video
(they are processed separately and synchronized manually through the visual clap detection) it was decided
to run preliminary experiments that artificially increase the dataset by matching each auditory pattern of
one utterance with each visual pattern of that utterance in the training set. For example, an individual
acoustic pattern from a /ba/ utterance is randomly paired with the visual sample from a randomly chosen
/ba/ utterance. This technique makes the assumption that within an utterance class the exact auditory and
visual patterns are independent and thus each auditory pattern can be paired with each visual pattern from
the same class (not just the one that it actually co-occurred with) because with enough data collection that
combination would be possible.

For these experiments, the Minimizing-Disagreement algorithm was applied to codebook vectors resulting
from the unsupervised Kohonen learning algorithm instead of randomly initialized ones in the respective
spaces ©. The initial labeling algorithm on these codebook vectors resulted in 72% on the training set
and 68% on the test set for the auditory network and 48% (training) and 36% (test) for the visual network.
These results reflect the ability of the unsupervised labeling algorithm to give appropriate labels to the initial

5For some speakers there were a few extra cycles that were also included.
6Initial experiments suggested that this might provide better results but later tests indicated there was not much difference.
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Figure 6: Example /da/ utterance.
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Figure 7: Example /ga/ utterance.
codebook vector positions and can be directly compared with the optimal supervised labeling algorithm given

Figure 8: Example /wa/ utterance.
above (84%,55%) as they were both applied to codebook vectors positioned by the same algorithm.

The real benefit of the multi-modal approach requires moving the codebook vectors. With this, the
Minimizing-Disagreement stage was able to greatly increase the classification performance from this initial
state to 97% and 72% for the auditory network and 82% and 58% for the visual network. The performance
results are summarized in Figure 9.

While the previous results were encouraging, it was important to demonstrate the algorithm in the
fully unsupervised way, making no assumptions about independence between the modalities, and using
only the cross-modality information sampled from the environment. In order to accurately sample the
space, we restricted the problem to that of a single speaker. This speaker repeated 120 cycles of /ba/,
/va/,/da/,/ga/ /wa/. The first 100 cycles (minus two that lost frames during the digitization) were used
as the training set and the last 20 were used as the test set. Again for this cross-modal dataset the M-D
algorithm was applied using the results of the Kohonen learning algorithm as the initial codebook vector
positions. The algorithm achieved accuracies of 92% (train), 92% (test) on the auditory data and 91%
(train), 78% (test) on the visual data. For comparison the supervised LVQ2.1 algorithm, as well as the
M-D algorithm using full-pairings as above, were also run on this dataset. The supervised results were 99%
(aud-train), 95% (aud-test) and 96% (vis-train), 82% (vis-test). The M-D algorithm using the artificially
increased pairing resulted in 98% (aud-train), 95% (aud-test) and 95% (vis-train), 80% (vis-test). These
results are displayed in Figure 10. The results demonstrate that for one speaker, the natural lip-sound
co-occurrences were enough to give performance within 7% percent of the supervised results on the training
set and within 4% of the supervised results on the test set. More data collection is needed to determine if
the fully unsupervised algorithm would work on the multi-speaker problem.

4 Conclusions and Hypotheses

We know from psychophysical studies that information from different modalities is combined and that infor-
mation from one modality can assist or interfere with classification in another. The physiological evidence
supports this finding in showing that input to other modalities can influence processing in another sen-
sory pathway. This, combined with the anatomical evidence that shows no direct input from one modality’s
transducers to another pathway, suggests that perhaps this information is coming top-down through feedback
pathways from multi-sensory areas.

We suggest that this multi-sensory integration may be doing more than affecting the properties of devel-
oped systems but may play an important role in the learning process itself. Just as lip-reading is a learned
classification ability, correlations between inputs to different sensory modalities may affect other classifica-
tion learning in the individual modalities. The simulation results support this idea that using the global
information can be helpful for learning within individual modalities. Performance of the M-D algorithm was
within 4% (on the test set) of the related supervised algorithm and significantly better than performance
achieved by the related unsupervised algorithm in which the codebook vectors were positioned without using
information from the other modality (but labels were obtained optimally).

From a biological perspective the algorithm offers an explanation for why cells in one sensory area also
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Figure 9: Results on the preliminary cross-modal dataset. The two leftmost bars in each set of four
give the performance of the visual network and the rightmost bars show the auditory network’s performance.
Within the two bars for each modality, the lighter and leftmost bar represents performance on the training
set. The darker, rightmost bars give results on the test set. The error bars represent 1 standard deviation.

respond to inputs to another sensory modality. We have shown that without connecting neurons to all sensory
input we can still take advantage of the greater structure available in the higher dimensional total space
of inputs. This occurs through integrating the modalities at a higher level and using feedback connections.
This may provide an explanation for the ubiquitous back projections in cortex whose purpose is not yet well
understood. In fact [SS82] found that inactivating V2 had little effect on the response properties of cells
in V1, indicating that back-projections, or at least the V2-V1 projection has little purpose during regular
processing. We suggest that these back-projections are important for the organization of the incoming
sensory stimuli during learning.

From a machine-learning point of view, the M-D algorithm enables trainers to avoid the costly hand-
labeling of training data, provided that the learning system has access to information from two or more
modalities, sub-modalities or points in time, that are providing redundant but not identical information. At
a minimum it would allow the learning system to train on patterns labeled verbally by an observer.
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